
Proceedings of the 2005 Winter Simulation Conference
M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, eds.

FLEXIBLE INTEGRATION OF XML INTO MODELING AND SIMULATION SYSTEMS

Mathias Röhl
Adelinde M. Uhrmacher

University of Rostock
Albert-Einstein-Str. 21

Rostock, 18059 GERMANY
ABSTRACT

As the effort towards standardization of formalism represen-
tations increases so does the need for verifying whether mod-
els do or do not follow a standard. Data binding allows to sys-
tematically exploit XML and its associated technologies for
modeling and simulation purposes. Based on the schema def-
inition of a formalism, a binding compiler generates model
classes that support the user in constructing models accord-
ing to the formalism. Most constraints can be checked auto-
matically, few require separate efforts by the designer of the
simulation system. Although simulators could be build for
these declarative model descriptions, they would be hardly
efficient. To this end, a separate transformation component is
required. In this overall process, both model specifications
that are consistent with a formalism definition and models
that can be executed efficiently are supported equally.

1 INTRODUCTION

Interoperability of modeling and simulation tools can be
largely increased by adherence to standard exchange for-
mats that allow the in- and export of models speci-
fied in certain modeling formalisms. Such formats ex-
ist for Petri nets (Billington et al. 2003) and hybrid sys-
tems (MoBIES 2004). For discrete event system specifica-
tions, only suggestions exist so far, e.g. (Wang and Lu 2002,
Hong, Kim, and Kwon 2000, Schäfer 2004), but non of them
has been established as a standard yet. Currently, the DEVS
Standardization Group of the Simulation Interoperability
Standards Organization promotes the development of a stan-
dard format for DEVS (SISO 2005).

XML is expected to play a central role for model ex-
change (Tolk 2004). Already now XML is widely used in
modeling and simulation, e.g. in combination with DTD
(Filippi and Bisgambiglia 2002) and DOM (Fishwick 2002).
However, the capabilities of XML are often not fully ex-
ploited and unnecessarily much effort is spent in implement-
ing XML handling.

The paper is structured as follows. We will first give a
1

short introduction into data binding and compare it to doc-
ument centric approaches like DOM, which has been used
widely for modeling and simulation. We will shortly sketch
how systematical use of data binding supports the construc-
tion of syntactically correct models that adhere to individual
model formalisms and established or still evolving “stan-
dards”. Recommended extensions refer to a) checking for
further constraints and b) transforming the generated mod-
els into efficiently executable models. Thereafter we will
present how this approach is utilized in James.

2 DATA BINDING FOR A VALID AND
EFFICIENT MODELING

XML (eXtensible Markup Language) has become the quasi-
standard for storing semi-structured data. Generally, data
handling based on XML is robust, extensible, and adopts eas-
ily to complex structures (Harold 2002). XML documents
have a tree structure that is made up of nested elements. The
classic approach to access XML data is via Document Object
Model (DOM) or Simple API for XML (SAX). DOM is doc-
ument centred. The whole XML-document is transformed to
a tree of objects reflecting the structure and holding the con-
tent of the document’s data. The data tree can be accessed
and edited at will. In contrast to that SAX is an event based.
It successively produces events each reflecting the node at
hand of the XML document. The application is responsible
for building object structures in memory.

Both DOM and SAX allow to map between XML docu-
ments and objects that can be used within software. DOM and
SAX work on a rather low level and are document centered.
They provide access to entities that directly reflect XML’s
structure: elements and attributes. One problem with this is
that type safety is lost. Furthermore, decoding and encod-
ing from and to XML has to be done manually. One usually
wants to work on entities that reflect the structure of the ap-
plication domain rather than that of the underlying storage
technology. E.g. in the case of modeling and simulation
ports, couplings, and models should be the focus of interest.
This is called a data centric approach (McLaughlin 2002).
813



Röhl and Uhrmacher
Schema languages impose well-defined constraints XML
data can be checked against. Document Type Definitions
(DTD) define occurrence and ordering constraints on ele-
ments and whether required attributes are present. In addition
to DTD’s features, XML Schema Definitions (XSD) allow to
constrain the contents of elements and attributes by type and
value range assignments. Standardized by the W3C XSD is
written itself in XML and supports structuring of definitions
by means of namespaces.

With DOM or SAX validation of XML data has to be
done on the entire XML document. An alternative is to build
Java representations of schema constraints and apply these
to data (McLaughlin 2000). This supports an efficient and
well scaling validation of data based on schema definitions.
Today’s data binding frameworks take a similar approach
with the additional benefit of providing generation techniques
to minimize manual coding.

2.1 XML Data Binding

Data binding is a powerful approach to implement XML sup-
port within software systems (Brodkin 2001, Bourret 2005).
Given a set of schema definitions a compiler generates source
code that enforces data to adhere to the constraints. Thus, a
data binding framework makes manual encoding of internal
representations and consequently its transformation to and
from XML data unnecessary. The generated source code can
directly be used for representing model data and it provides
automatic conversion to and from XML.

Advantages of data binding are easiness of updating format
specifications and type security of XML handling. Whereas
DOM or SAX recognize errors, e.g. whether certain elements
or attributes are present, only at runtime, in data binding
inconsistencies are recognized by the compiler of the target
programming language.

Data binding frameworks exist for different target
languages, e.g. Java (Ort and Mehta 2003) and C++
(Ware 2005). In the following, we will use JAXB which
stands for Java Architecture for XML Binding (Sun 2005).

2.2 Modeling Based on Data Binding

Data binding is well suited for the area of modeling. It has
the potential to make proprietary data formats for model rep-
resentations superfluous. With the help of data binding the
use of standard formats is not limited to the exchange of mod-
els. If standards exist, they can directly be put to use within
modeling and simulation tools. In addition it supports a low
cost adaptation if standards — as it is the case with DEVS
— are still developing.

For modeling and simulation systems data binding eases
the construction of models and their transformation. Figure
1 gives an overview of the different representations of mod-
els and formalisms and activities of users supported by data
binding. We will shortly describe the successive steps:
181
Figure 1: XML Integration Based on Data Binding

• A model formalism is defined or an existing standard
specification is used as a schema definition (e.g. Doc-
ument type definition, XML Schema Definition, or Re-
laxNG).

• A binding compiler generates source code classes that
encour the schema based on the schema definition.

• Given these classes and maybe additionally defined con-
straints, the user is able to edit and design “correct”
models.

• The thus constructed models can be stored via mar-
shalling in XML. Conversely, unmarshalling transforms
XML data to objects.

• XML descriptions of models can be manipulated via
XSLT.

• Object representations of models can be transformed
into efficiently executable model objects, e.g. by re-
placing declarative parts with object references. These
models form the base for the simulation engine.

Within generation, customization files can be used for
tool specific configurations, e.g. names for target packages,
classes, and methods. This step has to be done once for a
modeling formalism and for each change in the specification
of a formalism respectively.

Marshalling takes content objects and converts them to
XML data. Unmarshalling takes XML model data and in-
stantiates the generated classes into a tree of Java content
objects according to the XML data. Unmarshalling checks
syntactical correctness, i.e. it validates the models against the
original schema definitions. Marshalling and Unmarshalling
are built-in capabilities of the generated classes.

Using data binding ensures that constructing a model re-
sults in a model that conforms to the according schema defini-
tion. The content objects can be validated on-demand during
edition.
4



Röhl and Uhrmacher
Working with XML representations of models two types
of transformations are considered in our approach. All tech-
nologies that directly work on XML can be easily integrated.
Thus, the framework is open with respect to models that are
transformed into supported modeling formalisms via XSLT
(W3C 1999). In contrast to that, XML representations of
models not the best choice model execution. To simulate
efficiently a transformation of the content objects into an
execution optimized representation becomes necessary. Of
course, the executable representation has to be reflected by
according simulation engines.

Let us take a look at a simple example. We use XML
Schema definitions for the PDEVS formalism. However, the
focus is on how schema representations of formalisms can be
exploited for modeling and simulation tools. The approach
works analogous for other formalisms and schema languages
respectively.

Example 1 Extract of XML Schema Definition for PDEVS
models:

<xsd:complexType name="Model" abstract="true">
<xsd:attribute name="name" type="xsd:string"

use="required"/>
</xsd:complexType>

<xsd:complexType name="BasicDEVS" abstract="true">
<xsd:complexContent>
<xsd:extension base="Model">
<xsd:sequence>
<xsd:element name="inport" type="Port"

minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="outport" type="Port"

minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="BasicCoupledDEVS"
abstract="true">

<xsd:complexContent>
<xsd:extension base="BasicDEVS">
<xsd:sequence>
<xsd:element name="modelname" type="xsd:string"

minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="eic" type="Coupling"

minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="ic" type="Coupling"

minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="eoc" type="Coupling"

minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="CoupledPDEVS">
<xsd:complexContent>
<xsd:extension base="BasicCoupledDEVS">
<xsd:sequence>
<xsd:element name="model" type="BasicDEVS"

minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="BasicAtomicDEVS"
abstract="true">

<xsd:complexContent>
<xsd:extension base="BasicDEVS">
181
<xsd:sequence>
<xsd:element name="state" type="State"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="AtomicPDEVS">
<xsd:complexContent>
<xsd:extension base="BasicAtomicDEVS">
<xsd:sequence>
<xsd:element name="deltaInt"

type="xsd:string"/>
<xsd:element name="deltaExt"

type="xsd:string"/>
<xsd:element name="deltaCon"

type="xsd:string"/>
<xsd:element name="lambda"

type="xsd:string"/>
<xsd:element name="timeAdvance"

type="xsd:string"/>
</xsd:sequence>

</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Within the XML Schema Definition all model types are
derived from an abstract complex type Model with a sin-
gle name attribute that is required for a valid Model. Ba-
sicDEVS defines the interface for DEVS models based on
input and output ports. It forms the base for all DEVS mod-
els. BasicAtomicDEVS and BasicCoupledDEVS derive from
BasicDEVS and add elements according to atomic and cou-
pled DEVS models. AtomicPDEVS and CoupledPDEVS ex-
tend the basic DEVS types to non-abstract types according
to the parallel DEVS formalism. At this stage, it is only im-
portant to have a schema definition of some kind no matter
whether it is the optimal one.

Given the above schema definition JAXB 2.0 EA
(Java.net 2005) generates the Java classes depicted in Fig-
ure 2. The model classes reflect the schema structure di-
rectly. Simple XML Schema types like strings are mapped
to according Java types. Complex XSD types are mapped
to Java classes preserving dependencies and inheritance re-
lationships.

Instances of these classes can now be used to construct
and edit models. Marshalling of such a model will produce
XML data, e.g. Example 2, that validates against the Schema
definition given in Example 1.

Example 2 XML-specified model of a grid element accord-
ing to the Schema definition of Example 1.

<model xsi:type="CoupledPDEVS" name="GridElement">
<inport type="FireParcel">InNorth</inport>
<inport type="FireParcel">InSouth</inport>
<inport type="FireParcel">InWest</inport>
<inport type="FireParcel">InEast</inport>
<outport type="FireParcel">OutNorth</outport>
<outport type="FireParcel">OutSouth</outport>
<outport type="FireParcel">OutWest</outport>
<outport type="FireParcel">OutEast</outport>
<submodelname>FireModule<submodelname>
<eic fromModel="this" toPort="InNorth"

fromPort="InNorth" toModel="Fire"/>
<eic fromModel="this" toPort="InWest"

fromPort="InWest" toModel="Fire"/>
<eic fromModel="this" toPort="InEast"
5



Röhl and Uhrmacher
Figure 2: Classes Generated FromThe PDEVS Schema Def-
inition

fromPort="InEast" toModel="Fire"/>
<eic fromModel="this" toPort="InSouth"

fromPort="InSouth" toModel="Fire"/>
<eoc fromModel="Fire" toPort="OutNorth"

fromPort="OutNorth" toModel="this"/>
<eoc fromModel="Fire" toPort="OutSouth"

fromPort="OutSouth" toModel="this"/>
<eoc fromModel="Fire" toPort="OutWest"

fromPort="OutWest" toModel="this"/>
<eoc fromModel="Fire" toPort="OutEast"

fromPort="OutEast" toModel="this"/>
<submodel xsi:type="AtomicPDEVS" name="Fire">
...
<state>
<substate type="java.lang.String"
init="null">fullName</substate>

<substate type="java.lang.Integer"
init="0">phase</substate>

<substate type="java.lang.Boolean"
init="true">SpreadToNorth</substate>

<substate type="java.lang.Boolean"
init="true">SpreadToEast</substate>

<substate type="java.lang.Boolean"
init="true">SpreadToSouth</substate>

<substate type="java.lang.Boolean"
init="true">SpreadToWest</substate>

</state>
<deltaInt>...</deltaInt>
...

</submodel>
</model>

3 EXTENSIONS

Generated model classes could be used directly for construct-
ing models that adhere to the according schema definition
without bothering about XML specifics like elements and at-
tributes. Furthermore, they can be used for other activities
like visualization. However, data binding cannot solve all
problems relevant for model construction. There are likely
18
to be cases where one does not want to refrain from additional
manual coding.

By a binding framework generated classes provide a
solid ground for constructing models according to a cer-
tain schema. But, sometimes the schema language of choice
might not be able to express everything that needs to be ex-
pressed or the binding compiler might not fully support the
schema language. For example JAXB 1 does not support
type substitution and uniqueness constraints.

In the following we demonstrate the need for extended
constraint checking at the example of the classes generated
in the prior section. We will compare possible solutions to
implement additional constraint checking and finally provide
a solution based on a bunch of editor classes.

3.1 Additional Constraint Checking

Some constraints are not or difficult to express with XSD.
For example XML Schema definitions allow only basic con-
straints between sets of elements. For constructing valid
model instances additional constraints tests are required very
likely.

Let us take a look at CoupledPDEVS. Within the generated
class the getter for sub models returns a list of BasicDEVS
models. If we derive atomic and coupled models for sequen-
tial DEVS from BasicDEVS we could also add AtomicDEVS
models to the list of sub models (in addition to AtomicPDEVS
and CoupledPDEVS). This is not in conformance with the
PDEVS formalism, where coupled models should only ac-
cept PDEVS models as sub models. What we would actually
have expected here is a list of BasicPDEVS models. XML
schema definitions are not able to provide this type safety for
sub models due to the lack of multiple inheritance. Because
in our example all DEVS models already extend BasicDEVS
we cannot introduce a type PDEVS and let AtomicPDEVS
and CoupledPDEVS extend it as well.

To change the code of CoupledPDEVS manually is not re-
ally a solution. A change of the according schema and the
subsequently done generation of the Java class files would
overwrite the changes and require manual coding efforts.
Thereby a main benefit of the generative approach would
be lost. To come around we need an additional class to im-
plement the desired feature.

The most obvious solution would be to derive from Cou-
pledPDEVS and implement addModel() functions that take
appropriate arguments, i.e. AtomicPDEVS and Coupled-
PDEVS. But since Java does not support multiple class inher-
itance, we would loose flexibility in implementing the editor
classes.

A better solution is to create a further tree of classes that
corresponds to the class hierarchy of the generated classes.
Figure 3 shows editors for the generated classes representing
parallel DEVS models. Each editor is responsible for one of
the generated model classes and implements only function-
16



Röhl and Uhrmacher
Figure 3: Editors for Bound PDEVS Models

ality not already covered by the according schema defini-
tion. For example CoupledPDEVSEditor operates on Cou-
pledPDEVS and takes AtomicPDEVS and CoupledPDEVS
as arguments for sub model addition.

There are more problems with our generated classes.
When constructing coupled PDEVS models we would like
to ensure coincidence of sub model references (a set of string
values) with sub models (set of BasicDEVS models) actually
contained. Within XML Schema Definitions this could actu-
ally be modeled by creating a separated type for a submodel
and enforce the occurrence of both the name and the actual
model. But, this would change the structure of our formalism
representation. That is, the expressiveness constraints of the
schema language would introduce artifacts into the model
types. Instead, CoupledPDEVSEditor checks this within the
two addSubModel() methods.

Furthermore, for coupled PDEVS models we would like
to ensure that couplings are specified on existing sub models.
Example 3 shows how this is done by BasicCoupledDEVSEd-
itor.

Example 3 Java code that is used within
BasicCoupledDEVSEditor to check the validity of
couplings to add:

public boolean addCoupling(Coupling coupling) {
BasicCoupledDEVS model =
(BasicCoupledDEVS) model();

List<String> nameList = model.getModelname();
String fromModelName = coupling.getFromModel();
String toModelName = coupling.getToModel();

List<Coupling> couplingList = null;
if (nameList.contains(fromModelName)

&& nameList.contains(toModelName)
&& !fromModelName.equals(toModelName)) {

couplingList = model.getIc();
}
else if (fromModelName.equals("this")) {
couplingList = model.getEic();

}
else if (toModelName.equals("this")) {
couplingList = model.getEoc();

}
else {
return false;
181
}
couplingList.add(coupling);
return true;

}

3.2 Description Elements

Sometimes schema definitions are not sufficiently restrictive,
but for some cases there is simply no schema definition avail-
able. The latter is the case for the behavioral part of atomic
PDEVS models. Transition functions of atomic PDEVS
models could be arbitrary functions. However, for specifying
complete simulation models within XML, we need descrip-
tion elements for atomic models, too.

A solution is the use of a programming language. Thereby,
we are able to declare methods and require the XML data of
an according type to provide the body of these methods. Fig-
ure 4 shows the definition of an interface for atomic PDEVS
models. Now we can fill the deltaInt, deltaExt etc. slots of
AtomicPDEVS with Java code according the IPDEVS inter-
face. The drawback is that most of benefits of XML are lost
when falling back to unstructured data. Nevertheless, speci-
fication of atomic model behavior become at least possible.
They can be done according to Example 4, which shows the
implementation of the time advance function of an atomic
model.

Example 4 Java implementation of the internal transition
function within an atomic PDEVS model:

...
<deltaInt>
Integer phase = (Integer) s.getValue("phase");

if (phase.equals("prepare to smoulder")) {
s.setValue("phase", "smouldering");
return;

}
else if (phase.equals("smouldering")) {
s.setValue("SpreadToNorth", true);
s.setValue("SpreadToEast", true);
s.setValue("SpreadToSouth", true);
s.setValue("SpreadToWest", true);

s.setValue("phase", "burning");
return;

}
else if (phase.equals("burning")) {
s.setValue("phase", "inferno");

}
else if (phase.equals("inferno")) {
s.setValue("phase", "burnt out");
return;

}
else {
s.setValue("phase", "inactive");
return;

}
</deltaInt>
...

For executing such models we have to assemble a class that
implements IPDEVS according to the method bodies defined
within the elements of AtomicPDEVS. Finally, the class has
to be compiled before ready to use.
7



Röhl and Uhrmacher
Figure 4: Description Elements Needed for
Atomic PDEVS Models

We could now start to build a simulator for the bound
models. However, such simulator would be far from being
efficient due to the fact that most of the model descriptions
are declarative.

4 EXECUTABLE MODELS

For being able to efficiently execute the specified models,
declarative parts have to be transformed to an run-time op-
timized form. At this point the component-based design of
the simulation layer within James II has proven beneficial.

4.1 The Simulation System James

James II (Himmelspach and Uhrmacher 2004a) is a mod-
eling and simulation framework designed for being ap-
plicable to a wide range of applications. It has
been applied in various domains such as social sci-
ences (Ewert, Röhl, and Uhrmacher 2003), microbiology
(Degenring, Röhl, and Uhrmacher 2004), and Artificial In-
telligence (Schattenberg and Uhrmacher 2001).

The high flexibility of James II is achieved by conse-
quently applying a modular design policy. Modeling and
simulation layer are strictly separated. Starting from a par-
allel discrete event-oriented system specification, specific
functionality such as support for dynamic structures or in-
tegration of external processes can be added to a model
(Himmelspach and Uhrmacher 2004b).

4.2 Transformation of Bound to Executable Models

For transforming the bound models to models executable by
James II, we have once again to follow the type hierarchy
provided by the original schema definition. Figure 5 shows
the transformation components needed for bound PDEVS
models.

Using programming languages that provide higher order
functions, like reflection in the Java programming language,
eases the implementation of the transformation, e.g. reflec-
tion is used for instantiating the state variables of atomic
models.
18
Figure 5: Transformation of Bound Models to Executable
Ones

5 CONCLUSION

Our approach suggest to start integration of XML handling
with a schema definition of a formalism, preferably a stan-
dard. Based on data binding XML’s features can be exploited
consequently for modeling and simulation systems by gener-
ating classes that can be integrated into the target simulation
system. Checks at the editing time ensure part of the validity
of constructed models. If the schema supports every kind
of constraint checking needed for the formalisms the bare
generated classes will do. The approach is open and allows
to check for further constraints that are beyond XML’s ca-
pabilities. As we demonstrated at the example of editors for
generated PDEVS model classes, extensions can be added
with very low manual coding effort.

However, generated model classes based on schema def-
initions still contain many declarative aspects that hamper
an efficient execution, therefore a transformation into a run-
time optimized representation is recommended. At this point
we can exploit the mechanisms of James II with its different
efficient simulators.

Generally, XML data binding symbiotically brings to-
gether declarative notations with imperative, tool specific
implementations. Standard modeling formats can easily be
integrated into simulation systems and changes in the format
specification can be accounted for very rapidly on the tool
side. Combining data binding with transformations forms
the basis for the efficient execution of simulation models.

The approach has been implemented in James II and uti-
lizes the component-based simulation engine for execution.
However, it is applicable to simulation systems in general and
will prove particularly beneficial in communities that work
18



Röhl and Uhrmacher
with standard exchange formats or are interested in develop-
ing standards.

ACKNOWLEDGMENTS

This research is supported by the DFG (German Research
Foundation).

REFERENCES

Billington, J., S. Christensen, K. van Hee, E. Kindler,
O. Kummer, L. Petrucci, R. Post, C. Stehno, and M. We-
ber. 2003, June. The petri net markup language: Concepts,
technology, and tools. In Proceedings of the 24th Interna-
tional Conference on Applications and Theory of Petri Nets
(ICATPN 2003), Eindhoven, The Netherlands, June 23-27,
2003 — Volume 2679 of LNCS / Wil M. P. van der Aalst
and Eike Best (Eds.), 483–505: Springer-Verlag.

Bourret, R. 2005, April. XML data binding resources.
Available online via <www.rpbourret.com/xml/
XMLDataBinding.htm> [accessed July 11, 2005].

Brodkin, S. 2001, December. Use XML data bind-
ing to do your laundry: Explore JAXB and Cas-
tor from the ground up. Available online via
<www.javaworld.com/javaworld/jw-12-
2001/jw-1228-jaxb.html> [accessed July 11,
2005].

Degenring, D., M. Röhl, and A. M. Uhrmacher. 2004. Dis-
crete event, multi-level simulation of metabolite channel-
ing. BioSystems 75 (1-3): 29–41.

Ewert, U. C., M. Röhl, and A. M. Uhrmacher. 2003. Agent
based computational demography, Chapter What good are
deliberative interventions in large scale disasters? Ex-
ploring the consequences of crisis managment in pre-
modern towns with agent-oriented simulation. Physica
Verlag (Springer).

Filippi, J.-B., and P. Bisgambiglia. 2002. Enabling large scale
and high definition simulation of natural systems with vec-
tor models and JDEVS. In Proceedings of the 2002 Winter
Simulation Conference, 1964–1970.

Fishwick, P. A. 2002. Using XML for simulation modeling.
In Proceedings of the 2002 Winter Simulation Conference,
616–622.

Harold, E. R. 2002. Processing XML with Java. Pearson Ed-
ucation.

Himmelspach, J., and A. M. Uhrmacher. 2004a. A
component-based simulation layer for JAMES. In Proc. of
the 18th Workshop on Parallel and Distributed Simulation
(PADS), May 16-19, 2004, Kufstein, Austria, 115–122.

Himmelspach, J., and A. M. Uhrmacher. 2004b, October.
Processing dynamic PDEVS models. In Proceedings of
the 12th IEEE International Symposium on MASCOTS,
ed. D. DeGroot and P. Harrison, 329–336. Volendam, The
Netherlands: IEEE Computer Society.
18
Hong, K. J., T. G. Kim, and I. S. Kwon. 2000. DEVSIF: a rela-
tional algebraic DEVS intermediate format. In AIS’2000.
Tucson, Arizona.

Java.net 2005. JAXB RI 2.0 early access.Available online via
<https://jaxb.dev.java.net/jaxb20-ea>
[accessed July 11, 2005].

McLaughlin, B. 2000, December. Validation with Java
and XML Schema, part 4. JavaWorld. Available online
via <www.javaworld.com/javaworld/jw-12-
2000/jw-1208-validation4.html> [accessed
July 11, 2005].

McLaughlin, B. 2002, May. Why data
binding matters. Available online via
<www.onjava.com/pub/a/onjava/2002/05/
15/databind.html> [accessed July 11, 2005].

MoBIES 2004, February. Hybrid Systems Inter-
change Format (HSIF). Available online via
<www.isis.vanderbilt.edu/Projects/
mobies/download.asp> [accessed July 11, 2005].

Ort, E., and B. Mehta. 2003, March. Java Ar-
chitecture for XML Binding (JAXB). Available
online via <java.sun.com/developer/
technicalArticles/WebServices/jaxb>
[accessed July 11, 2005].

Schäfer, A. 2004, March. Visualisierung und XML-
Darstellung von DEVS-Modellen. Master’s thesis, Uni-
versität der Bundeswehr München.

Schattenberg, B., and A. M. Uhrmacher. 2001, February.
Planning agents in James. Proceedings of the IEEE 89
(2): 158–173.

SISO 2005, March. Simulation interoperability stan-
dards organization’s (SISO). Available online via
<www.sisostds.org> [accessed July 11, 2005].

Sun 2005. Java architecture for xml binding (JAXB). Avail-
able online via <java.sun.com/xml/jaxb> [ac-
cessed July 11, 2005].

Tolk, A. 2004, December. XML mediation services utiliz-
ing model based data management. In SCS Winter Simula-
tion Conference, ed. R. Ingalls, M. Rossetti, J. Smith, and
B. Peters. Arlington, VA.

W3C 1999, November. XSL transformations (XSLT) version
1.0. Available online via <www.w3.org/TR/xslt>
[accessed July 11, 2005].

Wang,Y.-H., andY.-C. Lu. 2002.An XML-based DEVS mod-
eling tool to enhance simulation interoperability. In ESS
2002.

Ware, T. K. 2005, March. LMX: W3C XML Schema
to C/C++ data binding tool. Available online via
<www.tech-know-ware.com/lmx> [accessed July
11, 2005].
19

http://www.rpbourret.com/xml/XMLDataBinding.htm
http://www.rpbourret.com/xml/XMLDataBinding.htm
http://www.javaworld.com/javaworld/jw-12-2001/jw-1228-jaxb.html
http://www.javaworld.com/javaworld/jw-12-2001/jw-1228-jaxb.html
https://jaxb.dev.java.net/jaxb20-ea
http://www.javaworld.com/javaworld/jw-12-2000/jw-1208-validation4.html% 
http://www.javaworld.com/javaworld/jw-12-2000/jw-1208-validation4.html% 
http://www.onjava.com/pub/a/onjava/2002/05/15/databind.html
http://www.onjava.com/pub/a/onjava/2002/05/15/databind.html
http://www.isis.vanderbilt.edu/Projects/mobies/downloads.asp
http://www.isis.vanderbilt.edu/Projects/mobies/downloads.asp
http://java.sun.com/developer/technicalArticles/WebServices/jaxb
http://java.sun.com/developer/technicalArticles/WebServices/jaxb
http://www.sisostds.org
http://java.sun.com/xml/jaxb
http://www.w3.org/TR/xslt
http://www.tech-know-ware.com/lmx/


Röhl and Uhrmacher
AUTHOR BIOGRAPHIES

MATHIAS RÖHL holds a MSc in Computer Science from
the University of Rostock. His research interests are on
component-based modeling and agent-oriented simulation.
He is currently a research scientist at the Modeling and Simu-
lation Group at the University of Rostock. His e-mail address
is <mroehl@informatik.uni-rostock.de> and
his Web address is <http://www.informatik.uni-
rostock.de/˜mroehl>.

ADELINDE M. UHRMACHER is an Associate Profes-
sor at the Department of Computer Science at the Univer-
sity of Rostock and head of the Modeling and Simulation
Group. Her research interests are in modeling and sim-
ulation methodologies, particularly agent-oriented model-
ing and simulation and their applications. Her e-mail ad-
dress is <lin@informatik.uni-rostock.de> and
her Web page is <http://www.informatik.uni-
rostock.de/˜lin>.
1820

<mroehl@informatik.uni-rostock.de>
<http://www.informatik.uni-rostock.de/~mroehl>
<http://www.informatik.uni-rostock.de/~mroehl>
<lin@informatik.uni-rostock.de>
<http://www.informatik.uni-rostock.de/~lin>
<http://www.informatik.uni-rostock.de/~lin>

	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print



