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ABSTRACT

Consider a firm that offers a product during a single selling
season. The firm has the flexibility of choosing which
demand sources to serve, but these decisions must be made
prior to knowing the actual demand that will materialize in
each market. Moreover, we assume the firm operates on a
tight budget and cannot afford to record several successive
financial losses spanning consecutive periods. In this case, it
is likely that their objective is not only to maximize expected
profit, but to minimize the variance from that goal. We
provide insights into the tradeoff between expected profit,
expected revenue, and demand uncertainty. Finally, we
present a solution approach, via simulation, to determine the
best set of markets to pursue and the associated order quantity
when the firm’s objective is to minimize the probability of
receiving a profit below a critical threshold value.

1 INTRODUCTION

As product lives continue to decrease with technological
advances and fashion trends, and the efficiency of manufac-
turing processes offer less room for improvement, a supplier
or manufacturing firm is constantly trying to identify other
ways to improve profitability. In the classic newsvendor
problem, the firm seeks an optimal procurement policy for
a product with random demand during a single selling sea-
son. There is extensive literature on this topic, and we refer
the reader to Porteus (1990), Tsay, Nahmias, and Agrawal
(1999), Cachon (1999), and Petruzzi and Dada (1999) for
reviews and research in this area.

If the firm can obtain unique revenues in each demand
source (or market), then the problem becomes one of si-
multaneously selecting the most desirable markets as well
as determining the appropriate total order quantity before
demand is actually realized. Recent research has offered
profit maximizing models that provide integrated demand
selection and ordering decisions for this so-called “selec-
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tive newsvendor" problem (SNP). Forms of the SNP have
been studied recently by Carr and Lovejoy (2000), Petruzzi
and Monahan (2003), Taaffe, Geunes, and Romeijn (2005),
Taaffe and Romeijn (2005), and Taaffe, Geunes, and Romeijn
(2004).

In both categories of the aforementioned problems, the
typical objective is to maximize expected profit or min-
imize expected cost, which would be appropriate for a
risk-neutral firm. However, not all (in fact, very few) firms
have the luxury of operating in a risk-neutral environment
(see Schweitzer and Cachon (2000)). The actual profit
(or loss) may be quite different than expected profit for a
particular selling season, and many firms could be more
concerned with this variability. Therefore, we consider a
firm that cannot afford successive losses or negligible profits
spanning several selling seasons. For such a firm, we will
evaluate two risk models. In one situation, we still assume
that the firm’s objective is to maximize expected profit, but
now it will also require that a given percentage of outcomes
or profit realizations must achieve some minimum desired
profit level. In a second situation, while the firm’s desire
may be to maximize expected profit, their objective will
be to minimize the number of outcomes that could occur
below their budgeted profit level.

Various aspects of risk aversion in newsvendor problems
have been considered in past work. Lau (1980) is the
first paper to directly study the effect that risk has on the
newsvendor problem. The paper considers two objectives,
maximizing expected utility, and maximizing the probability
of achieving a budgeted profit, which is quite similar to the
focus of our work. However, we have the added complexity
of simultaneously selecting the most attractive markets while
determining the appropriately-sized order quantity. Lau
(1980) depicts two demand points beyond which the firm will
no longer achieve the desired profit level, and then solves for
the Q that maximizes the probability that the profit level will
be achieved. The paper concludes that analytical solutions
can be obtained if the underlying demand distribution is
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normal or exponential. This approach works for a standard
newsvendor when there is only one demand distribution
for which all demands generate the same per-unit revenues.
Applying this methodology to our problem breaks down
due to our unique revenues in individual markets.

Eeckhoudt, Gollier, and Schlesinger (1995) also studies
a risk averse newsvendor for which any demands not met
by the original order can be satisfied through a high-cost
local supplier. This paper also concluded that the optimal
risk-averse order quantity is less than the amount ordered in
the expected value solution. More recently, Collins (2004)
offers some results that counter these previous papers.

Collins (2004) conjectures that there is a class of prob-
lems for which the risk averse and expected value solutions
are identical, that there are many problems for which the
expected solution provides a good approximation to the risk
averse solution, and that in most problems in practice, the
risk averse solution would actually be to order more than
the expected value solution.

Finally, the reader can turn to Chen et al. (2004) and
Van Mieghem (2004) for additional risk aversion research.

Our work in this paper will be to evaluate how a selective
newsvendor will integrate risk into its demand selection and
ordering policy. While we maintain some similar assump-
tions to those in Lau (1980) and Eeckhoudt et al. (1995), we
also have the added complexity of market selection, which
can potentially result in different procurement policies. In
Section 2, we introduce the general profit equation for the
selective newsvendor problem and discuss the form of the
distribution for profit. Then, in Section 3, we introduce
two alternate demand selection formulations, both of which
include some focus on risk. We also provide our heuristic
solution approaches to each problem. In Section 4, present
computational tests and findings for each model. Finally,
we summarize our findings in Section 5.

2 QUANTIFYING PROFIT FOR THE DEMAND
SOURCE SELECTION PROBLEM

For a complete treatment of the selective newsvendor with no
risk aversion, please refer to Taaffe, Geunes, and Romeijn
(2004). We begin by defining c as the per-unit cost of
obtaining or procuring the product to be sold. The product
can be sold in market i at a per-unit price of ri . If realized
demand is less than the quantity ordered, the firm can salvage
each remaining unit for a value of v. If demand exceeds
the order quantity, there is a shortage cost of e per unit.
However, we assume that the demand is still met through
expediting via a local supplier or single-period backlogging
whereby a second order can be placed with the firm’s regular
supplier. In either case, the unit cost is still e.

Recall that, in the selective newsvendor framework,
the firm must decide its market selections prior to placing
the order for Q units. Let yi = 1 if the firm decides to
1

satisfy demand in market i, and 0 otherwise. We present the
following expression for the total realized profit, based on
the order quantity, market selection decisions, and realized
demand.

G(Q, y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

n∑
i=1

(riDi − Si)yi − cQ + v(Q −
n∑

i=1
Diyi)

if Q >
∑n

i=1 Diyi
n∑

i=1
(riDi − Si)yi − cQ − e(

n∑
i=1

Diyi − Q)

if Q ≤ ∑n
i=1 Diyi

.

Given a binary vector of market selection variables
y, let Dy = ∑n

i=1 Diyi denote the total demand of the
selected markets, and denote its pdf by fy and its cdf by
Fy . It is easy to see that the total selected demand has mean
E(Dy) = ∑n

i=1 μiyi and variance Var(Dy) = ∑n
i=1 σ 2

i yi .
We can then express the firm’s expected profit as a function
Ĝ(Q, y) of the order quantity Q and the binary vector of
market selection variables y:

Ĝ(Q, y) =
∑n

i=1
(riμi − Si)yi − cQ

+v

∫ Q

0
(Q − x)fy(x)dx − e

∫ ∞

Q

(x − Q)fy(x)dx.

For a given vector y, the expected profit function G(Q, y) is
concave, and maximizing the expected profit is equivalent to
minimizing the cost in the associated newsvendor problem.
We can then derive the optimal order quantity based on the
critical fractile of total demand, or ρ = e−c

e−v
. Thus, the

optimal order quantity will be Q∗
y = F−1

y (ρ) (see Taaffe
et al. (2004)). When the firm faces normally distributed
demand in each market, the total demand satisfied (i.e.,
Dy = ∑n

i=1 Diyi) will always follow a normal distribution,
which allows the use of the standard normal loss function
in reducing the expected profit equation to

Ĝ(Q, y) =
n∑

i=1

r̄iyi − K(c, v, e)

√√√√ n∑
i=1

σ 2
i
yi , (1)

where r̄i = ((ri − c)μi − Si), and K(c, v, e) =
{(c − v)z(ρ) + (e − v)L(z(ρ))}. Thus, the expected profit
equation depends solely on market selection variables, and
the optimal order quantity is simply a function of y, given

by Q∗
y = ∑n

i=1 μiyi + z(ρ)

√∑n
i=1 σiyi .

We make a key observation here. We previously stated
that the random variable corresponding to total demand sat-
isfied is normally distributed, since it is the convolution of
normally distributed market demands. However, the profit
function G(Q∗, y∗) is not normally distributed. We ran
several tests using simulation to estimate the shape of this
distribution. Figure 1 presents the results of 3000 profit
realizations of G(Q∗, y∗) in order to approximate the profit
distribution. Since there are penalties for underages (e)
as well as overages (v), extremely low or high demand
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Figure 1: Distribution of Profit Based on Q and y

realizations will result in lower profit (or possibly a loss).
These extreme conditions contribute to the left tail of the
profit distribution in Figure 1. Notice that the maximum
achievable profit does not greatly exceed the expected profit
(i.e., it does not have a similar right tail on the distribution).
In the newsvendor problem, the critical fractile defines the
point in the demand distribution for Dy at which we maxi-
mize expected profit. As realized demand moves away from
the demand quantity associated with this point, the firm’s
profit will decrease. However, in our selective newsven-
dor framework, we also have market-specific revenues ri
associated with each market i. Thus, the maximum profit
that the firm can achieve occurs when all realized demand
occurs in the market(s) with the highest revenue, and total
realized demand still equals the order quantity. Thus, the
maximum profit shown in the profit distribution is more
well-defined than the maximum loss.

Now consider that the firm would like to minimize
the worst-case set of profits (losses). Since the profit dis-
tribution is not normally distributed, this complicates the
solution approach. In the next section, we show how we can
still utilize the fact that the demands are normal in solving
the risk averse selective newsvendor problem. Then, in the
following section, we consider a more general problem in
which demands are not necessarily normal, and we offer
a solution approach using simulation to approximate and
evaluate potential profit distributions. Bertsimas and Thiele
(2003) also consider a data-driven approach, whereby they
build upon the sample of available data instead of estimat-
ing the probability distributions. They also use individual
profit realizations in determining a risk policy to implement,
however they only consider one demand distribution.
190
3 SELECTIVE NEWSVENDOR MODELS
WITH RISK

When a firm is concerned about the risk of potential losses,
there are many ways in which the firm can actually quantify
this risk into a model. We will suggest two classifications
of risk models from which a firm may choose.

Our first risk model is based on the original approach
defined for the SNP. In the SNP approach, we maximized
expected profit, which was the difference between expected
net revenue and the cost of demand uncertainty. Now, we
consider our firm to be “risk averse” if they still focus on
maximizing expected profit, but now they require that there
be no more than a certain percentage of potential profits
(or losses) below a pre-defined value. We will refer to this
value as a defined profit level throughout the remainder
of the paper, although a negative value would obviously
represent a loss.

We now present the risk averse selective newsvendor as

[RA]
maximize Ĝ(Q, y)

subject to: FG(P ) ≤ α, (2)

Q ≥ 0,

yi ∈ {0, 1} i = 1, . . . , n,

where P represents the critical profit value, α∗100% denotes
the percentage of allowable realizations below P , and FG

denotes the distribution of the profit equation G(Q, y). Of
course, if we set α = 0, this implies that we will not accept
any potential for profit less than an amount P . In other
words, P represents the minimum acceptable profit level.

Alternatively, the firm may be more focused on risk
than on profit. In this case, assume the firm is “risk
minimizing,” whereby the firm minimizes the worst-case
realizations of profit based on a given set of demand sources.
We present the risk minimizing selective newsvendor as

[RM]
minimize FG(P )

subject to: Q ≥ 0,

yi ∈ {0, 1} i = 1, . . . , n.

Again, P represents a threshold profit value. Recall that, by
adding markets, we can increase our expected revenue (and,
most likely, profit), but not necessarily reduce the overall
risk. While this may be desirable using model [RA], it
is not desirable under model [RM]. The threshold profit
level P now becomes the critical factor in determining the
preferred market selection set. Also note that the firm must
set P such that market will actually be selected. Consider
that, for P < 0 and yi = 0 for i = 1, . . . , n, we have
FG(P ) = 0, and we would have an optimal solution with
0
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no markets selected. By selecting a value of P > 0, however,
FG(P ) = 1 when no markets are selected, so the model
would attempt to add markets to lower this percentage.

3.1 The Critical Profit Level

In this section, we will approximate the value of FG(P )

using simulation. Given a market selection vector ŷ, an
associated order quantity Q̂, and a pre-defined critical profit
level P , we can estimate the distribution of FG(P ), or the
percent of critical profit realizations below P . As stated
previously, Figure 1 presents the form of the distribution.
Here, we now specify the critical P , and by simulating
demand realizations, we can then determine how many of
these realizations (or occurrences) will result in a profit
below P .

In order to evaluate either model [RM] or [RA], we
require this FG(P ) value for every market selection and
order quantity tested. For every call to simulation, there
will be an associated expense in computational time. Thus,
we must be aware of this and try to ration the number of
replications performed that still provide an adequate answer
in a reasonable amount of simulation time.

3.2 The Optimal Order Quantity

As previously stated, for the selective newsvendor problem,
Q∗

y = F−1
y ( e−c

e−v
), or what we can call Q1. However, for

models involving risk, it is not clear that this value should
be used for ordering. Figure 2 presents the relationship
between the value of Q and the percent of observations not
meeting some critical profit level P (i.e., probability that
realized profit does not meet some threshold profit level).
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Figure 2: Order Quantity vs. Profit Realized

Note that the value of Q1 given by the selective newsvendor
does not coincide with the order quantity Q2 that provides
the highest probability of meeting our value for P .

Based on the figure, we can also observe that the
function describing Q and FG(P ) certainly appears to be
19
unimodal. We will use this conjecture to find the preferred
order quantity to use for a given market selection vector ŷ.
If the relationship is indeed unimodal, we can implement a
line search technique to converge on the best value for Q.
We have chosen to use the golden section technique (see
Bazaraa, Sherali, and Shetty (1993)) for our approach. As
with the number of replications performed in a simulation,
the stopping criterion for finding an appropriate Q will
have a direct effect on the overall solution time. If small
improvements in FG(P ) require another iteration (and sub-
sequent update in the value for Q), the required number of
iterations for convergence will, of course, increase. At each
iteration in the line search process, we are performing a
full set of simulation replications, which will quickly drive
a longer overall solution time.

3.3 Solution Approach

We are now prepared to present solution algorithms for
each model, [RM] and [RA]. First, we note the following
characteristic concerning the profit contribution of each
market to the overall profit. Given some set of selected
markets ŷ, if the addition of market i into the solution
reduces the frequency of profits below the critical profit
level P (or FG(P )), we would expect this market to be
beneficial. We desire such shifts in the profit distribution
that reduce the location and size of the left tail of the profit
distribution (refer back to Figure 1). We use this idea in
constructing the algorithms.

For every new solution (or selection of markets) evalu-
ated, we must perform two main tasks: 1) conduct multiple
replications of profit replications via simulation to appropri-
ately represent the distribution of profit; and 2) implement a
line search technique to locate a preferred order quantity. In
order to appropriately represent profit realizations accord-
ing to G(Q, y), we will use simulation analysis to populate
a profit distribution . With this in mind, we propose the
following heuristic procedures to find approximate or near
optimal solutions to the SNP models with risk that have
been discussed in Section 3. These generic procedures are
actually independent of the underlying demand distributions
under consideration, although we will focus on markets in
which the demand data is normally distributed.

3.3.1 Solving Problem [RM]

We begin with the solution approach to problem [RM], the
risk minimizing selective newsvendor formulation. First,
we evaluate FG(P ) for every potential market i when i is
the only selected market. That is, for every i, we set yi = 1
and yj = 0 for all j �= i, and determine the value of the
distribution function of profit, denoted as FG(Q,i)(P ). We
then re-index all markets i = 1, . . . , n in non-decreasing or-
der of the value FG(Q,i)(P ). Then, starting with re-ordered
01
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market [1], we systematically add each market to the
solution (i.e., Q, ŷ), testing for each iteration whether the
value of FG(Q,ŷ)(P ) decreases further. The final solution
will contain the markets for which a minimum value of
FG(Q,ŷ)(P ) is achieved. As with the order quantity graph
shown in Figure 2, the selection of markets also behaves
similarly. As we add markets, the value of FG(Q,ŷ)(P )

decreases, achieves a minimum, and then begins to
increase with additional market selections. This is only
provided as an observation. We are presently investigating
what can be proven with regards to this relationship.
We present the heuristic solution approach to problem [RM]:

Heuristic Solution to [RM]

0. Set j = 1.
1. First we select only market j and find the optimal

order quantity Qj for this market selection. We find
Qj based on the line search method proposed in
Section 3.2. During the procedure for finding Qj ,
we also populate the profit distribution associated
with solution vector (Qj , yj ) using simulation.
Then calculate the percentage of worst-case profits
for this market selection, previously defined as
FG(Q,j)(P ).

2. Update j = j + 1; Repeat Step 1 until j > n.
3. Sort the markets in non-decreasing order of

FG(Q,j)(P ) values to obtain the sorted market or-
der [1],[2],[3],…,[n]. Reset j to j = 1. We will
call this sorted market order the preference order
for selecting markets in order to minimize FG(P ).

4. Select markets [1],[2],…,[j ] and estimate FG(P )

for this market selection, denoting this value as
FG(P )[j ]. Again, in order to find FG(P )[j ], we
must populate the profit distribution using simula-
tion. Similarly, we find Q[j ] using the line search
method proposed in Section 3.2.

5. Update j = j + 1; Repeat Step 4 until j > n.
6. We calculate n such potential solutions to problem

[RM]. From the set S = {FG(P )[j ], j = 1, . . . , n},
the solution to [RM] would be the least value in
this set.

Note that our solution approach does not require that we
investigate all 2n possible market selections, which would
be computationally prohibitive (as we will show in our
computational tests in Section 4. Instead, we only search
n potential solutions.

We now propose a similar heuristic algorithm for solving
the risk averse selective newsvendor problem, or problem
[RA].
19
3.3.2 Solving Problem [RA]

In the case of problem [RA], we still proceed with a similar
solution approach with the exception of how the algorithm
begins. We first compute the optimal solution to the
selective newsvendor problem (SNP) with no risk aversion
using the Decreasing Expected Net Revenue to Uncertainty
(DERU) Property, first presented in Taaffe et al. (2004).
If the SNP solution satisfies risk averse constraint (2), we
conclude that the SNP solution is also the optimal solution
to problem [RA]. Otherwise, we check other potential
market selections, and the associated new order quantity,
against the risk averse constraint. When the constraint is
satisfied, we test to see if the expected profit generated
exceeds the incumbent solution value, and the incumbent
is updated as necessary. Finally, based on our risk averse
constraint (2), if FG(P ) > α for a particular solution, this
solution can be immediately eliminated from consideration.
We present the heuristic solution approach to problem [RA]:

Heuristic Solution to [RA]

1. Sort the markets in non-decreasing order of the
DERU Ratio Property (see Taaffe et al. (2004))
to obtain the sorted market order [1],[2],[3],…,[n].
Denote Ĝ(Q, y) as the expected value of the profit
equation described in equation (1). Obtain the
optimal solution to the SNP problem without risk,
which will contain all markets in the sorted list up
to and including some market j = [1], [2], . . . , [n].
Call this solution Ĝ(Q, y)[0]. Update Q[0] based
on the line search method proposed in Section
3.2. Populate the profit distribution such that the
percentage of worst-case profits FG(Q,y)(P )[0] can
be estimated. If constraint (2) is satisfied, STOP
with an optimal solution equal to the SNP solution.
Otherwise, set j = 1 and continue.

2. Select markets [1],[2],…,[j ]. Estimate FG(P )

for this market selection, denoting this value as
FG(P )[j ]. Also calculate the expected profit of
this solution as Ĝ(Q, y)[j ]. Appropriate values of
FG(P )[j ] and Q[j ] are found via simulation and
line search as previously discussed.

3. Update j = j + 1; Repeat Step 2 until j > n.
4. We calculate n such potential solutions to problem

[RA]. From the set S = {FG(P )[j ], Ĝ(Q, y)[j ],
j = 1, . . . , n} the solution for the [RA] model
would be the greatest value of Ĝ(Q, y)[j ] for which
its corresponding value of FG(P )[j ] is feasible.

Again, note that our solution approach does not require
that we investigate all 2n possible market selections. Based
on a limited set of problem instances, we see that the
heuristic actually achieves the SNP solution without risk in
02
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all cases. This is primarily due to the following observation.
The difference between the minimum α found in [RM] and
the α determined based on an SNP solution approach are
quite similar. This leads to the solutions to [RM] and [RA]
being the same.

4 COMPUTATIONAL TESTS

We present two sets of results that describe the performance
of the algorithm, as well as the change in solution values
from the original SNP solution. For both models, we will
assume that the pre-defined profit level P can be calculated
as 10% of the expected profit given by the SNP solution
approach.

We created a small set of 20 test problems or instances
for each size of the potential market pool: 5, 10, and
20, respectively. Every market has unit revenue in the
range U[$200,$240], while the unit production cost is set
at $200. Expected demand and demand variance for each
market are distributed according to U[500,1000] units and
U[50000,100000], respectively. The fixed cost for market
entry are drawn from U[$2500,$7500]. Finally, the salvage
value is $50 per unit, and the expediting or shortage cost
$500 per unit, respectively. For each simulation replication
or demand realization, we calculate demand based on the
market selection variables yi for that particular solution. We
also use these selection variables when calculating expected
profit values during the solution of problem [RA].

At 1000 and 5000 simulation replications, we still expe-
rienced significant variability in the value of FG(P ). Thus,
we opted to run 10,000 replications for each solution tested.
The golden section line search technique evaluated order
quantities in a range of 0 to the maximum total demand if
all markets were included (and demand in each market was
realized at its highest level). The procedure would converge
on an order quantity once the current best quantity produced
less than a 1% improvement from the prior iteration’s order
quantity value.

In conducting the experiments, we quickly realized that
solving each problem using full enumeration was extremely
costly. Combining the requirement of simulation and line
search, the solution time for a 20-market problem easily
exceeded several days. We had the choice of either reducing
the number of replications for our profit function, or we
could reduce or eliminate the line search. Since we observed
significant variations in FG(P ) values at smaller replication
counts, we chose to remove the line search technique to
reduce solution time. In its place, we used the preferred order
quantity generated via the SNP approach. Thus, the order
quantity used (when line search was not performed) was

Qy = ∑n
i=1 μiyi + z(ρ)

√∑n
i=1 σ 2

i yi . Table 1 presents
a comparison of the full enumeration approach and our
proposed heuristic approach to solving problem [RM]. In
each approach, we implemented the respective algorithms
19
with line search (LS) and without line search (NLS) to
determine a preferred order quantity.

Table 1: Comparison of Solution Approaches to [RM]
Solution Approach

Scenario/ Enumeration Heuristic
Measurement LS NLS LS NLS
5 Markets

CPU Time 11 sec <1 sec 5 sec <1 sec
FG(P ) 0.281 0.288 0.284 0.288
Q 3052 3153 3115 3051

10 Markets
CPU Time 12 min 29 sec 17 sec <1 sec
FG(P ) 0.1281 0.1284 0.127 0.128
Q 5837 5953 5829 5837

20 Markets
CPU Time NA 14.9 hr 1 min 2 sec
FG(P ) NA 0.1481 0.1529 0.1519
Q NA 12091 12145 11650

Notice how similar the results are between the two
solution methods. In fact, our heuristic method actually
outperforms the enumerative approach in some cases. (Re-
call that the enumerative procedure is still a heuristic itself,
since we must use simulation to construct the profit dis-
tribution for every potential market selection assignment.)
Thus, we can at least say that we are not giving up much
in the way of solution quality for a significant reduction in
solution time.

Line search, in general, appears to improve solution
quality, but this is not consistent across all test cases. We
observe solution improvements for all 5- and 10-market
cases, but not for the 20-market case, where the minimum
percentage of worst-case profits (when using our heuristic)
is found without line search. A caveat on the 20-market
case is that it only contains two test instances due to the
long solution times using the enumerative approach.

There does not appear to be one overall relationship
between the value of Q and the choice of line search or
no line search. In some instances, the order quantity found
via line search was smaller than its counterpart, and in
other cases, it was larger. Additional insight into a possible
relationship will require more analysis.

We also note that, for cases when the same market
selection vector was selected (which did occur quite of-
ten), the objective value was actually different. This can be
contributed to the randomness that exists in the simulation
process to calculate the profit distribution, despite perform-
ing 10,000 replications. If each problem does not contain
identically-shaped profit distributions, then it follows that
the minimum percentage of worst-case profits will not be
the same even when the market selection is the same.

Next, we present the results for a similar solution com-
parison for problem [RA]. In problem [RA], the firm is
03
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trying to maximize expected profit while meeting a risk
criterion that restricts the allowable percentage of profit
observations below some critical level P . In order to cre-
ate this constraint (2), first let αSNP represent the FG(P )

value found with the SNP solution without risk. Then the
α used in the risk constraint is α = 0.95 ∗ αSNP . Table 2
presents the results of the comparison for problem [RA].
The additional statistic, Ĝ, represents the expected profit
objective of problem [RA].

Table 2: Comparison of Solution Approaches to [RA]
Solution Approach

Scenario/ Enumeration Heuristic
Measurement LS NLS LS NLS
5 Markets

CPU Time 11 sec <1 sec 3 sec <1 sec
Ĝ 36296 39895 39895 34286
FG(P ) 0.1514 0.1552 0.1546 0.1409
Q 3125 4514 4476 2314

10 Markets
CPU Time 17 min 26 sec 8 sec <1 sec
Ĝ 66627 67073 66839 65581
FG(P ) 0.1092 0.1048 0.1071 0.1083
Q 6714 6926 7041 6582

20 Markets
CPU Time NA 13.5 hr 26 sec 2 sec
Ĝ NA 80963 80963 80963
FG(P ) NA 0.1617 0.1539 0.1637
Q NA 12419 12779 12419

For problem instances in which the solution to ĜSNP

also represents one with minimum profit risk (FG(P )), using
α instead of αSNP in the constraint will make the problem
instance infeasible. This occurred several times for each
market class. We only report results on those instances in
which we could find a feasible solution. As with problem
[RM], we see the similarity in objective values (Ĝ, in this
case) across each solution approach. However, there is more
variability in this case. The expected profit values are for
these problems are consistently below those generated for
ĜSNP , since we force the model to find a solution with
less risk (i.e., α = 0.95 ∗ αSNP ).

We found similar results as for problem [RM] concern-
ing the relationship between Q, FG(P ), and the use of line
search or no line search. Overall, we achieve similar qual-
ity solutions using our heuristic approaches as compared
to the enumerative approaches, with the noise in solution
quality due to the simulations required to develop the profit
distribution. We will be examining this relationship in more
detail in future work.

For the 20-market case without line search, we observe
that the same solutions were found for both the heuristic
and enumeration approaches, with an average order quantity
1904
of 12419, but the FG(P ) values are slightly different. As
in the discussion of Table 1 results, any difference in the
shape of the profit distribution will cause slight variations
in this fractile value. The order quantities and expected
profits, however, are identical since neither depends on the
variation in demand values.

5 CONCLUSIONS

After completing our experiments, we were able to con-
clude that our proposed heuristics for solving the selective
newsvendor models with risk offer high quality solutions at
a fraction of the time of an enumerative approach. Based on
initial testing, the order quantity was neither sensitive to the
objectives of the risk models nor the line search implemen-
tation. If we were to consider higher critical profit levels,
in which more scenarios or outcomes would fall below the
critical value, altering the value of Q may have more effect,
but additional testing would need to be performed to truly
understand this relationship.

We point out that obtaining solutions to probabilistic risk
models can be quite cumbersome, and we offer approaches
that firms dealing with risk issues can implement. We
are presently evaluating a theoretical approach to the risk
problem when demand data are normal. However, when we
know our demands are not normal, such as the case when
market demands will either be realized in their entirety or not
at all (i.e., the so-called all-or-nothing demand problem), we
must still resort to an approach using simulation as described
in this research. We plan to investigate the relationship
between various types of demands and the applicability of
the procedures outlined in this work.
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