
Proceedings of the 2005 Winter Simulation Conference
M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, eds.

PROGRAMMING USING DYNAMIC SYSTEM MODELING
VIA A 3D-BASED MULTIMODELING FRAMEWORK

Hyunju Shim
Paul Fishwick

Department of Computer and Information Science and Engineering

University of Florida
Gainesville, FL 32611, U.S.A.

ABSTRACT

We propose a new approach to visual programming which
adopts principles and elements from dynamic multimodel-
ing for structured procedural programming, especially
graphics programming. Unlike most traditional visual pro-
gramming languages which simply replace syntactic parts
of program with graphical objects, we applied the princi-
ples of dynamic model types in modeling and simulation to
create program models and execute/simulate them. With
this approach, computer programs are constructed by vis-
ual modeling instead of textual writing. The motivation for
a method using dynamic model types in graphics pro-
gramming is also tied to several emerging research areas:
novice user interfaces, programming visualization, custom-
ized icons, and a broader view of aesthetics within pro-
gramming. Metaphoric icons are extensively used for the
visual representation of program model elements. Rube, a
Web- and XML-based modeling and simulation frame-
work, provides the necessary environment for the construc-
tion, visualization and execution of program models.

1 INTRODUCTION

The first research on programming by demonstration was
Pygmalion (Smith 1975). The basic idea was that pro-
gramming systems should support visual and analogical
aspects of creative thought and that programming should
be less tedious. Ever since the first visual programming
system was introduced, visual programming has been spot-
lighted and a good volume of principles and methodologies
have been developed. While most of visual programming
introduced until ‘80s were 2D, 3D visual programming is
getting increasing interest from a wide range of domains
provided by the availability of low cost hardware and
software for 3D graphics.
 There has been much research in visual programming
regarding the generation of effective representations of
programs for different programming languages or para-
digms. However, issues such as 3D customizable icons,

193
stimulation of user’s creativity and aesthetic perspectives
of visualization are often neglected among visual pro-
gramming communities. Our research proposes a new ap-
proach to visual programming that unifies modeling with
programming while leveraging 3D customizable icons that
stimulates user’s creativity and aesthetic perspectives. This
approach to programming has particular utility in educa-
tion, where creativity has been shown to increase subject
interest. Unlike most visual programming languages that
visually mimic the behavior of textual programs, we ap-
plied dynamic model types such as Functional Block
Model (FBM) and Finite State Machine (FSM) in the con-
struction and execution of program models to capture the
nature of programming principles. Unifying modeling with
programming brings several benefits to programming: cap-
turing dynamics of programs using simulation model types,
getting early feedback by running and modifying models,
applying metaphors to allow greater flexibility and free-
dom in model representation, and storing model compo-
nents in an ontological model structure.
 RUBE, a Web- and XML-based modeling and simula-
tion framework, provides a necessary environment for the
construction, visualization, and execution of program mod-
els. In the RUBE framework, users can construct their pro-
gram models, which will be stored in XML format and
translated into an executable program by the translation
engines. RUBE makes use of a 3D open source tool
Blender to provide a modeling environment for users. Us-
ers can use pre-existing program modules and icons or cre-
ate their own modules and icons in RUBE.
 The primary innovation of our work is the following:

• A customized approach to modeling, enabling

novices to learn modeling through a high degree
of creativity. We express this creativity in our
model representations through the use of person-
alized 3D, rather than 2D, icons

• An approach to programming that leverages a set
of “off the shelf” dynamic model types tradition-

1

Shim and Fishwick

ally associated with the simulation community,
without necessarily attempting to institute a stan-
dard: data flow graphs, event graphs, and Petri
nets, for example, have their own approaches to
visual syntax and application

• A holistic environment where the program syntax
and semantic behavior are situated within the
same 3D virtual space.

2 RELATED WORK

ConMan (Haeberli 1988) is a 2D high-level visual lan-
guage that lets users dynamically build and modify graph-
ics applications. A data flow metaphor is used in ConMan
and users construct and modify complete applications by
creating components that are interconnected via input and
output ports. Developers are encouraged to break mono-
lithic applications into functional components that commu-
nicate with each other using high level data structures.
 Lingua Graphica (Stiles and Pontecorvo 1992) is visu-
alization of procedural textual languages. It defines a visual
3D syntax for C++ programs that allow users to inspect and
modify the virtual reality simulation code without having to
leave the virtual environment. Graphical primitives used in
Lingua Graphica are color, translucence, shape, size, asso-
ciative links, co-location, text, sound, and motion. Associa-
tive links are used for representing class inheritance, data-
flow binding, and function calling or definition sequence.
Co-location refers to the concepts of location, containment,
and intersection of one object with respect to another.
 SAM (Geiger, Mueller, and Rosenbach 1998) is a vis-
ual 3D programming language, visualization, and envi-
ronment for parallel systems specification and animation.
A SAM program is mainly given as a set of 3D objects and
there is no separate textual description. 3D objects in SAM
are 3D messages, agents with ports, and rules with a pre-
condition and a sequence of actions. Input and output ports
are distinguished by the direction of the representing cone.
SAM allows users to build the abstract visual representa-
tions and the corresponding concrete graphical representa-
tions for programs. In the concrete representations, addi-
tional static 3D objects that are not part of the program can
be included to give a more realistic environment.
 3D-PP (Oshiba and Tanaka 1999) applies the direct
manipulation of operations to the 3D program elements. 3D-
PP is based on the concurrent logic programming language
GHC. The visual program of 3D-PP is composed of a com-
bination of hierarchical nesting boxes of pictorial program-
ming elements such as atom, list, id_data, goal, and built-in
goal. An extended drag-and-drop technique is used for de-
scribing the program structure of nesting boxes. The semi-
transparent representation, by using the nesting level filter-
ing and the double-click browsing improves the spatial prob-
lem in visual programming caused by a small screen.
 3D-Visualan (Yamamoto 1996) is a 3D rewritable-
rule-based programming language in which both programs
19
and data are expressed by 3D-bitmaps. Programs of 3D-
Visualan are the ordered set of pattern-replacing rules. The
priority of rules is determined by their locations in the 3D-
bitmaps such as the rear rules which have higher priority
than the frontal rules. The behavior of the program is de-
scribed by means of before-after rules which define how
3D-bitmaps change over time. Using 3D-Visulan, pro-
grammers can express 3D worlds by 3D worlds.
 Pictorial Janus (PJ) (Kahn and Saraswat 1990) is a 2D
visual programming language for the parallel logical pro-
gramming. Programs in PJ are drawings where the execu-
tion is defined as the animation of the drawings. A PJ pro-
gram is given by the composition of closed contours and
directed and undirected connections between them. Objects
of PJ are constants, list elements, links, functions, agents,
and rules. Agents in PJ program communicate with each
other via message passing. The behavior of the agent is de-
termined by the preconditions of the rules in case they
match the corresponding input patterns of the agent. JIM
(Janus In Motion) provides interactive PJ specification and
animation environment.

PiP (Lee, Kim, and Park 2002) is a virtual environ-
ment system in which a user can create, modify, test, and
save object behaviors. PiP extends the visual programming
approach to 3D multimodal programming, representing the
program or object behavior in forms using 3D visual ob-
jects and programming them through manipulation in 3D
space. The most typical behaviors of objects are specified
by demonstration. Using PiP, users can program or specify
the motion or animation intuitively through better under-
standing of direct programming in 3D space.

3 VISUAL PROGRAMMING VIA MODELING

3.1 Programming versus Modeling

While programming is the process of creating a computer
program to solve problems with instructions that the com-
puter can interpret, modeling in general refers to the crea-
tion of the representation for a certain system. The com-
mon interest of programming and simulation modeling is
to solve problems in real life using a computer. However,
the goal of modeling is to come up with a representation of
a system that is easy to use for describing the system in a
mathematically consistent manner and to help human deci-
sion (Fishwick 1995). The field of computer modeling and
simulation has developed different models of computa-
tional paradigms, and execution modes from those in pro-
gramming (Banks and Carson 1986, Nance 1993).
 There also has been much research relating program-
ming with modeling. In 1965, Sutherland created a data-
flow language that allows for visual creation, debugging,
and execution of dataflow diagrams (Sutherland 1963).
SIMULA is the first object-oriented language and a good
example of how modeling and simulation principles can
improve programming. Bloss (1990) claimed that tradi-
32

Shim and Fishwick

tional imperative languages are poorly suited for modeling
the concurrent logic in simulation and the absence of an
explicit time-flow mechanism in the functional program-
ming would fit nicely into the simulation modeling where
time flow is an implicit part. While not every principle and
element of programming can be modeled, there are cases
where dynamic model types in simulation can improve
programming in terms of its expressiveness and under-
standability (Shim and Fishwick 2004). The rest of this pa-
per elucidates how dynamic model types can be used and
combined together to model program constructors.

3.2 Mapping Program to Model Elements

In this section, issues that are related to the construction of
visual programming models for structured procedural pro-
grams using dynamic model types, will be discussed in detail.

3.2.1 Representation of Control Flow

In imperative textual languages, control flow is often de-
signed to be sequential so that each statement is executed in
the order in which it appears statically in the written pro-
gram. In this case, sequential composition of statements is
the normal style of programming. The sequential composi-
tion, however, becomes unclear when it comes to 3D space.
In 3D space, the sequence of statements must be specified
for all three dimensions, which is not a simple task. Since
the control flow in the declarative programming, especially
in the logic programming, is implicit, the representation of
the control flow in declarative visual languages is not a big
issue (Yamamoto 1996). However, for imperative 3D lan-
guages, there must be explicit ways such as using lines or
arrows to represent the flow of control between program
units (Stiles and Pontecorvo 1992, Geiger 1998).

3.2.2 Handling Branches and Loops

In structured program, branches and loops change the flow
of execution. In visual programming languages in which
some or a whole part of textual syntax is replaced by 3D
icons (Stiles and Pontecorvo 1992), statements for
branches and loops such as if, switch, and while statements
are handled by representative 3D icons. In our research,
not only the syntax of branches and loops are represented
with 3D icons, but their semantics are also modeled using
dynamic model types. Details of handling of the branches
and loops will be discussed in Section 5.

3.2.3 Modularization and parameter passing

Program modularization makes large programs more man-
ageable. With visual programming languages it is very
convenient to represent the program modules and the rela-
tionship among them provided by visual scoping and ex-
plicit parameter passing. In our research, pre-defined and
19
user-defined functions are stored in separate files. A pro-
gram is constructed by combining separately defined pro-
gram modules which are represented by 3D icons into a
single program model using the 3D modeling environment
called Blender interface in RUBE. Parameter passing is ex-
plicitly defined by connecting input ports to output ports
between 3D icons in Blender interface.

3.2.4 Level of Details

Usually language constructors in 3D programming require
more physical space than textual constructors do. In visual
programming, the level of details of program modules de-
termines how dense or coarse the program appears in 2D or
3D space. Determining the most effective but still best rep-
resentative level of details for program modules is a very
tricky problem. This is because it depends on the complex-
ity of the applications domains and the skill of program-
mers or users. In the RUBE framework, for example, while
statement can be modeled with more than one block or it
can be simply hard coded into a single block.

3.2.5 Visual Execution

One of the advantages in visual programming comes from
the visual execution of programs. Since a program is visu-
ally represented, it is easy to animate the execution of a pro-
gram during runtime. The animation of a program execution
can be done by adding some code that changes the appear-
ance of visual program constructors into each of the program
modules. In this way, when the specific program module is
executed, the appearance of the representative icons for that
program module changes. When applied to a graphics pro-
gram, the animation of the program model is visually repre-
sented while the result of the program execution, which is
the construction of graphics objects, appears. When using
Blender interface, a program model and the graphics objects
resulted from the execution of the program model can co-
exist and be animated together in the same 3D space.

3.3 Metaphors in Software Visualization

In his celebrated work, Rhetoric, Aristotle said, “Ordinary
words convey only what we know already; it is from a
metaphor that we can best get hold of something fresh.”
The word “metaphor” is derived from the Greek word
“transfer.” Its primary function is the understanding of un-
known thing from familiar concepts. Lakoff and Johnson
(1980) demonstrated the pervasiveness of a metaphor in all
aspects of human activities not only as a matter of a lan-
guage but also as a principal way of reasoning and learn-
ing. A metaphor can benefit both a novice and an expert in
some system. It provides insights to a novice user regard-
ing the nature of a function or application. For an expert,
dead metaphors turn to idioms with some communicative
value (Pirhonen and Brewster 2001).
33

Shim and Fishwick

 Computer programs can take advantage of metaphors,
especially in their visual representations. Icons first intro-
duced in programming when Smith constructed a special
user interface for operations in programming language. He
used icons to subsume the notions of variables, reference,
data structure, and functions (Smith 1975). Inspired by
PYGMALION, Xerox introduced the 8010 “Star” Informa-
tion System with the desktop metaphor as a user interface
in 1981 (Harslem and Nelson 1982). Ploix presented the
use of metaphors such as a solar system, cities, and spiders
for the visualization of Lisp programs using Zeugma,
which is a programming environment for the construction,
development, and experimentation of analogical represen-
tations of programs (Ploix 1996, Ploix2002).

The conjunction of metaphors in visual programming
could help learning programming. The use of metaphoric
icons from which its functionality can be visually referred
to would improve productivity and understandability of
programming for novice programmers. Examples of meta-
phoric icons that might be suitable to be used in visual
programming are: a warehouse metaphor for database ap-
plications where plenty of data is stored and retrieved fre-
quently, a plumber metaphor or a factory metaphor for
data-flow programming where data flow from one func-
tional unit to another, and chemistry metaphor for state-
based applications where the current state of a system is
determined based on the external or internal conditions.

While supporting user-created icons, RUBE provides
different primitive and pre-defined 3D metaphoric icons
for different themes. Primitive icons are cubes and spheres.
Pre-defined themes include icons using the factory and the
chemistry metaphors. In this paper, factory metaphors such
as machines and conveyer belts are introduced in the repre-
sentations of functions and traces in FBM. Figure 1 shows
the parts of icons used in the factory theme.
 The use of metaphors and customizable 3D compo-
nents allow freedom to users in the model representation
and stimulate user’s creativity and interest. These also
yield aesthetic aspects to be integrated with model visuali-
zation. Lavie and Tractinsky argued that the visual aesthet-
ics of computer interface is a strong determinant of users’
satisfaction and pleasure (Lavie and Tractinsky 2004). This
is where our approach is differentiated from other works
in visual programming that focus on fixed icons and pres-
entation of the model structure.

4 IMPLEMENTATION

Previously, it was mentioned that the RUBE (Fishwick
et al. 2003) framework provides the necessary environment
for the construction and the execution of program models
in our research. RUBE is a Web- and XML based modeling
and simulation framework for geometry and dynamic
models. RUBE includes a Python-based interface called
Blender interface in which a user can define models and
simulate them (Park and Fishwick 2004).
19

Figure 1: Factory Metaphor Icons

 Using Blender interface, users can import the pre-
defined or user-created Python modules into their program
models. When a user locates and imports an icon into the
program model using Blender Interface, a piece of Python
code associated with it is also imported. The association
between the Python module and its icon is set by placing
both of them under the same directory in the RUBE file
structure. Figure 2 shows the snapshot of the blender inter-
face containing a program model that consists of User in-
put, Intersect, and Display from the left-hand side. The
trace icons represent the connectivity between the icons.

Figure 2: Snapshot of the Blender Interface with a Simple
Model

 Internal representation of program models is in XML.
The components and structure of a program model defined
in Blender 3D window is stored in a MXL file. MXL,

a) Mesh generator b) Duplicate c) Transform

d) Switch e) Display f) Trace
34

Shim and Fishwick

which stands for Multimodel eXchange Language, is an
application of XML developed by the modeling and simu-
lation research group in University of Florida. The XML
representation of model components opens the possibility
for user-created model components to be used in Web-
based modeling and simulation. Web-based simulation
brings the benefits of Web-based technologies into model-
ing and simulation such as distributed modeling, easy ac-
cessibility, reusability, and platform-independent execution
(Miller et al. 2001, Page 2000).
 Once user-created model is stored in MXL, the MXL
is translated into another XML modeling language, DXL–
Dynamic eXchange Language. DXL is also developed by
the modeling and simulation research group in University
of Florida. While MXL maintains heterogeneous model
types and uses different elements for different model types
and model elements, DXL is a simple homogenous model-
ing language with blocks and connections (Lee and Fish-
wick 2002). The final simulation code in Python is gener-
ated from DXL. When DXL is translated into the actual
Python simulation code, pieces of functional codes associ-
ated with each block in DXL are glued together. A simula-
tion package called SimPack is also imported to provide
various discrete-event simulation methods for model exe-
cution (Park and Fishwick 2002). Figure 3 shows the pro-
cedure of model translations in the RUBE framework.

5 GRAPHICAL PROGRAMMING USING
PROGRAM MODELS

Computer graphics language is about creating and manipu-
lating graphical objects. In the creation of computer graph-
ics programs, graphics APIs such as OpenGL and Java3D
provide a set of commands that allow the specification of
geometric objects using the provided primitives, together
with a set of commands that control how these objects are
rendered. Another way to produce computer graphics is us-
ing authorizing tools. These are effective, and yet there
remains the question of why we are not leveraging the

19
power of computer graphics in the programming process
itself.
 In this section, constructing a graphics program that
illustrates a blowing alley is discussed as a demonstrative
example showing how 3D graphics is generated by model-
ing using a 3D APIs and dynamic modeling types in RUBE
framework. This program model especially makes use of
conditional branches in its program structure to control
how many bowling pins to be added. There is more than
one ways that we can model the conditional branches in
using dynamic model types (Shim and Fishwick 2004).
 Figure 4 shows FBM for the construction of a graphics
program for a blowing alley with a floor, a ball, and pins.
First, two execution threads are composed of simple opera-
tions such as texturing and transforming for the generation
of a textured floor and a textured bowling ball, respec-
tively. The circular connection of blocks in the third execu-
tion thread models the repeatable execution of Duplicate
and Transform operations to produce of multiple pins.
Once the control moves to the If_Else block, the execution
of the thread continues or ceases depending on the condi-
tion specified in the If_Else block. In this example, when
the execution is evaluated to be continued then If_Else
block produces output to Duplicate block, otherwise it
produces nothing. Figure 5 shows the program model built
from Blender interface for the bowling alley example using
the factory metaphor icons. A 3D graphics program is pro-
duced from the execution of the python code that is gener-
ated from this program model.
 The RUBE framework provides an integrative model-
ing environment in which different model types such as
dynamic models and geometry models exist within the
same 3D. Using the RUBE framework it is possible to jux-
tapose the output graphics with the program model in the
same 3D space. Figure 6 shows the snapshots of the inte
grated graphics demonstrating the situation where the out-
put graphics co-exists with its program model.

Figure 3: Model Translations in RUBE

Multimodel eXchange Language
High level model description
Heterogeneous Model types
of FBM, FSM, QM, etc

MXL DXL Python

Model defined in
Blender Interface

Execution
from Blender

XSLT JavaDOM

Python
Library Executable simulation file

Dynamic eXchange Language
Low level description
Homogeneous model type
35

Shim and

Figure 4: FBM for the Bowling Alley Generation

Figure 5: Program Model for the Bowling Alley Using a
Factory Metaphor

 By simply changing the parameters of Texture blocks
and the iteration condition in If_Else block, we could get
very different 3D graphics. Figures 7 and 8 are the 3D
graphics produced from the execution of the program model
in Figure 5 with different parameters for textures and itera-
tion steps for the pin generation. Since the model compo-
nents are distributed in a file structure, different 3D graphics
could be generated not by modifying lines of codes from a
long program but by modifying them from the necessary
modules and reproducing the output file by running the
translation engines. In Figures 6, 7 and 8, Lightning effect
such as ray-tracing and shading are added for better graphics.
19
 Fishwick

Figure 6: Program Model for the Bowling Alley Using a
Factory Metaphor

Figure 7: 3D Graphics Generated from the Program Model
in Figure 5 with Four Iterations of the Pin Generation

Figure 8: 3D Graphics Generated From the Program Model
in Figure 5 with Ten Iterations of the Pin Generation
36

Shim and Fishwick

6 CONCLUSION AND FUTURE WORK

This research introduces a new approach to visual pro-
gramming by integrating the principles and methodologies
of modeling into programming. A visual programming en-
vironment, that facilitates a 3D API using dynamic model
types, is introduced for the construction and execution of
program models. The program model which produces a
bowling alley is introduced as an example where custom-
ized icons and dynamic model types are used to construct a
graphics program. In this example, programming principles
and elements such as functions and parameters, control and
data flow, branches and loops, and concurrent executions
are modeled by elements and principles in FBM and FSM.
Instead of simple blocks and arrows, which are used in
most of block diagrams, machines and conveyer belts in a
factory are used as icons to represent program elements
such as functions and parameters.
 The unification of 3D dynamic model types with the
program construction brings several benefits in program-
ming such as:

• Capturing dynamics of programs using simulation

model types
• 3D program visualization
• Juxtaposing program models with program out-

puts in the same space
• Getting early feedback or debugging by running

and modifying models
• Easy construction and execution of a program

model in an integrated environment
• Use of metaphors to allow greater flexibility and

freedom in model representation
• Stimulating user’s creativity in the design of pro-

gram icons
• Leveraging aesthetics aspects.

 In Fall 2006, we will modify the computer graphics
and simulation classes in University of Florida to use the
approach and implementation to graphics programming in
where students construct a 3D program and execute that
program to generate 3D objects and animations as a part of
their class project. We also plan to instrument assessment
procedures about the students’ perceptions on how custom-
ized 3D visual programming affect their understanding and
preferences regarding visual and interactive program repre-
sentations.

In addition to that, as our future research, we will ex-
plore the possibilities of using other dynamic model types
than the ones introduced in this paper to model other pro-
gramming principles such as variables, inheritance and
scoping. To handle variables in our research, the modifica-
tion of MXL schema and translation engines will be re-
quired. We are also planning to increase the application of
our research to more general programming domains.
193
ACKNOWLEDGMENTS

We would like to thank the National Science Foundation
under grant EIA-0119532 and the Air Force Research
Laboratory under grant F30602-01-1-05920119532 for
support of this research.

REFERENCES

Banks, J., and J. S. Carson II. 1986. Introduction to Dis-
crete-Event Simulation. Proceedings of the 1986 Win-
ter Simulation Conference, ed. J.Wilson, J. Henriksen,
and S. Roberts, 17 – 23.

Bloss, A. 1990. A Functional Approach to Simulation Pro-
gramming. In Proceedings of the 1990 Winter Simula-
tion Conference, ed. O. Balci, RP Sadowski, and. RE
Nance, 214 – 219.

Fishwick, P. A. 1995. Simulation Model Design and Exe-
cution: Building Digital Worlds. Upper Saddle River:
Prentice-Hall.

Fishwick, P. A., J. Lee, M. Park, and H. Shim. 2003. Rube:
A Customized 2D and 3D Modeling Framework for
Simulation. In Proceedings of the 2003 Winter Simu-
lation Conference, ed. S. Chick, PJ
Sanchez, D. Ferrin, and DJ Morrice, 755 – 762.

Geiger, C., W. Mueller, and W. Rosenbach. 1998. SAM-
An Animated 3D Programming Language. In Pro-
ceedings of 1998 IEEE Symposium on Visual Lan-
guages, 228 – 235.

Haeberli, P. E. 1988. ConMan: A Visual Programming
Language for Interactive Graphics. Computer Graph-
ics, SIGGRAPH 88 Conference Proceedings 22 (4):
103 – 111.

Harslem, E., and L. E. Nelson. 1982. A Retrospective on
the Development of Star. In Proceedings of the Sixth
International Conference on Software Engineering.

Kahn, K. M., and V. A. Saraswat. 1990. Complete Visuali-
zations of Concurrent Programs and Their Executions.
In Proceedings of the IEEE Visual Language Work-
shop, 7 – 14.

Lakoff, G., and M. Johnson. 1980. Metaphors We Live By.
Chicago: The University of Chicago Press.

Lavie, T., and N. Tractinsky. 2004. Assessing Dimensions
of Perceived Visual Aesthetics of Web Sites. Interna-
tional Journal of Human-Computer Studies 60: 269 –
298.

Lee, G. A., G. J. Kim, and C. Park. 2002. Modeling Virtual
Object Behavior within Virtual Environment. In Pro-
ceedings of ACM Symposium on Virtual Reality Soft-
ware and Technology, 41 – 48.

Lee, J., and P. A. Fishwick. 2002. A Dynamic Exchange
Language Layer for Rube. In Proceedings of Enabling
Technology for Simulation Science, Part of SPIE
Aerosense ‘02 Conference, 359 – 366.
7

Shim and Fishwick

Miller, J. A., P. A. Fishwick, S. J. E. Taylor, P. Benjamin,

and B. Szymanski. 2001. Research and Commercial
Opportunities in Web-Based Simulation. Simulation
Practice and Theory 9 (1): 55 – 72.

Nance, R. E. 1993. A History of Discrete Event Simulation
Programming Languages. In Proceedings of History of
Programming Languages Conference 28 (3): 149 –
175.

Oshiba, T., and J. Tanaka. 1999. 3D-PP: Three-
Dimensional Visual Programming System. In 1999
IEEE Symposium on Visual Languages, 13 – 16.

Page, E. H. 2000. Web-Based Simulation: Revolution or
Evolution? ACM Transactions on Modeling and Com-
puter Simulation 10 (1): 3 – 17.

Park, M., and P. A. Fishwick. 2002. SimPackJ/S: A Web-
Oriented Toolkit for Discrete Event Simulation. In
Proceedings of Enabling Technology for Simulation
Science, Part of SPIE Aerosense '02 Conference, 348 –
358.

Park, M., and P. A. Fishwick. 2004. An Integrated Envi-
ronment Blending Dynamic and Geometry Models.
2004 AI, Simulation and Planning In High Autonomy
Systems 3397, 574 – 584.

Pirhonen, A., and S. Brewster. 2001. Metaphors and Imita-
tion. In the Workshop proceedings of PC-HCI, 27 - 32.

Ploix, D. 1996. Building Program Metaphors. In Proceed-
ings of PPIG Workshop, 125 – 129.

Ploix, D. 2002. Analogical Representation of Programs. In
Proceedings. First International Workshop on Visual-
izing Software for Understanding and Analysis, 61 –
69.

Shim, H., and P. A. Fishwick. 2004. A Customizable Ap-
proach to Visual Programming using Dynamic Multi-
modeling. In Proceedings of Enabling Technology for
Simulation Science, Part of SPIE Aerosense '04 Con-
ference.

Smith, D. C. 1975. PYGMALION: A Creative Program-
ming Environment. PhD dissertation, Stan-ford Uni-
versity.

Stiles, R., and M. Pontecorvo. 1992. Lingua Graphica: A
Visual Language for Virtual Environments. In IEEE
Symposium on Visual Languages, IEEE Computer So-
ciety Press, 255 – 227.

Sutherland, I. E. 1963. Sketchpad: A Man-Machine Graph-
ics Communication System. In Proceedings of the
IFIP Spring Joint Conference, 329 – 346.

Yamamoto, K. 1996. 3D-Visualan: A 3D Programming
Language for 3D Applications. Pacific Workshop on
Distributed Multimedia Systems, 199 – 206.
19
AUTHOR BIOGRAPHIES

HYUNJU SHIM is a Ph.D. student in Computer and In-
formation Science and Engineering at the University of
Florida. She received her M.S. in Computer and Informa-
tion Science and Engineering from the University of Flor-
ida in 2003. Her research interests include Computer Mod-
eling and Simulation, Visual Programming, and Software
Visualization. Her email address and Web addresses are
hshim@cise.ufl.edu and
http://www.cise.ufl.edu/~hshim.

PAUL A. FISHWICK is Professor of Computer and In-
formation Science and Engineering at the University of
Florida. He received the PhD in Computer and Information
Science from the University of Pennsylvania in 1986, and
has six years of industrial and government production and
research experience (Newport News Shipbuilding and
NASA Langley Research Center). His research interests
are in computer simulation modeling and analysis methods
for complex systems. He is a Senior Member of the IEEE
and a Fellow of the Society for Computer Simulation. He
is also a member of the IEEE Society for Systems, Man
and Cybernetics, ACM and AAAI. Dr. Fishwick founded
the comp.simulation Internet news group (Simulation Di-
gest) in 1987, which has served numerous subscribers. He
has chaired several workshops and conferences in the area
of computer simulation, including serving as General Chair
of the 2000 Winter Simulation Conference. He was chair-
man of the IEEE Computer Society technical committee on
simulation (TCSIM) for two years (1988-1990) and he is
on the editorial boards of several journals including the
ACM Transactions on Modeling and Computer Simulation
and the Transactions of the Society for Modeling and
Simulation International. He has delivered 12 Keynote ad-
dresses at major conferences relating to simulation, and
published over 150 technical publications, written one
textbook, co-edited two Springer Verlag volumes in simu-
lation, and published seven book chapters. He has recently
edited Aesthetic Computing for MIT Press and is the Edi-
tor for the upcoming CRC Handbook on Dynamic Systems
Modeling. His email and web addresses are
fishwick@cise.ufl.edu and
http://www.cise.ufl.edu/~fishwick.
38

mailto:hshim@cise.ufl.edu
http://www.cise.ufl.edu/~hshim
mailto:fishwick@cise.ufl.edu
http://www.cise.ufl.edu/~fishwick

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

