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ABSTRACT

This paper discusses a simulation model that is used in
a martingale valuation approach to measure and value the
risk of the FDIC deposit insurance funds. The FDIC in-
surance funds capitalize a portfolio of insurance policies,
each issued to depositors of an individual commercial bank.
To evaluate this portfolio, our methodology evaluates the
insurance policies for depositors at each individual bank
and aggregates to obtain the risk of the entire portfolio.
To adequately model the risks associated with credit, inter-
est rate, deposit growth, and loss rate, a multi-dimensional
system is formulated. The risk measurement and valuation
results are based on Monte Carlo simulation of the system
risks.

1 INTRODUCTION

A rigorous approach to risk measurement and valuation of
the risks of the FDIC insurance guarantees is essential for
effective risk management. This paper develops such an
approach, providing a valuable tool for evaluating the risks
posed to the deposit insurance funds from potential bank
failures. The approach is based on a martingale valuation
methodology in Duffie et al. (2003), and is carried out us-
ing a Monte Carlo simulation model that incorporates the
relevant risk factors. To evaluate the potential losses on the
FDIC deposit insurance fund, our methodology evaluates
each individual bank’s potential failure and aggregates to
obtain the risk of the entire fund. The four relevant risks
of these insurance guarantees are included: interest rate,
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credit, deposit growth, and loss severity. To adequately
model these four correlated risks, a multi-dimensional sys-
tem is formulated. The resulting risk management tool is
constructed to be flexible and easily modified to incorporate
extensions and generalizations.

Of the four risks, we model interest rate risk using
a four-factor Heath-Jarrow-Morton (1992) (HIM) model.
Credit risk is modeled using the reduced form methodology
introduced by Jarrow and Turnbull (1992, 1995). Following
the recent insights of Duffie and Lando (2001) and Cetin
et al. (2004) in this regard, an intensity process is used,
because regulators and the market have less information
than do bank management. Less information can generate
a totally inaccessible default time for the regulators and the
market, whereas it may be a predictable stopping time for
bank management (Protter 1990). The structural approach
to credit risk of Merton (1974) is more appropriate when
valuing these claims from the bank management’s perspec-
tive. Deposit growth is modeled using various bank-specific,
local- and macro-economic variables in a time series re-
gression. The loss (or equivalent, recovery rate) process
depends on the historical loss rates and the asset and liability
structure of the bank.

The results of the Monte Carlo simulation provide a
complete characterization of the risks faced by the FDIC’s
deposit insurance fund. Over a one-, five-, and ten-year
horizon, we compute various quantiles and summary statis-
tics for the number of bank failures, the total deposits in
the failed banks, and the current values of the potential
losses to the FDIC. From these computations, one obtains
various risk measures and market valuations. For example,
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the value at risk (VaR) measure over a one-year horizon
using a 99% probability is the 99th percentile loss over a
one-year horizon, or $2.2 billion. Analogous VaRs for the
five- and ten-year horizons are $27 billion and $109 billion,
respectively. The market value of these losses to the FDIC
insurance fund over the various horizons, valued as if traded
on public capital markets, are given by the mean of the loss
distribution. For a one-year horizon, the market value of the
FDIC’s losses are computed to be $218 million. Analogous
market values over the five- and ten-year horizons are $2
billion and $21 billion, respectively.

The remainder of this paper is organized as follows.
Section 2 presents the martingale valuation methodology.
This section characterizes the four risks present in FDIC
insurance guarantees, and it presents both the risk mea-
sure construction and valuation technology. The simulation
model is the content of section 3. Section 4 presents the
parameter estimation used in the simulation, whose results
are discussed in section 5.

2 VALUATION METHODOLOGY

This section introduces the notation and economic logic
underlying the martingale valuation model for the FDIC
deposit insurance funds. The valuation methodology is
based on Duffie et al. (2003).

2.1 Model Structure

Let P denote the statistical probability measure, and T
denote the time horizon of interest (one, five, or ten years in
our setting). Default-free bonds of all maturities T € [0, 7]
are traded with time ¢ prices denoted p(t, T'), and various
stock price indices introduced below. The spot rate of
interest at time ¢ is denoted r;. We assume that markets are
complete and arbitrage free, so that there exists a unique
equivalent martingale probability measure Q under which
discounted prices are martingales. The discount factor at
time 7 is eJo 45,

Let i = 1,..., I represent the banks insured by the
FDIC. Let Yi (1) = {Y; (t), j = 1, ..., Ny} be a collection of
characteristics of bank i at time ¢, e.g., the loan-to-deposit
ratio of bank i at time ¢. These variables are known to the
banks and the regulators, but perhaps not all of them, such
as examination ratings, are available to the market.

2.2 Interest Rate Model

Since we will be using a simulation to evaluate the future
losses to the FDIC deposit insurance fund, we employ
a multi-factor HIM model to govern the term structure
evolution, which allows maximum modeling generality and
flexibility.
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2.2.1 Forward Rate Process

We specify the evolution of the term structure using forward
rates under the martingale measure Q. Let f(¢, T) be the
instantaneous (continuously compounded) forward rate at
time ¢ for the future date 7. We use the following K factor
model:

K
dft,T) = o, T)dt + Zoj(z, T)dw;(t), (1)
j=1
K T
at, T) = Y ot T)/ o (t, u)du,
j=1 !
oj(t.T) = min[o,(T)f(t.T). M,
where M is a large positive constant, o,;(T), j =1, ..., K,
are deterministic functions of T, and W;(t),j =1,..., K

are uncorrelated standard Brownian motions. Forward rates
are approximately lognormally distributed under expression

(1.
2.2.2 Spot Rate Process

With r, = f(¢,t), the spot rate process can be deduced
from the forward rate evolution via

_0f (@, T)

K
dri= ——— dt +a(t, ydt + Y oj(t, AW, (1).

j=l1

T=t

2
But a(t, 1) = Y5_ 0j(t.1) [} 0(t, )du =0, s0

_Af@,T)

K
dr, dt + " min[o,; (t)r (1), MIdW; (1)

J=1

T=t

3)

under the martingale measure Q.
2.3 State Variable Processes

We have two sets of state variables. Let V(t) = {V; (), j =
1, ..., Ny} be a collection of macro-variables that are inde-
pendent of a particular bank. These state variables are
intended to capture the health of the economy at time .
Second, let X () = {X;(¢), j = 1, ..., N.} represent another
collection of state variables also characterizing the state of
the economy at time . The difference between these two
sets of state variables is that X, represents the prices of
traded assets, while V;(f) need not. We assume that these
state variables give equivalent characterizations of the state
of the economy.

For the subsequent analysis, we do not need to specify
the evolution of V;(¢), but we do need to do so for the
traded assets. We assume that the traded state variables
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follow a diffusion process under the martingale measure Q:

dX;(t) =rXjt)dt +o i X;)dZ;(1), @)
where o, is a constant, Z (t) are correlated standard Brow-
nian motions with dZ;(t)dZ;(t) = p;;dt, and with respect
to the term structure of interest rates, d W; (t)d Z ; (t) = n;;dt.
Because the state variables represent traded prices, the drift
of this process is the spot rate of interest r;.

By Girsanov’s theorem, under the statistical measure
‘P, the evolution of these state variables is

dx;(t)

(t)dt dZ ; 1),
Xj(l) /"LJ() + Ox;j ]()

&)

rt) — ()

Oxj

where dZ;(t) = ( )dt +dZ;().

For the subsequent analysis, we define the detrended state
variables xj(t) as

dx]- (1) de (1) ~
— = ——" —ui®)dt =o0,;dZ;(1). (6)
5 X M AL
Under the martingale measure Q, it evolves as
d)Cj (1)
L2 = [r(0) = (0)t + 05jdZi(r). (D)
x;(1)

2.4 Deposit Growth Model

For each bank, the FDIC insurance guarantee covers the
insured bank deposits. Depositors are insured up to $100,000
of their deposits per ownership category. For example,
suppose a bank customer has an account in their name of
$105,000 and a joint account with a spouse with a balance of
$280,000. The individual account is insured up to $100,000
and the individual’s portion of the joint account is insured
up to $100,000. Uninsured deposits for this individual
would be $5,000 of the individual account and $40,000
from the joint account. For more information on deposit
insurance coverage, see www.fdic.gov. If the insured
bank defaults, the FDIC pays the insured depositors and
stands in their place as a claimant in the receivership. Here
we have provided the most conceptually simple example,
a payout, to describe the resolution of a bank. The FDIC
resolves banks in the least costly manner, which typically
involves selling some of the assets and liabilities to an
acquirer, otherwise known as a purchase and assumption
transaction. Although the FDIC covers insured deposits,
we chose to model the evolution of total deposits, primarily
due to data limitations. Insured deposits were not reported
quarterly for much of our sample period, and the numbers
that are reported are estimates of insured deposits. We
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assume the total deposits of bank i at time ¢ are given by

D} = D', Y (1), V(1)) ®)
where Df) = D'(0, Y} (0), Vi (0) are the observed balances
at time 0. The deposit balance evolution depends on the
variables Y'(¢), V(t), which are known to the banks and
the regulators, but perhaps not to the market.

2.5 Bank Default Model

Let 7; be the random default time at bank i, and denote its
point process by N;(¢) = 1{r; <t}.

2.5.1 Default Intensity Process

Following Lando (1998), we assume that the default
point process for bank i, N;(¢), follows a nonhomoge-
nous (nonstationary) Poisson process with intensity A
A(t, Yi(t), V(¢)) under the statistical measure P. We as-
sume that the default processes are independent across banks.

In general, this intensity process is different under the
martingale measure Q. Under an equivalent change of
measure, this default intensity can be written as

ke A, Y@, V),

where k; is a suitably bounded and integrable stochastic
process, adapted to the filtration generated by Y'(¢), V(1)
(see Jarrow, Lando, Yu 2005). This is the intensity process
used for valuation. If, after conditioning upon the state vari-
ables Y (r), V (1), default risk is idiosyncratic, then Jarrow,
Lando, Yu (2005) show that k; = 1.

2.5.2 The Loss Rate Process

If default occurs, the loss to the insurance fund as a percent
of the banks deposits is assumed to be given by

$i=08(t,Y' (1), V(1))

at the time of default . Note that this loss rate process
depends on the same set of state variables as the default
intensity process and the deposit growth model.

2.6 Risk Measures and Valuation

This section discusses risk measures and valuation of the
FDIC insurance guarantees.

For bank i, the loss faced by the FDIC at some future
date T is given by

, , T
8, Dh e < ), ©)
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If default occurs before time 7', then the FDIC incurs the
losses 8% Dil_, future valued to time T using the spot rate
of interest. If default does not occur, then this is zero. The
entire FDIC insurance funds losses are the aggregate losses
across all banks:

1
. . T
Lt = Zalﬁ Di’ie+fri rSdsl{Ti <T}
i=1

(10)

Given the stochastic processes for the forward rate process
and state variables, the distribution for the losses L7 is
completely determined by expression (10). Due to the
dimension of the problem, a Monte Carlo simulation will
be used to compute various risk measures and values.

2.6.1 Loss Risk Measures

Given the losses as quantified in expression (10), we can
compute the loss distribution for the FDIC fund at any time
T, i.e.,

P(Lt <k) for any k > 0. (11

One might also be interested in the o—quantile of this
distribution, defined as

kg =inf{k : P(Lt <k) > a}. (12)
2.6.2 Present Value of Losses
The present value of this loss due to bank i is

ER [8, Dy e i 1 < 7], (13)

where E,Q[-] corresponds to conditional expectation under
the martingale measure Q using the information up to time
t. This is the cost of the FDIC insurance guarantee for bank
i. Analogously, one can compute the present value of the
insurance proceeds to determine whether or not FDIC insur-
ance is properly priced; see Duffie, Jarrow, Purnanandam,
and Yang (2003).

The present value (P V) of the losses to the entire FDIC
insurance fund over the time interval [0, T'] is given by

1
PV(Ly) =) E2 [5; Dl e I s < T}] . (4)
i=1
We estimate expression (14) using Monte Carlo simulation.

3 SIMULATION MODEL

This section presents the simulation model used to evaluate
losses to the FDIC insurance funds. To compute the risk
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measures and present values of the FDIC insurance losses
using Monte Carlo simulation, we must first simulate the time
series processes for Y; (1), Vi(t)forall j, k, i. Unfortunately,
this direct simulation has two problems. One, the complexity
of the default, loss, and deposit growth models (see the
subsequent sections) makes the direct simulation of these
models problematic. Second, even if this were not the case,
the dimension of a direct simulation would be too large
given that the number of banks (/) is approximately 9,000
(the dimension of the problem is (Ny x Ny x I)). To make
the simulation tractable, we need to reduce the dimension
of this problem. In addition, to avoid the need to estimate
the market prices of risk associated with the state variable
processes Vi (t), we will use the traded state variables Xy (¢)
instead of the local- and macro-variable indices Vi ().

3.1 Projection to Lower Dimensions

For simulation, we use the traded asset prices X ;(¢), and
only a static subset of the bank’s characteristics, denoted
by

V=T, j=1..N)

which includes characteristics like the bank’s geographical
location.

The simulated insured deposit growth process is given
by its conditional expectation, given the reduced information
set, i.e.,

bi=EP [Die. v, v|7 xw],  as)
with 56 = Dé. Using the strong Markov property of a
diffusion process, we can write this as
Di=D .7 X1, (16)
where X ;(¢) follows the process in (5) under the statistical
measure P, and where X ;(¢) follows the process in (4)
under the martingale measure Q. We compute valuation
using expression (16) under the martingale measure Q.

Analogous to the deposit growth model, we use the

following intensity process in the simulation:

N=EP avio.ve|7. xo]  an

@Y, X)),

This is the intensity process used for valuation. Under the
martingale measure Q, as previously discussed, this default



Bennet, Nuxoll, Jarrow, Fu, and Zhang

intensity can be written as

ke @Y X (@), (18)
where k; is a suitably bounded and integrable stochastic
process, adapted to the filtration generated by Xy (¢) for all
k. This is the intensity process used for valuation. In the
simulation, we set k; = k, a constant. Furthermore, we
assume that default risk is conditionally diversifiable, as in
Jarrow, Lando, Yu (2005), and set x = 1. In subsequent
research, we will explore the impact of utilizing market
determined estimates for « # 1.

Following a similar line of reasoning, the loss rate
process is

S=£" [fe.r . V(t))‘?i, Xw] a9

5T, X)),

where,g’O = 86 is the observed loss rate on deposits defaulting
attime 0, X ; (¢) follows the process in (5) under the statistical
measure P, and X ;(¢) follows the process (4) under the
martingale measure Q.

Although the lower-dimensional projection described
above is used to facilitate computation, this projection has an
economic interpretation. This formulation is consistent with
only bank management and regulators observing the bank
specific characteristics Y} (t) for all i, j, perhaps because
this is proprietary information. In contrast, the market sees
only a static subset of these bank characteristics represented
by the variables 7;, j=1, ...,Ny. Consequently, given
the market’s reduced information set, the deposit growth
and bankruptcy processes are given by expressions (16),
(17), and (19). Under this interpretation, these processes
are the correct ones to use for market valuation of the FDIC
insurance guarantees (see Duffie and Lando 2001; Cetin et
al. 2004).

3.2 Simulation Model Algorithm

To compute the loss distribution to the FDIC insurance fund
(11) or its present value (14), we need to be able to simulate
the forward rate process, the traded state variables, and the
bankruptcy processes. The simulation algorithm is now
described under the martingale measure Q. The analogous
simulation can take place under the statistical measure, with
the appropriate change in drift.

e Step 1. Discretize the time interval [0, T] as
t =0,1,2,...,T. Generate a sample path for
Wi(), ..., Wk (), Z1(t), ..., Zn, (1), over this dis-
cretization, called a scenario. Note that these vari-
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ables are multivariate normally distributed with
covariance matrix given in Figure 1.

e Step 2. Given a sample path for
Wi(), ..., Wk (@), Z1(t), ..., ZN, (D), use  ex-
pressions (1) and (4) to obtain a sample path
for the forward rates f(¢t,7) and traded state
variables X ;(¢). In the subsequent simulation, we
actually use the detrended trade state variables
x;(t) and add the spot rate of interest ;.

e Step 3. Use the sample paths for the forward
rates and state variables to obtain realizations of
the deposits D (¢, Y , X (1)), the intensity process
K- At Y, X(t)), and the loss rate 8 (1, Y', X (¢)).

e Step 4. For each bank and the given scenario,
determine if default occurs during the horizon,
and if so, the actual default time, i.e., compute
1{r; < T}, and then 7; if the indicator function
is 1. We describe how to carry out this default
process simulation in detail in the next subsection.
Given a failure, the loss rate process 3 (t, Y, X (1))
then applies to the deposits D (t, 71, X (1)) to de-
termine the loss to the insurance funds.

e Step 5. For this scenario, compute L7 in (10).

*  Step 6. Repeat steps 1-5 for M replications. From
this collection of scenarios, the risk measures and
values can be computed. For example, expression
(14) is estimated by its sample mean

M
__ 1 T
— — rs(w)ds
PVu(Lr) = > Lr(w)e . (20)

w=1

where w is a particular replication (sample path).
3.3 Simulating the Default Processes

We provide the details as to how to carry out step 4. The
nonhomogeneous (nonstationary) Poisson process with rate
(intensity) function A(#) can be simulated in two main ways
(cf. Law and Kelton 2000):

1. Inverse Transform Method. In general, this method
requires integration of the rate function A(¢), and
then performing an inversion. In our setting, the
general form is as follows:

Generate [/ independent unit exponentially dis-
tributed random variables E',i =1, ..., I.
Compute

7, =inf{s € [0, T] :

/SK @Y, X@)de > E'). (21)
0
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dWi(t) dt 0 0 nidt  npdt r]ledl‘_

: 0 dt na1dt :

: : . 0 : :
dWg (1) 0 0 dt T]Kldt nKNxdt
dZ(t) | nudt npdt nin, dt dt pr2dt P1IN,dt

; n21dt po1dt dt
dZy,(t) [nkidt ngn,dt pin,dt dt |

Figure 1: Covariance Matrix for W (t), Z(t)

Acceptance-Rejection Method. This method is also
known as “thinning,” and requires simulation of a
homogeneous (stationary) Poisson process of suf-
ficiently large rate A* > A(¢) V¢ . Event epochs on
a sample path 11, 12, ... are “accepted" (kept) or
“rejected" (deleted) according to a Bernoulli coin
flip with probability A(z;)/A*.

The advantages of the Acceptance-Rejection Method
are its simplicity and easy application for complicated rate
functions, because it avoids the integration and inversion
operations. Aside from being potentially non-trivial, these
operations may also require additional storage. The chief
disadvantage of the Acceptance-Rejection Method is that in
general it will require a larger number of random numbers
to be generated.

A special case of the Acceptance-Rejection Method is
a discrete-time Bernoulli (coin flipping) where the discrete
time increments are sufficiently small compared to the ex-
pected number of Poisson events in the increment (i.e., the
expected number should be well under 1). In other words,
it exploits the defining properties that the nonhomogeneous
Poisson process still retains:

®
(ii)

Poisson distribution;
independent increments.

This special case of the Acceptance-Rejection Method
is extremely simple, but a disadvantage of is that one ran-
dom number (for each failure process simulated) must be
generated every period.

For the case that we consider, where the intensity
process is constant between quarters, the simulation methods
simplify. Assume that over periods of length A, denoted by
I;, that A(¢) is constant withrate A;, and that P(N ([;) > 1) =
0 Vi, where N(I) is the number of Poisson events over the
interval /. The Poisson assumption then implies P (N (I;) =
1) &~ A; A = P;. This P; is the conditional failure probability
in a quarter that is provided by the empirical estimation of
AL The estimation of Al is described above in section 4.0.3.
Thus, the failure process can be simulated as a discrete-time
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Bernoulli process where failure occurs in the period with
probability )\ﬁ. The actual failure time can be generated
randomly (i.e. from a uniform distribution) over the period.

Note that the assumption of P(N(/ > 1) ~ 0 is nec-
essary only to use the Bernoulli random variable. More
generally, one could use a Poisson random variable with
parameter AA (or y(t) = fOA A(t)dt for the non-constant
case). Under the assumption that the rate is constant over
the period, the Poisson event (unordered) epochs would then
be randomly distributed over the period using the property
of a homogeneous Poisson process that given N(I) = n,
the distribution of unordered epochs are independently and
identically distributed U (0, A) (replace by cumulative den-
sity function. y(-)/y(A) for the non-constant case). This
case would not apply in the context of modeling bank fail-
ures since we assume that a bank can only fail once over
the horizon (or at least in a quarter).

However, it turns out that for the constant-over-an-
interval case, the expression (21) representing the Inverse
Transform Method also simplifies considerably, since inte-
grals become rectangular areas. Again, let P; denote the
conditional failure probability in period i as above. Let
E ~ exp(1). Then,

q
Q = failure period = min {q : Z P > E} ,
i=1

T = failure time = (Q — DA+ | X —

The corresponding algorithm is as follows:

e SetSum:=0and Q :=1.
¢ Generate a random variable E ~ exp(1).
* Loop until Q > # quarters to simulate:
If Sum 4 Pg > E, then return failure time

T=(0 -1+ (X —Sum)/Pg)A;
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else Sum = Sum + Pg; Q := Q0 + 1.

This method requires only a single random number
per failure process simulated, and there is no complicated
integration or inversion required, nor extra storage of sample
path quantities, just one simple counter sum (corresponding
to the cumulative integral).

In numerical test cases with 8,532 banks, 19 state
variables, a 4-factor HIM interest rate model and a 10-
year horizon, we found that the difference in using the
two different failure processes is indistinguishable for a
single replication with Ar of 1 week (1/52), because the
forward rate process simulation dominates the failure rate
process in terms of computational burden. However, for
200 replications with Ar of a quarter (1/4), we found a
reduction in computation time of nearly 50%, as in this
case, the forward rate process no longer dominates the
simulation nearly as much.

4 PARAMETER ESTIMATION

This section presents the parameter estimation procedures
and results for the underlying stochastic processes, including
the forward rates, the stock price indices, and the deposit
growth and loss rate models.

To estimate the forward rate process given in expression
(1), we employ a principal component analysis as discussed
in Jarrow (2002). Given a time series of discretized forward
rate curves {f(t, T1), f(¢t, T2), ..., f(t, Tn,)}/L,, where N,
is the number of discrete forward rates observed, the interval
between sequential time observations is A, and m is the

number of observations. Then, percentage changes are com-
Sa+A T)—f(@,T1) SU+ATN)—f @, TN,)

puted (=50 Ty

the percentage changes, the N, x N, covariance matrix (from

the different maturity forward rates) is computed, and its
eigenvalue/eigenvector decomposition calculated. The nor-
malized eigenvectors give the discretized volatility vectors

{o,;(TOVA, ...,

m
t—1- From

0 (Ty)VAY, j =1, ..., N,.
To compute the parameters of expression (4), we use
the quadratic variation, which is invariant under a change
of equivalent probability measures. Given is a time series
of {X;(t)}jL, where the interval between sequential time
observations is A, a quarter, and m is the number of obser-
vations. Define AX;(t) = [X;(t + A) — X;(¢)]. This could
be done using log differences instead of returns or using the
detrended variables x;(¢) instead of X ;(¢). We compute
Z (AX (t)>
Xi(1)

(22)
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giving an estimate of o)?l.A. Next we calculate

w2 (5650

giving an estimate of oy;0y;0j; A. To obtain the correlation
between the forward rates, the house price index, and the

AX (1) AX;(t)

Xj() Xi(r) @9

bank stock price index index n;; for j = 1,..., K, we
compute
Af(t, Ty) AX;(t
_Z(f(w <v’ o1
f@, ) Xi()
giving an estimate of
K
ZGrj(Tk)ffxmjiA
j=I
This is computed for k = 1, ..., K for distinct T1, ..., Tk,
yielding K equations in K unknowns {n;, ..., ngi}. The

estimates of o,;(T;) come from the forward rate princi-
pal components analysis discussed in the previous section.
Solving this system gives the estimates. This is done for all
i. For this estimation, we set K = 4, and we use the four
forward rate maturities 71 = 1/2, Th, =1, T3 =3, Ty = 5.

Empirically, {X; (¢)}_, includes a series of house price
indices and a series of bank price indices. House prices
are measured for the nine census regions by the Office of
Federal Housing Enterprise Oversight (OFHEO) indices,
available quarterly since 1975. Comparable bank price
indices were compiled from Center for Research in Security
Prices (CRSP) data. (Among other things, CRSP compiles
daily data on stock trades.) A total of 267 stocks was used.
The banks were divided into ten groups: a set of money
center banks and one set for each of the census regions. An
equal weighted index was created for each group of banks.

For the empirical default intensity, we estimated a stan-
dard bank failure model. A pooled time series, cross-
sectional model with a logistic specification was used. The
sample included all banks and thrifts with the necessary
data between December 1984 and December 2002. The
model described above was used to generate estimates of
the probability of failure for December 2002.

Deposit growth was measured on a year-over-year basis
to eliminate seasonal effects. Data was taken from the period
March 1986 to March 2003.

The estimate of loss for individual institutions is calcu-
lated using a model similar to that used to estimate losses
for the Least Cost Test. This model described here is used
only when the FDIC does not have enough time to enter
the bank and value the assets on site. The model uses loss
rates for six types of assets: consumer loans, commercial
loans, securities, mortgages, owned real estate (ORE) and
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other assets. The model assumes the following about losses
on asset categories. First, the loss rates on cash and federal
funds are zero. Second, there is a category of assets includ-
ing intangible assets that experience 100% losses. Third,
fixed assets such as bank premises will have the same loss
rate as that experienced on ORE. The loss rates for the
asset types are calculated using a sample of 369 failures
from the 1990 to 2002 period. The loss rates are applied
to the assets on the balance sheet, and, given the liability
structure, we calculated a loss for each institution.

5 SIMULATION RESULTS

5.1 Numerical Results

Table 1 contains the simulation results for the one-, five-,
and ten-year horizons. These results are based on 10,000
replications of the model with starting values given by
March 2005 data. The table shows the distribution of the
number of bank failures, the total deposits in the failed
banks, and the current value of the losses to the FDIC.
Total losses are discounted as in expression (20) from the
estimated failure time to June 2005. Losses are discounted
to June 2005 instead of March 2005, because the data for
March are available with approximately a two month lag.
Decisions based on the forecasted losses would be made at
the end of June 2005. Discounted losses are used so they are
comparable to the dollar value of the FDIC capitalization
on June 2005.

The results for the one-year horizon indicate that the
FDIC should expect approximately five failures between
July 2005 and June 2006, and the expected total deposits
for the failed banks should be on the order of $5.2 billion.
The expected loss to the insurance funds is $218 million,
and the median loss is approximately $49 million.

The distribution presented in Table 1 can be used to
construct various risk measures. For example, the value-at-
risk measure (VaR) over a one-year horizon using a 99%
probability is the 99th percentile loss, or $2.3 billion. The
market value of losses to the FDIC insurance fund over the
one-year horizon as given in expression (20), valued as if
traded on public capital markets, is given by the mean of
the loss distribution, or $218 million.

Table 1 provides the same estimates over longer hori-
zons. For example, the 99% VaR is $27 billion over five
years, $109 billion over ten years. The market value of
the losses amount to $2.2 billion over five years, and $21
billion over ten years.
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Table 1: Simulation Results: March 2005

Number
of Failures
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Mean

Standard Deviation
Median

95th Percentile
99th Percentile
Mean

Standard Deviation
Median

95th Percentile
99th Percentile
Mean

Standard Deviation
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1 Yr. Horizon
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