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ABSTRACT

We consider the risk of a portfolio comprised of loans,
bonds, and financial instruments that are subject to possible
default. We are interested in efficiently estimating expected
excess loss conditioned on the event that the portfolio incurs
large losses over a fixed time horizon; this risk measure
is often referred to as expected shortfall. We consider
a heterogeneous mix of obligors and assume a portfolio
dependence structure that supports extremal dependence
among obligors and does not hinge solely on correlation. We
first derive sharp asymptotics that illustrate the implications
of extremal dependence among obligors in the risk of the
portfolio. Using this as a stepping stone, we develop a
multi-stage importance sampling algorithm that is shown to
have bounded relative error in estimating expected shortfall.

1 INTRODUCTION

Market conditions over the past few years combined with
regulatory arbitrage have lead to significant interest and
activity in trading and transferring of credit-related risk.
Since most financial institutions are exposed to multiple
sources of credit risk, a portfolio approach is needed to
adequately measure and manage this risk. One of the most
fundamental problems in this context is that of modeling
dependence among a large number of obligors (consisting,
for example, of companies to which a bank has extended
credit), and assessing the impact of this dependence on the
likelihood of multiple defaults and large losses.

A common framework for modeling a credit portfolio is
the so-called latent variable approach in which dependence
among obligors is captured through latent variables; the
1

latter often arise from factor analysis, and hence may be
used to capture macroeconomic or industry-specific effects.
The risk of default is then determined by the distance
between the underlying variables and a given threshold. This
methodology underlies essentially all models that descend
from Merton’s seminal firm-value work (Merton 1974).

The normal copula model which assumes that the latent
variables follow a multivariate normal distribution is one of
the most widely used models in practice. It has been incor-
porated into many popular risk management systems such
as J.P. Morgan’s CreditMetrics (Gupta, Finger, and Bhatia
1997), Moody’s KMV system (Kealhofer and Bohn 2001),
and is also prominently featured in the latest Basel accords
that regulate capital allocation in banks (Basel Committee
on Banking Supervision 2002); see also Li(2000) and the
survey paper by Crouhy, Galai, and Mark (2000).

In recent years empirical work has argued that financial
variables often exhibit stronger dependence than that cap-
tured in the correlation-based normal model. The stronger
linkage is often manifested in large joint movements. In
particular, in the credit risk context it has been argued that
the main source of risk in large balanced loan portfolios
is the occurrence of many joint defaults – what might be
termed as “extreme credit risk.” These observations strongly
suggest that in many instances the normal copula may not
be an adequate way to model dependencies.

An attractive alternative to the normal model is one
based on the multivariate Student t distributions, known as
the t-copula model. While generalizing the normal copula
model, the t-based model remain simple, parsimonious and
analytically tractable. Recent work has shown that at least in
certain instances this model provides a better fit to empirical
financial data in comparison with the normal copula (e.g.,
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Mashal and Zeevi 2003). It is important to note that un-
like the normal copula the t-based model supports extremal
dependence between the underlying variables. Roughly
speaking, this means that variables may simultaneously
take on very large values with non-negligible probability;
for further discussion see Embrechts, Lindskog, and McNeil
(2003). A useful interpretation of extremal dependence fol-
lows from the construction of a multivariate t distribution
as a ratio of a multivariate normal and the square-root of a
scaled Chi-squared random variable. When the denomina-
tor takes values close to zero, coordinates of the associated
vector of t-distributed random variable may register large
co-movements; see further discussion in Embrechts, Lind-
skog, and McNeil (2003) and Glasserman, Heidelberger
and Shahabuddin (2002). Hence the Chi-squared random
variable plays the role of a “common multiplicative shock.”

In this paper, we are interested in estimating expected
shortfall, which is defined as the expected excess loss con-
ditioned on the event that the loss exceeds a large threshold.
Unlike value-at-risk (VaR), which is insensitive to the mag-
nitude of loss beyond a certain percentile, ES weights large
losses by their magnitude. The model that we consider
builds on the latent variable approach, blending in a com-
mon multiplicative shock. The distributional assumptions
are quite general and include as a particular instance the
t-copula model discussed above. Our objective is two-
fold: to derive asymptotics for the expected shortfall; and
to develop a provably efficient Importance Sampling (IS)
algorithm for estimating it.

The main contributions of this paper include the fol-
lowing:

• We derive a sharp asymptotic for expected shortfall
which illustrates in a precise manner the effects of
extremal dependence (see Theorem 2).

• We construct an IS algorithm to efficiently estimate
the risk of a portfolio via simulation. The algorithm
uses a multi-stage exponential twist, and is shown
to have bounded relative error as the number of
obligors increase to infinity (see Theorem 3).

Numerical results illustrate the performance of the algorithm.
The paper is organized as follows. This section ends

with a brief review of related literature, and section 2
describes the model. Section 3 and 4 contain our main
results: the former derives the asymptotics and the latter
describes the IS algorithm and investigates its performance.
Section 5 presents numerical results. All proofs are relegated
to the appendix.

2 RELATED LITERATURE

A recent paper by Glasserman and Li (2003) focuses on
IS procedures for portfolio credit risk in the normal copula
18
model. Glasserman, Heidelberger and Shahabuddin (2002)
describe efficient methods for computing equity portfolio
VaR in the presence of heavy-tailed risk factors. They also
argue that the proposed change of measure will be effective
for estimating conditional loss. The point of departure
of the current paper is the recent work of Bassamboo,
Juneja, and Zeevi (2005) that develops a framework to
model extremal dependence and in that setting derives IS
algorithms for efficiently estimating the probability of large
losses in heterogenous credit portfolios. In this paper we
use their framework and consider the problem of estimating
expected shortfall.

3 PROBLEM FORMULATION

3.1 The Portfolio Structure and Loss Distribution

Consider a portfolio of loans consisting of n obligors. Our
interest centers on the distribution of losses from defaults
over a fixed time horizon and the associated conditional
mean losses above a certain threshold. The probability of
default for the ith obligor over the time horizon of interest
is pi ∈ (0, 1), and is used as an input to our model. This
value is often set based on the average historical default
frequency of companies with similar credit ratings. The
associated exposure to default of counterparty i is assumed
to be given by ei > 0, that is, the default event results in
a fixed and given loss of ei monetary units. (We note that
it is easy to generalize the main results of the paper to the
case where the loss size is random under mild regularity
conditions.)

For the determination of the portfolio loss distribu-
tion, the specification of dependence between defaults is
of paramount importance. The dependence model that we
consider is closely related to the widely used CreditMetrics
model; see Gupta, Finger, Bhatia (1997), Crouhy, Galai,
Mark (2000) and Li (2000). In particular, we assume
that there exists a vector of underlying latent variables
(X1, . . . , Xn) so that the ith default occurs if Xi exceeds
some given threshold xi (the distributional assumptions re-
lated to the latent variables will be discussed in Section 3.2).
The loss incurred from defaults is then given by

L = e1I{X1 > x1} + · · · + enI{Xn > xn}, (1)

where I{·} is the indicator function. The threshold xi is
chosen according to the marginal default probabilities so
that P(Xi > xi) = pi . Our main interest is in developing
sharp asymptotics and efficient simulation techniques to
estimate the expected shortfall of the portfolio, given by
E[L − x|L > x], for a large threshold x.

The normal copula model that is widely used in the
financial industry and that forms the basis of the Credit-
Metrics and KMV models assumes that the vector of latent
50



Bassamboo, Juneja, and Zeevi
variable follows a multivariate normal distribution. Hence
the dependence between the default events is determined by
the correlation structure of the latent variables, in particular,
(I{X1 > x1}, . . . , I{Xn > xn}) has a normal copula as its
dependence structure (Embrechts, Lindskog, McNeil 2003).
The underlying correlations are often specified through a
linear factor model

Xi = ci1Z1 + · · · + cidZd + ciηi,

where: i.) Z1, . . . , Zd are iid standard normal rv’s that
measure, for example, global, country and industry effects
impacting all companies; ii.) ci1, . . . , cid are the loading
factors; iii.) ηi is a normal rv that captures idiosyncratic
risk, and is independent of the Zi’s; and iv.) ci and the
loading factors are chosen so that the variance of Xi is equal
to one (without loss of generality). To keep the notation
simple, we restrict attention to single factor models (d = 1).
Extension to multi factor models is not difficult and follows
along the lines outlined in Bassamboo, Juneja, Zeevi (2005).

The multivariate normal that underlies CreditMet-
rics/KMV provides a limited form of dependence between
obligors, which, in particular, may not assign sufficient prob-
ability to the occurrence of many simultaneous defaults in
the portfolio. As indicated in the introduction, one of the pri-
mary objectives of the current paper is to extend the normal
copula model to incorporate “stronger” dependence among
obligors, so that the corresponding dependence structure is
more in line with recently proposed models of extremal
dependence (e.g., Frey and McNeil 2001 and Embrechts,
Lindskog, and McNeil 2003) and empirical findings (e.g.,
Mashal and Zeevi 2003), both of which suggest consid-
eration of t-copula models and the like over the normal
copula.

3.2 Extremal Dependence

Let (ηi : 1 ≤ i ≤ n) denote iid random variables and let
Z denote another rv independent of (ηi : 1 ≤ i ≤ n). Fix
0 < ρ < 1 and put

Xi = ρZ + √
1 − ρ2ηi

W
, i = 1, . . . , n (2)

where W is a non-negative rv independent of Z and (ηi :
1 ≤ i ≤ n) and its probability density function (pdf) fW(·)
satisfies

fW(w) = αwν−1 + o(wν−1) as w ↓ 0, (3)

for some constants α > 0 and ν > 0. Here and in what
follows, we write h(x) = o(g(x)) if h(x)/g(x) → 0 as
x → 0 or as x → ∞, where the limit considered is
obvious from the context. If Z and {ηi} are iid having a
18
normal distribution and W is removed from (2), then this
model reduces to a single factor latent variable instance
of CreditMetrics/KMV. As alluded to earlier, our aim is to
model economies where the dependence amongst obligor
defaults is primarily due to common shocks, and this is
captured in (3) through the random variable W . When W

takes values close to zero, all the Xi’s are likely to be large
leading to many simultaneous defaults. The parameter ν

measures the likelihood of common shocks: smaller values
imply a higher probability that W takes values close to
zero. This class of models has been recently proposed in
the context of credit risk modeling (Frey and McNeil 2001)
and references therein]; in the particular instance where
(Z, η) follow a bivariate normal distribution, this is often
referred to as a mean-variance normal mixture, with 1/W

providing the mixing distribution.
Example 1 Let W follow a Gamma(β, γ ) distribu-

tion, with γ, β > 0, whose pdf is given by

fW(x) = βγ xγ−1

�(γ )
e−βx, x ≥ 0.

Then this distribution satisfies (3) with ν = γ , α =
βγ /�(γ ).

Example 2 For a positive integer k, let W =√
k−1Gamma(1/2, k/2) so that

fW(x) = 2kk/2xk−1

2k/2�(k/2)
e−kx2/2, x ≥ 0.

This pdf satisfies (3) with ν = k, α = 2(k/2)k/2/�(k/2).
Note that for γ = k/2 and β = 1/2, the distribution

discussed in Example 1 is Chi-squared with k degrees-of-
freedom (df). Note that when a linear combination of Z and
ηi follows a normal distribution and W has the distribution
given in Example 2, then the vector (Xi : 1 ≤ i ≤ n) follows
a multivariate t-distribution, whose dependence structure is
given by a t-copula with k degrees of freedom.

Technical assumptions: Let FZ(·) and Fη(·) denote
the distribution functions of Z and ηi , respectively. In what
follows we restrict Z to be light-tailed, i.e., 1 − FZ(x)

is upper bounded by an exponentially decaying term as
x → ∞. As far as the “noise” variable η is concerned, we
make the following technical assumption: the distribution
of η possesses a density which is positive on the real-line.
(The latter assumption is made to facilitate analysis and can
be generalized at the expense of further technical details.)
In what follows we refer to (3) together with the above
conditions collectively as the distributional assumptions
associated with our model.
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4 ASYMPTOTIC ANALYSIS OF LOSS
DISTRIBUTION AND EXPECTED SHORTFALL

Since it is virtually impossible to exactly compute the port-
folio loss distribution or expected shortfall, we focus on an
asymptotic regime which is of practical interest and supports
a tractable analysis. This regime is one where the portfolio
of interest is comprised of a “large number” of obligors,
each individual obligor defaults with “small” probability,
and the focus is on “large” portfolio losses. The mathemat-
ical meaning of these terms is spelled out in section 4.1 and
subsequently in section 4.2 we describe the main results.

4.1 Preliminaries

Let f (x) denote an increasing function so that f (x) → ∞ as
x → ∞. Fix n (the number of obligors in the portfolio), and
let {a1, . . . , an} be strictly positive constants. Set the default
thresholds for the individual obligors to be xn

i = aif (n),
so that obligor i defaults if Xi > aif (n) and obligors may
have different marginal default probabilities. The overall
portfolio loss is given by

Ln = e1I{X1 > a1f (n)} + · · · + enI{Xn > anf (n)}, (4)

where ei, i = 1, . . . , n, is the exposure associated with the
ith obligor. We are interested in studying the probability
that Ln takes on large values when n is large, and use
this to compute the expected shortfall. In particular, we
focus on the probability of the event {Ln > nb}, and the
conditional expectation E[Ln − nb|Ln > nb] for b > 0.
Hence as the size of the portfolio, n, grows large, the
individual probability of default decreases in a manner that
is governed by the function f (n), and the loss level of
interest, nb, scales up with the size of the portfolio.

We assume that f (n) increases at a sub-exponential
rate so that f (n) exp(−βn) is a bounded sequence that
converges to zero as n → ∞ for all β > 0. By suitably
selecting the function f (n) we can model portfolios of
varying credit ratings classes. For example, letting f (n)

increase polynomially in n we can model a portfolio with
high quality obligors, while if f (n) increases, say, at a
logarithmic rate, then the loans are considered more risky.

To deal with the heterogeneity among obligors, cap-
tured by the sequences {ei, ai}ni=1, we impose the following
assumption.

Assumption 1 The non-negative sequence
((ei, ai) : i ≥ 1) takes values in a finite set V , with
cardinality |V|. In addition, the proportion of each element
(ej , aj ) ∈ V in the portfolio converges to qj > 0 as
n → ∞ (so that

∑
j≤|V | qj = 1).

In practice, the loan portfolio may be partitioned into a
finite number of homogeneous loans based on factors such as
industry, quality of risk, and exposure sizes. Assumption 1
18
allows this flexibility. While our analysis easily generalizes
to the case where each obligor corresponds to the pair
(ej , aj ) with probability qj , and ej is a light tailed random
variable, we avoid overburdening the notation by simply
assuming a constant exposure level ej , and that for a given
portfolio a fraction qj of the obligors correspond to class j .
(In the remainder of the paper we ignore the non-integrality
of qjn for simplicity and clarity of exposition.)

4.2 Sharp Asymptotics for the Probability
of Large Portfolio Losses

Let ē = ∑
j≤|V | ej qj , i.e., the limiting average loss when

all the obligors default. Recall that the portfolio loss, Ln,
is given in (4). The following theorem derived in Bas-
samboo, Juneja, and Zeevi (2005) gives a sharp asymptotic
for the probability of large portfolio losses that provides
an important building block in evaluating the asymptote
of the expected shortfall. The function w(z) used in the
statement of the theorem is defined precisely in Appendix
A.1. Essentially, conditioned on Z = z, w(z) denotes the
threshold value so that for W ∈ (0,

w(z)
f (n)

) the mean loss

from the portfolio is greater than b; for W ∈ (
w(z)
f (n)

, ∞), the
mean portfolio loss is less than b.

Theorem 1 Bassamboo, Juneja, and Zeevi 2005
Fix 0 < b < ē, and let Assumption 1 as well as the
distributional assumptions on (Z, η, W) hold true. Then,

lim
n→∞ f (n)νP(Ln > nb) = α

ν

∫ ∞

−∞
w(z)νdFZ(z). (5)

As alluded to above, this theorem is the key to estab-
lishing an asymptotic for conditional shortfall in Theorem 2.
The function r(w, z) used in the statement of Theorem 2
is defined precisely in Appendix A.1. Essentially, r(w, z)

denotes the mean loss from the portfolio conditioned on
Z = z and W = w/f (n). Let (Y )+ := max(0, Y ).

Theorem 2 Fix 0 < b < ē, and suppose Assump-
tion 1 as well as the distributional assumptions on (Z, η, W)

hold true. Then

E[Ln − nb|Ln > nb]
n

→ ν
∫ ∞
−∞

∫ w(z)

0 (r(w, z) − b)+ wν−1dwdFZ(z)∫ ∞
−∞ w(z)νdFZ(z)

a.s.

as n → ∞.
This asymptotic may be briefly understood as follows:

E[Ln − nb|Ln > nb] = E[(Ln − nb)I (Ln > nb)]
P(Ln > nb)

.

The numerator may be asymptotically approximated by
noting that the set of values of W and Z, for which the
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mean portfolio loss is less than b contributes negligibly to it
(because, in that region, the probability of {Ln > nb} decays
exponentially with n). On the remaining set, the portfolio
loss amount may be replaced by its conditional expectation
(conditioned on value of W and Z) and since in this region W

is small, its pdf may be approximated using (3). Similarly,
the denominator may be asymptotically approximated by
focussing on the region where conditioned on W and Z, the
mean portfolio loss is > b, and in that region, approximating
the conditional probability of {Ln > nb} by 1.

4.3 Numerical Illustration

In this section, we illustrate the accuracy of the asymp-
totic approximation for expected shortfall as the number of
obligors becomes large. Table 1 compares the accuracy of
the sharp asymptotic with the simulation based results as
a function of n. Model parameters are taken to be ν = 4,
f (n) = √

n, ρ = 0.25, each ai = 0.5 and b = 0.25. The
accuracy improves significantly for large values of n. The
cases where n = 100 and 250 correspond to portfolio sizes
of practical interest. Note that the asymptote is off by about
6-10% for these values. We may also expect the accuracy
of the asymptotic to reduce for heterogeneous portfolios,
especially when the exposures ei are randomly distributed.

Table 1: The Expected Shortfall and Its
Sharp Asymptotic as a Function of the Num-
ber of Obligors (n)

n β̂(n, b) [95% C.I.] Asymptote

100 5.4[±1.3%] 4.8
250 13.0[±1.3%] 12.3
500 24.9[±1.5%] 24.4

1000 48.8[±1.6%] 48.8
2000 95.3[±1.7%] 97

5 IMPORTANCE SAMPLING SIMULATION

The asymptotic presented in Theorem 2 may lead to sig-
nificant inaccuracies in estimation of expected shortfall in
many practically relevant cases. Hence Monte Carlo meth-
ods become an attractive alternative to accurately estimate
this quantity. Since the event on which the expected short-
fall is computed is typically small, naive simulation would
require a very large number of runs to provide a satisfactory
estimate. Importance sampling provides an efficient means
of generating low variance estimates, essentially by placing
further probability mass on the rare event of interest and
then suitably unbiasing the resultant simulation output.
18
5.1 Preliminaries

For notational convenience, assume that Z and W have
probability density functions fZ(·) and fW(·), respectively
(though in our analysis we do not require that the distribution
of Z have a density function). Let (pj : j ≤ |V|) denote
the probabilities associated with the Bernoulli variables
(I{Xi > aif (n)} : i ≤ n), as a function of the generated Z

and W . We suppress this dependence from the notation for
ease of presentation (this dependence is explicitly displayed
in the proofs given in Appendix A). For notational purposes,
let An = {Ln > nb} denote the event in which portfolio
losses exceed a level nb in a portfolio with n obligors.
Suppose that under an importance sampling distribution
we generate samples of Z, W and the Bernoulli variables
(I{Xi > aif (n)} : i ≤ n), and hence Ln and I{An}, using
density functions f̃Z(·), f̃W (·) and probabilities (p̃j : j ≤
|V|), where the distribution of W may depend upon the
generated value of Z, and the distribution of the Bernoulli
success probabilities may depend upon the generated values
of Z and W (this dependence is also suppressed in the
notation here). Let P̃ denote the corresponding probability
measure. The sample output is then unbiased by multiplying
it with the likelihood ratio L̃ that equals

fZ(Z)fW (W)

f̃Z(Z)f̃W (W)

∏
j≤|V |

(
pj

p̃j

)Yj qj n (
1 − pj

1 − p̃j

)(1−Yj )qj n

,

where Yjqjn denotes the number of defaults in class j

obligors.
We now discuss characterizations of performance for

importance sampling estimators. To estimate the expected
shortfall E[Ln − nb|Ln > nb], denoted by β(n, b), we
generate m iid samples ((Li

n, L̃i ) : i ≤ m) of (Ln, L̃) and
compute the following estimate

β̂m(n, b) =
∑m

i=1 L̃i (Li
n − nb)I{Li

n > nb}∑m
i=1 L̃iI{Li

n > nb} .

Using the delta-method (e.g., Serfling 1981) we note that
the following central limit theorem holds:

√
m[β̂m(n, b) − β(n, b)] ⇒ σ(n, b)N (0, 1),

as m → ∞ where ⇒ denotes convergence in distribution,
and

σ 2(n, b) = σ 2
1 (n, b)

µ2
2(n, b)

+ µ2
1(n, b)σ 2

2 (n, b)

µ4
2(n, b)

+

2
σ12(nb)µ1(n, b)

µ3
2(n, b)

, (6)
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with

µ1(n, b) = Ẽ[L̃(Ln − nb)I{Ln > nb}],
µ2(n, b) = Ẽ[L̃I{Ln > nb}],
σ 2

1 (n, b) = Ẽ[(L̃(Ln − nb))2
I{Ln > nb}] − µ2

1(n, b),

σ 2
2 (n, b) = Ẽ[L̃2

I{Ln > nb}] − µ2
2(n, b),

σ12(n, b) = Ẽ[L̃(Ln − nb)I{Ln > nb}] −
µ1(n, b)µ2(n, b).

Definition 1 We say that the change of measure has
bounded relative error if

lim sup
n→∞

σ(n, b)

β(n, b)
< ∞.

The key to the occurrence of the large loss events in the
portfolio corresponds to W taking small values so that the
mean loss conditioned on W and Z, exceeds a level b. In
Sections 5.2 we describe an IS algorithm for estimating the
expected shortfall, that judiciously assigns large probability
to event An to reduce simulation variance. The algorithm
generates a new distribution of W by exponentially twisting
the original one (see, e.g., Juneja and Shahabuddin (2005)
for an introduction to exponential twisting). This is exactly
the IS measure proposed by Bassamboo, Juneja, and Zeevi
(2005) and it will be shown to have bounded relative error
in estimating the expected shortfall.

When conditional on (W, Z) the mean loss is less than
b, it may be a good practice (though not essential for the
asymptotic optimality of the algorithm) to generate the corre-
sponding Bernoulli random variables under an exponentially
twisted distribution so that the event An is no longer rare,
and the mean loss under the new distribution equals b. For
any random variable X with pdf fX(·), the associated dis-
tribution that is exponentially twisted by parameter θ has
the form

exp(θx − 
X(θ))fX(x),

where 
X(·) denotes the log-moment generating function of
X. For θ ≥ 0, let 
j(θ) denote log(exp(θej )pj +(1−pj )).
It is well known, and easily checked through differentiation,
that 
j(·) is strictly convex when 0 < pj < 1 (e.g., Dembo
and Zeitouni 1993). Let

pθ
j = 
′

j (θ) = exp(θej )pj

exp(θej )pj + (1 − pj )
=

exp(θej − 
j(θ))pj ,

where ej is the exposure to the j th obligor, and pj the
probability that the j th obligor defaults. Put 1 − pθ

j =
exp(−
j(θ))(1−pj ), and note that pθ

j is strictly increasing
in θ . For the case where the mean loss

∑
j≤|V | ej qjpj < b,
18
consider the new default probabilities (pθ∗
j : j ≤ |V|), where

θ∗ > 0 is the unique solution to the equation∑
j≤|V |

ej qjp
θ
j = b.

This choice of twisting parameter induces a probability
distribution under which the mean loss is b, hence the event
of incurring such loss in a sample is no longer rare. In what
follows we suppress the dependence of θ∗ on W and Z,
in the notation, although it is noteworthy that θ∗ increases
with W and decreases with Z.

5.2 The Importance Sampling Algorithm

This algorithm consists of three stages. First a sample of Z

is generated using the original distribution. Depending on
the value of Z, a sample of W is generated using appropriate
importance sampling. Depending on the value of samples
of Z and W , samples of the Bernoulli variable I{Xi >

aif (n)} are generated for i ≤ n, using naive simulation or
importance sampling. For a fixed positive constant ξ , put
w̃(z) = max(ξ, w(z)).
Importance Sampling Algorithm

1. Generate a sample of Z according to the original
distribution FZ(·).

2. Generate a sample of W using the density f ∗
W ob-

tained by exponentially twisting fW with parameter
−θZ,n, where

θZ,n = νf (n)

w̃(Z)
.

This choice of the twisting parameter is based on the
analysis in Bassamboo, Juneja, and Zeevi (2005).

3. For each i ≤ n, generate samples of I{Xi >

aif (n)} independent of each other using the dis-
tribution: p̃i = pi if the mean loss under the
generated W and Z is greater than b; and using
p̃i = pθ∗

i otherwise.

Let P̃ denote the probability measure corresponding to
this algorithm and Ẽ the expectation operator under this
measure. Again, let Yjqjn denote the number of class j

defaults in a single simulation run. The likelihood ratio L̃
is then given by

exp[θZ,nW + 
W(−θZ,n)]∏
j≤|V |

(
pj

p̃j

)Yj qj n (
1 − pj

1 − p̃j

)(1−Yj )qj n

. (7)

Now we state the main result of this section.
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Theorem 3 Under Assumption 1 and the distribu-
tional assumptions on (Z, η, W), the proposed IS algorithm
has bounded relative error for estimating the expected short-
fall β(n, b).

6 NUMERICAL RESULTS

In this section we compare the performance of the proposed
algorithm with naive simulation, and investigate sensitivity
to ν. The broad conclusion is that the algorithm provide
significant improvement over the performance of naive sim-
ulation. This improvement increases as the probability of
large losses becomes more rare (e.g., as ν increases). This
supports our theoretical conclusion that the relative perfor-
mance, as measured by the ratio of the standard deviation
of the estimate to the mean of the estimate, remains well
behaved for the algorithm even as the probability of large
losses becomes increasingly rare.

Motivated by the t-copula model, we set the distribution
of W in our numerical experiments as in Example 2, the
random variable Z is chosen to follow a standard Normal
distribution (mean zero, variance 1) and each ηi is normally
distributed with mean 0 and variance 9. (We set the value of
variance to 9 instead of 1 simply to ensure that the loss prob-
ability is sufficiently large to be practically relevant). The
random variables W , Z and (ηi : i ≤ n) are mutually inde-
pendent so that X = (X1, . . . , Xn) has a multi-dimensional
Student t-distribution, with the dependence structure given
by a t-copula. Implementation issues concerning this al-
gorithm are discussed in Bassamboo, Juneja, and Zeevi
(2005).

6.1 Performance of the Proposed Algorithm

Table 2 compares the performance of the IS Algorithm with
naive simulation as ν varies. The model parameters are
chosen to be n = 250, f (n) = √

n, ρ = 0.25, b = 0.25,
each ai = 0.5 and ei = 1. For each ν, we generate 50,000
samples under the original measure and IS measure. We
then compute the variance reduction obtained under the
two algorithms. This equals the ratio of the variance of the
estimator under the importance sampling measure to the
variance of the estimator under the original measure. We
also report the probability of large loss, i.e., P(Ln > nb).
For df = 12 and df = 16, we observed Ln < nb under
naive simulation for all the 50, 000 sample paths generated.
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Table 2: Performance of the IS Algorithm as a Func-
tion of ν. Variance Reduction is Measured Relative
to Naive Simulation. (∗) Denotes That the Event of
Interest was not Observed in Any Sample Path Using
Naive Simulation.
df β̂(n, b)[95% C.I.] Var. red. P(Łn > nb)

4 13.20[±1.5%] 62 8.06 × 10−3

8 7.84[±2.6%] 743 2.41 × 10−4

12 5.81[±4.1%] (∗) 1.07 × 10−5

16 4.67[±6.9%] (∗) 6.18 × 10−7

A PROOFS OF MAIN RESULTS

A.1 Preliminaries

We first introduce some preliminary notation and observa-
tions that are useful in proving the main theorems. Let

pw,z,i := P

(
η >

aiWf (n) − ρZ√
1 − ρ2

∣∣∣∣W = w

f (n)
, Z = z

)

= P

(
η >

aiw − ρz√
1 − ρ2

)
.

Let Pw,z denote the probability measure conditioned on the
event W = w/f (n) and Z = z and let Ew,z denote the
corresponding expectation operator. Let

r(w, z) :=
∑

j≤|V |
ej qjpw,z,j

= lim
n→∞

1

n

n∑
i=1

eipw,z,i , (8)

where the limit follows from Assumption 1. For w >

0, r(w, z) denotes the limiting average portfolio loss (as
n → ∞), and also the mean portfolio loss when W = w

f (n)
and Z = z. Note that r(w, z) is non-decreasing in z and
non-increasing in w.

Let zb denote the unique value of z that solves

ēP

(
η ≥ −ρz√

1 − ρ2

)
= b.

(Note that our assumption that η has a positive density
function on the real line ensures that there exists a unique
zb that solves the above equation.) The term zb assumes
significance in our analysis since for Z < zb the event of
average loss exceeding b remains a rare event for all values
W > 0. For z ≥ zb, let w(z) be defined as the unique
solution to

r(w, z) = b. (9)
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Note that w(z) is strictly positive for each z > zb. Note
also that for w ≤ w(z), under Pw,z the average loss amount
1
n

∑n
i=1 eiI{Xi > aif (n)} in the limit as n → ∞ has mean

which is greater than or equal to b, and hence the probability
of large loss is no longer a rare event. Set w(z) = 0 for
z ≤ zb.

To perform asymptotic analysis, we need additional
notation obtained by perturbing certain parameters. For
each δ, let zbδ denote the unique solution to

ēP

(
η ≥ −ρz√

1 − ρ2

)
= b − δ.

Note that zb0 ≡ zb, and zbδ is a decreasing function of
δ. Further, we have zbδ → zb as δ → 0. Let wδ(z) ≥ 0
denote the unique solution to the equation r(w, z) = b − δ

for z ≥ zbδ . Note that w(z) = w0(z), wδ(z) is a strictly
increasing function of z for z ≥ zbδ , and using continuity
and monotonicity of r(w, z) in w, we have

wδ(z) → w(z) (10)

as δ → 0. The following upper bound on wδ(z) is easily
seen and is useful to our analysis:

wδ(z) ≤ ρ

mini ai

(z − zbδ ) for all z > zb. (11)

A.2 Proof of Theorem 2.

Using Theorem 1, it suffices to show that

f (n)ν

n
E[(Ln − nb)+]

→ α

∫ ∞

zb

∫ w(z)

0

 |V |∑
j=1

ej qjpw,z,j − b


× wν−1dwdFZ(z), (12)

as n → ∞. Here, (Y )+ := max(0, Y ).
Fix δ > 0. We decompose the left hand side of (12)

into the following three terms

E[(Ln − nb)+] = E[(Ln − nb)+I {z ≤ zb}] (13)

+ E

[
(Ln − nb)I

{
W >

wδ(Z)

f (n)
, Z ≥ zb

}]
+ E

[
(Ln − nb)I

{
W ≤ wδ(Z)

f (n)
, Z > zb

}]
.

We divide the remaining part of the proof into four steps. The
first and the second step show that the first and second term on
the right hand side of (13), respectively, are asymptotically
negligible. The third and the fourth step develop upper and
18
lower bound on the third term on the right-hand-side of
(13).
Step 1. We show that

lim
n→∞

f (n)ν

n
E[(Ln − nb)+I {Z ≤ zb}] = 0. (14)

Note that

(Ln − nb)

n
< (max

i
ei − b).

Thus, we have

f (n)ν

n
E[(Ln − nb)+I {Z ≤ zb}]

= E[(Ln − nb)I {Ln > nb, Z ≤ zb}]
≤ f (n)ν(max

i
ei − b)P(Ln > nb, Z ≤ zb).

The assertion in (14) now follows from Step 1 of proof of
Bassamboo, Juneja, and Zeevi (2005), Theorem 1.
Step 2. We show that

lim
n→∞

f (n)ν

n
E

[
(Ln − nb)+I

{
W >

wδ(Z)

f (n)
, Z ≥ zb

}]
= 0. (15)

As in Step 1, the left hand side is bounded above by

lim
n→∞(max

i
ei − b)f (n)ν

P

(
Ln > nb, W >

wδ(Z)

f (n)
, Z ≥ zb

)
,

which by Step 2 of the proof of Bassamboo, Juneja, and
Zeevi (2005), Theorem 1, gives (15).
Step 3. We now develop an asymptotic upper bound on
the third term on the right hand side of (13), which in turn
gives an asymptotic upper bound on E[Ln − nb]. To this
end, we show that for δ > 0,

lim
n→∞

f (n)ν

n
E

[
(Ln − nb)+I

{
W ≤ wδ(Z)

f (n)
, Z > zb0

}]

≤ α

∫ ∞

zb

∫ w(z)

0

 |V |∑
j=1

ej qjpw,z,j − b

 wν−1dwdFZ(z).

To see this, note that

E

[
(Ln − nb)+I

{
W ≤ wδ(Z)

f (n)
, Z > zb0

}]
(16)

=
∫ ∞

zb

∫ wδ(Z)

f (n)

0
Ef (n)w,z[(Ln − nb)+]fW(w)dFZ(z).
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For any 0 < κ < 1, this is upper bounded by

∫ f (n)κ

zb

∫ wδ(z)

f (n)

0
Ef (n)w,z[(Ln − nb)+]fW(w)dwdFZ(z) (17)

+ E[(Ln − nb)+I
{
Z ≥ f (n)κ

}].
Note from (3) that for any ε > 0 there exists n sufficiently
large such that fW(w) ≤ α(1 + ε)wν−1 for 0 ≤ w ≤ wδ(z)

f (n)

and z ∈ (zb, f (n)κ). (This follows since wδ(z) increases at
most at a linear rate as a function of z). Thus, for sufficiently
large n, (17) is upper bounded by

α(1 + ε)

∫ ∞

zb

∫ wδ(z)

f (n)

0
Ew,z[(Ln − nb)+]wν−1dwdFZ(z)

+ n(max
i

ei − b)P(Z ≥ f (n)κ).

The last term multiplied by f (n)ν

n
vanishes in the limit as

lim
n→∞ f (n)νP(Z ≥ f (n)ν) = 0.

Next consider the first term, changing the variable and letting
y = wf (n) we get

α(1 + ε)

f (n)ν

∫ ∞

zb

∫ wδ(z)

0
Ey,z[(Ln − nb)]yν−1dydFZ(z).

The desired upper bound follows by multiplying the above
by f (n)ν/n, taking limits as n → ∞, noting that ε is
arbitrary, Ln/n is bounded, and the fact that

lim
n→∞ Ey,z

[(
Ln

n
− nb

)+]
=

 |V |∑
j=1

ej qjpy,z,j − b

+
.

Using the above three steps together with (13) estab-
lishes that

lim
n→∞

f (n)ν

n
E[(Ln − nb)+]

≤ α

∫ ∞

zb

∫ wδ(z)

0

 |V |∑
j=1

ej qjpw,z,j − b


× wν−1dwdFZ(z).

Note that the left hand side is independent of δ; wδ(z) is
bounded from above by a linear function in z; wδ(z) → w(z)

as δ → 0; and Z is light tailed. Using the dominated
convergence theorem when letting δ → 0, we deduce that
185
limn→∞ f (n)ν

n
E[(Ln − nb)+]

≤ α

∫ ∞

zb

∫ w(z)

0

 |V |∑
j=1

ej qjpw,z,j − b

 wν−1dwdFZ(z).

Step 4. We now prove the following lower bound

lim inf
n→∞

f (n)ν

n
E[(Ln − nb)+

× I

{
W ≤ wδ(Z)

f (n)
, Z > zb0

}
]

≥ α

∫ ∞

zb

∫ w(z)

0

 |V |∑
j=1

ej qjpw,z,j − b


wν−1dwdFZ(z). (18)

To see this, note that for a given δ̃ > 0, there exists N such

that Ew,z[Ln] ≥ n
(∑|V |

j=1 ejpw,z,j − δ̃
)

for all n > N .

Thus, we have that the left-hand-side of (18) is lower
bounded by

lim inf
n→∞ f (n)ν

∫ ∞

zb

∫ w(z)
f (n)

0

 |V |∑
j=1

pf (n)w,z,j ej − b − δ̃


× fW(w)dwdFZ(z)

≥ α(1 − ε)

× lim inf
n→∞ f (n)ν

∫ ∞

zb

∫ w(z)
f (n)

0

 |V |∑
j=1

pf (n)w,z,j ej − b − δ̃


× wν−1dwdFZ(z),

for any ε > 0. The last inequality follows from (3). Let
y = f (n)w. Thus the above expression equals

α(1 − ε)

∫ ∞

zb

∫ w(z)

0

 |V |∑
j=1

ej qjpy,z,j − b − δ̃


× yν−1dydFZ(z).

Taking limits as ε → 0 and δ̃ → 0, we get the desired
result. This completes the proof.

A.3 Proof of Theorem 3.

Using Theorem 2, it suffices to prove that

lim sup
n→∞

σ 2(n, b)

n2 < ∞.
7
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To this end, we will prove that each term on the right-hand-
side of (6) scaled by n2 is finite. Consider the first term on
the right-hand-side of (6). We first observe that

lim sup
n→∞

f (n)2ν

n2 Ẽ[L2(Ln − nb)2
I{Ln > nb}] < ∞. (19)

To see this, note that (Ln − nb)2 ≤ (maxj ejn)2. Also,

lim sup
n→∞

f (n)2ν
Ẽ[L̃2

I{Ln > nb}] < ∞

follows from Theorem 2 of Bassamboo, Juneja, and Zeevi
(2005) which states that the proposed algorithm has bounded
relative error for estimating P(Ln > nb). Thus, we have

lim sup
n→∞

σ 2
1 (n, b)

n2µ2
2(n, b)

< ∞,

since

lim sup
n→∞

σ 2
1 (n, b)f (n)2ν

n2 < ∞, (20)

and
lim sup
n→∞

µ2
2(n, b)f (n)2ν < ∞. (21)

Here (20) follows from (19) and (21) follows from Theorem
1. Similarly,

lim sup
n→∞

µ2
1(n, b)σ 2

2 (n, b)

n2µ4
2(n, b)

< ∞.

For the last term, note that

lim sup
n→∞

f (n)2ν
Ẽ[(L̃)2(Ln − nb)I{Ln > nb}]

n
< ∞.

Therefore, lim supn→∞
σ12(nb)µ1(n,b)

n2µ3
2(n,b)

< ∞, and the proof

is complete.
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