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ABSTRACT 

As in any Monte Carlo application, simulation option 
valuation produces imprecise estimates. In such an applica-
tion, Descriptive Sampling (DS) has proven to be a power-
ful Variance Reduction Technique. However, this perform-
ance deteriorates as the probability of exercising an option 
decreases. In the case of out-of-the-money options, the so-
lution is to use Importance Sampling (IS). Following this 
track, the joint use of IS and DS is deserving of attention. 
Here, we evaluate and compare the benefits of using stan-
dard IS method with the joint use of IS and DS. We also 
investigate the influence of the problem dimensionality in 
the variance reduction achieved. Although the combination 
IS+DS showed gains over the standard IS implementation, 
the benefits in the case of out-of-the-money options were 
mainly due to the IS effect. On the other hand, the problem 
dimensionality did not affect the gains. Possible reasons 
for such results are discussed. 

1 INTRODUCTION 

A well-known weakness of Monte Carlo simulation is the 
lack of precision in the estimates. Naturally, this is also 
true in Monte Carlo Simulation option valuation. Variance 
Reduction Techniques (VRT) are generally recommended 
to minimize this problem, as suggested by Bratley, Fox, 
and Schrage (1987), and Charnes (2000). One of these 
techniques, Descriptive Sampling, proposed in Saliby 
(1990), has proven to be very efficient when compared 
with other direct sampling techniques. By direct sampling, 
we mean the usual approach where samples are directly 
drawn from model distributions, unlike the less common 
case where samples are draw from transformed distribu-
tions, as in Importance Sampling (IS). DS is a rather new 
and not very well-known Variance Reduction Technique 
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based on a fully deterministic selection of the sample val-
ues and their random permutation. In general, DS produces 
more precise estimates than the standard Monte Carlo and 
other improved direct sampling schemes such as Latin Hy-
percube Sampling (LHS), as reported in Saliby (1997). 
Therefore, DS is a good choice in option pricing simula-
tion. However, in the case of out-of-the-money options, 
where the exercise probability is quite low, all direct sam-
pling methods, including DS, deteriorate. In such cases, the 
solution is to use Importance Sampling (IS). Following this 
track, the joint use of IS and DS is likely to be fruitful. 
This work evaluates and compares the benefits from using 
the standard IS method, based on a Simple Random Sam-
pling (SRS) implementation, with the joint use of IS and 
DS. We also investigate the influence of the problem di-
mensionality in the variance reduction achieved.  

European calls can be analytically priced through the 
well-known Black and Scholes (1973) model. Neverthe-
less, Monte Carlo simulation can also be used to price 
European options, mainly by serving as a reference when 
the simulation procedure is extended to other kinds of op-
tions without any known analytical solution. Another ad-
vantage in the simulation valuation of European options, 
specifically for purposes of this study, is the possibility of 
varying the problem dimensionality, e.g. the number of 
simulated time steps, without changing the responses and 
estimates being studied. 

Although there is no great appeal in simulating Euro-
pean options, since a closed solution is available, it is ex-
pected that most simulation features in this standard case 
are likely to be extendable to other cases such as Path-
Dependent and other kinds of exotic options. 

A particular case of interest concerns 
out-of-the-money options, like European calls with strike 
prices far higher than the current asset price. As already 
mentioned, the estimate’s precision deteriorates when us-
9



Saliby, Marins, and Santos 

 

ing any direct sampling method; this applies to basic sam-
pling methods such as Simple Random Sampling (SRS), as 
well as to more controlled sample schemes; for example, 
LHS, DS and Quasi Monte Carlo (QMC). Such is the case 
because, when the probability of exercise is too low and 
direct sampling methods are used, the problem becomes a 
rare event simulation case with most simulated payoff val-
ues being zero, and, consequently, very few positive payoff 
values will result. Since the payoff distribution is a mixed 
type distribution, i.e. discrete for zero values and continu-
ous and tailed for positive values, the option’s fair price 
will be poorly estimated when the two kinds of results are 
unbalanced present in the simulated payoffs. To improve 
the quality of simulation estimates when rare events are 
relevant, the use of Importance Sampling is, in principle, a 
good choice. 
 Importance Sampling (IS) is a variance reduction 
technique that changes the parameters of the original prob-
lem in a case where original rare events are no longer rare 
and, with proper adjustments, it provides unbiased and 
more precise estimates. In the present case, the parameters 
are changed in order to substantially increase the probabil-
ity of exercising the option, so that the transformed option 
is no longer out-of-the-money. In principle, the gains with 
IS over SRS and other VRTs are higher as rare events be-
come less likely. In fact, the use of IS in such cases is sug-
gested by Charnes (2000) and Staum (2003), among others. 
 Another Variance Reduction Technique used herein, 
Descriptive Sampling, can be seen as an improvement over 
Latin Hypercube Sampling as described in Saliby (1997). 
The only practical difference between both methods is the 
deterministic selection of the sample values inside each 
stratum in the DS case, instead of a still random draw in 
each stratum in the LHS case. One key issue related to DS 
efficiency is problem dimensionality, i.e. the number of 
random variables in the simulation model. In the trivial one 
dimension case (dim = 1), DS produces determinist results, 
usually a good numerical approximation to the theoretical 
solution. This follows because, in such a case, the random 
permutation of the input values is irrelevant for the final 
simulation estimates. An example of this case is European 
call or put option pricing, where the final asset price is 
generated in just one time step. However, when dim >1, 
the random permutation of the input vector of values will 
vary the simulation estimates between different runs, even 
with a fixed set of input values. Therefore, apart from the 
trivial dim = 1 case, where the DS improvement is 100%, a 
question to be answered is how the problem dimensionality 
may affect the DS performance when dim >1. 
 In order to investigate the influence of the exercise 
probability in the IS efficiency, with and without DS, three 
different deep out-of-the-money European calls were simu-
lated. The problem dimensionality also varied for the three 
cases by using different numbers of time steps to generate 
the final asset price. The quality of the estimates was 
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evaluated by the standard error reduction over the standard 
Monte Carlo sampling method together with the Root 
Mean Squared Error (RMSE) reduction based on the Black 
and Scholes solution. 
 The remainder of this paper is organized as follows:  
Section 2 describes the methodology, briefly presenting the 
Variance Reduction Techniques in use; Section 3 shows 
the main results from the simulation experiments; finally, 
Section 4 concludes with a short discussion of the main 
findings.  

2 METHODOLOGY 

2.1 European Calls and The Black and Scholes 
Solution 

A European call presents a simple payoff function, given 
as  

 
 );0max( KSPayoff T −= , (1) 
 
where:  

 
• ST = the underlying asset price at the maturity of 

the option,  
• K = the exercise price of the option.  
 

 A call option is out-of-the-money when the current 
underlying asset price is below the strike price. The higher 
the exercise price, the lower the probability that the option 
will be exercised. When this probability is too low, the op-
tion is said to be deep out-of-the-money. 
 The price of a European call is defined by the present 
value of its expected payoff. The Black and Scholes (B&S) 
model presents a closed-form solution for this price: 
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• c = European call price according to the Black and 

Scholes solution, 
• S0 = initial underlying asset price, 
• Rf = annual risk-free interest rate, 
• σ = annual asset volatility, 
0
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• T = option’s maturity in working days (1 year 
equals 252 working days), 

• K = exercise price of the option, 
• N(d1) = value of the standard normal cumulative 

distribution function at point d1, 
• N(d2) = value of the standard normal cumulative 

distribution function at point d2. 

2.2 The Monte Carlo Simulation Model  

A Monte Carlo simulation model is implemented to gener-
ate paths for the underlying asset price, and then to obtain 
estimates for the payoff of a European call. The average of 
the estimated payoffs is then calculated and brought to the 
present date value using the risk-free interest rate as the 
discount rate. In this study, the simulation prices along 
each path were generated in steps, defined by the number 
of dimensions used. As in the Black and Scholes model, 
we assumed that the underlying asset path of prices follows 
a Brownian geometric motion, defined by the differential 
stochastic equation:  

 

 
dWdt

S
dS σμ +=

,  (3) 
 

where:  
 
• dS = underlying asset price change during time in-

terval dt,  
• μ = asset return,  
• σ = asset volatility, 
• dW = Wiener process.  
 

 Rewriting Equation (3) in discrete time and adopting 
the risk neutrality assumption (asset return equals risk-free 
interest rate) and using Ito’s Lemma, one obtains the fol-
lowing equation for the underlying asset price at time t 
(Hull 1999):  

 

 

2( / 2)* * *
1

f tR dt dt Z
t tS S e σ σ⎡ ⎤− +⎣ ⎦

−= , (4) 
 
where: 

 
• St = underlying asset price in instant t,  
• St-1 = underlying asset price in instant t-1, 
• dt = option’s maturity (T) / number of dimensions 

(dim),  
• Zt = standard normal random variable in instant t. 

 
 In the empirical studies, each path was simulated up to 
the option’s maturity date T at the 252nd day, based on 
Equation (4) and according to the number of dimensions 
(dim) chosen. The number of dimensions varied from 5 to 
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100. For example, when 15 dimensions were chosen, each 
path was simulated in 15 time steps. In each simulation 
run, n = 1000 paths were generated for the underlying asset 
price. The simulation experiment for each parameter com-
bination comprised m = 40 simulation runs. In matrix rep-
resentation, the experiment is described as follows: 
 
For j = 1 to m runs:  
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 The jth call price estimate is the mean of the 1000 
components of jth Payoffs’ PV (Present Value) Vector. The 
call price’s final estimate is the mean of the 40 call price 
estimates. The standard error is given by the standard de-
viation of the 40 call price estimates. 
 Other simulation parameters, as used in the experi-
ments, are presented in Table 1:  

 
Table 1: Simulation Parameters Used in the Experiments. 

S0 Initial underlying asset 
price (at  t=0)  

$100 

Rf Annual risk-free interest 
rate 

5%  

K Exercise price  $160, $180, $200 
σ Annual asset volatility 20% 

dim Number of dimensions  From 5 to 100 
(increment of 5)  

T Option’s maturity date 252 nd 
N Number of observations per 

run (number of generated 
paths per run)  

1000 

m Number of runs 40 
 

1
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 Each different K value above defined an out-of-the-
money European call to be priced, with a theoretical exer-
cise probability of  1.390% (K=160), 0.264% (K=180) and 
0.046% (K=200). 

2.3 Simple Random Sampling (SRS) 

The SRS simulation was a straight implementation, based 
on the Inverse Transform Technique, generating random 
values for Zt in Equation (4).  
 Variance Reduction Techniques as used in this paper 
are based on different sampling schemes. 

2.4 Variance Reduction Techniques  

2.4.1 Importance Sampling (IS) 

When simulation observations are directly generated, as in 
the SRS case, many observations may fall into regions of 
no or little interest as, for example, a zero payoff.  In the 
presence of relevant rare events, this may disrupt the esti-
mate’s precision.  
 When dealing with out-of-the-money options, few 
price paths with positive payoffs will be simulated, al-
though such an option’s price will be evaluated by combin-
ing both kinds of results: zero and nonzero payoffs. This  
unbalanced set of results leads to imprecise estimates. The 
IS’s purpose is to restore this balance using a proper modi-
fication of the problem. 
 As such, IS usually changes the simulation problem 
parameters, but not the model, so that the option is not out-
of-the-money anymore. This idea, as applied to option 
pricing, is described in Boyle, Broadie and Glasserman 
(1997). After the change, the usual IS approach is to con-
tinue using the standard SRS Monte Carlo simulation for 
the modified problem. In this work, a drift increase was 
applied by increasing the asset return rate, thus shifting the 
asset price distribution to the right. Therefore, instead of 
using random Zt values from the standard normal distribu-
tion, Z’t values were randomly drawn from a shifted nor-
mal distribution with mean μ and unitary standard devia-
tion. At the end of the process, the simulated payoff was 
then adjusted to give proper answers to the original prob-
lem. This was achieved by multiplying each simulated re-
sult by the likelihood ratio,  given by: 
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where: 

 
• Z’t  ~ N(μ,1), 
• dim = problem dimensionality or time steps in 

price path. 
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2.4.2 Importance Sampling with Descriptive Sampling 

(IS + DS) 

Instead of randomly drawing Zi values, this technique in-
corporates DS in the IS analysis, so that the Zd’i values are 
deterministically chosen from the shifted normal distribu-
tion. Due to the selection procedure, input sample moments 
were fixed and very close to the respective theoretical val-
ues, thereby presenting no more variability between differ-
ent runs. 
 The deterministic selection procedure consisted of 
stratifying the cumulative shifted normal distribution 
N(μ,1) into n parts of equal probability and using the me-
dian of each stratum. The selected n elements will compose 
the set of descriptive values, which will be randomly shuf-
fled to produce a univariate descriptive sample. This 
method assures that all strata of  the normal distribution 
N(μ,1) will be represented in the sample. In the multi-
dimensional case, the set of descriptive values will be the 
same for each dimension or time step in the price path, but 
in a different random permutation.  
 Thus, the set of descriptive values (here identified as 
Zdi, instead of Zi), before shuffling, is given by: 
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where:  

 
• n = descriptive sample size, 
• i = 1,2,3..., n, 
• Zdi = ith descriptive sample set value,  
• F -1 = inverse transform of the input variable cu-

mulative distribution; Inverse cumulative Normal 
in this study. 

 
It is worth noticing that Descriptive Sampling and 

Quasi-Monte Carlo Methods are both based on a determi-
nistic sample selection. However, unlike Quasi-Monte 
Carlo where sample sequences are also fixed, DS is based 
on a random permutation of the set values, thus resulting 
into different estimates for each simulation run. 

3 RESULTS 

Table 2 presents the simulated prices of the three out-of-the-
money European calls considered in this paper, using IS in 
Monte Carlo simulation. Table 3 incorporates DS into the IS 
analysis. Various shift values (μ) were considered and four 
dimension levels (dim) were presented (5, 10, 20 and 100). 
The standard errors of the simulated prices are also pre-
sented. In Table 2, column μ = 0 corresponds to Monte 
Carlo simulation using SRS, without any shift; in Table 3, it 
corresponds to the standard DS use, also without any shift. 
The tables also present the analytical prices of the three 
European calls according to the Black and Scholes solution. 
72



Saliby, Marins, and Santos 

 
 
Table 2: Estimated European Call Prices Using Standard Importance Sampling (IS+SRS), Standard Errors of the Estimates 
and the Black and Scholes Solution (B&S).  

 
 
Table 3: Estimated European Call Prices Using Importance Sampling with Descriptive Sampling (IS+DS), Standard Errors of 
the Estimates and the Black and Scholes Solution (B&S). 
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 One can observe that, as expected and required, the 
simulated call prices were in close agreement with their 
corresponding analytical prices, no matter the shift μ value. 
Both Importance Sampling variations (IS+SRS and 
IS+DS), with an adequate choice for the shift μ value, were 
also very efficient Variance Reduction Techniques. The 
more the call was out-of-the-money (or equivalently, the 
higher its exercise price, K), the higher was the standard 
error reduction.  
 For both IS variations, the calibration issue regarding 
the best shift value is present;  an empirical approach is 
suggested. Figures 1 to 4 show the RMSE relative variation 
to the standard SRS, based on different μ values, here rang-
ing up to μ = 1.20. Each figure refers to a particular dimen-
sionality (5, 10, 20 and 100) and displays the RMSE rela-
tive variation for the three calls being studied (K=160, 180 
and 200). 
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Figure 1: Importance Sampling RMSE Relative Variation 
with the Shift μ, for the 3 European Calls (Dimension = 5). 
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Figure 2: Importance Sampling RMSE Relative Variation 
with the Shift μ, for the 3 European Calls (Dimension = 
10). 
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Figure 3: Importance Sampling RMSE Relative Variation 
with the Shift μ, for the 3 European Calls (Dimension = 
20). 
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Figure 4: Importance Sampling RMSE Relative Variation 
with the Shift μ, for the 3 European Calls (Dimension = 
100). 
 
 As shown, one may observe that, no matter the par-
ticular K value (160, 180 or 200), there are substantial 
gains from the use of Importance Sampling instead of 
Simple Random Sampling. It may also be observed that 
such gains are higher as the option becomes deeper out-of-
the-money as K increases. Finally, as K increases, the op-
timum shift μ-value also increases, which can be explained 
by the need to keep the exercise probability of the trans-
formed shifted option at a much higher level, usually 
somewhere around 70%. Concerning problem dimension-
ality, it seems that the number of points in the path price 
did not affect the above findings. 
 Although the IS benefit is noteworthy, DS improve-
ments over the standard IS implementation were only mar-
ginal. Further results are needed to better evaluate the gains 
from the IS+DS combination and to better understand the 
case, but with foreknowledge that such gains are likely to 
be irrelevant in practical terms. 
74



Saliby, Marins, and Santos 
4 CONCLUSIONS 

Although the use of variance reduction techniques in 
Monte Carlo option pricing is a common practice, the 
benefits from the joint use of such techniques is not well 
explored, in particular of IS and DS. In such a context, this 
paper presents some innovative results: 

 
• as expected, it was advantageous to use IS as a 

variance reduction technique to price out-of-the-
money European calls;  

• the higher the exercise price considered, i.e. the 
lower the probability that the call would be exer-
cised, the higher the gain provided by IS; 

• the dimensionality of the simulation problem did 
not affect the gains achieved with IS; 

• on the other hand, the combined use of IS + DS  
only produced marginal gains over the standard IS 
implementation. One possible reason for such  a 
result, yet to be confirmed, is that IS also imposes 
a control over the input sample values, which is 
the purpose of DS. 

 
 These conclusions are likely to be extendable to other 
options, especially the ones that are difficult to price. 
Forthcoming steps from this research could be towards this 
generalization, in particular, the study of exotic options, 
such as Asian and barrier options. 
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