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ABSTRACT 

Online simulation is a relatively new control strategy for 
short-term decision-making for the control and manage-
ment of processes in existing systems. In contrast to tradi-
tional “non-terminating” simulation, online simulation can-
not use a transient phase to tune the models because the 
simulation models need to run very quickly and also need 
to deliver results right from the start. In this context, the 
initialization of such online simulation models represents a 
special problem. It requires mapping between the system-
describing variables in the model and the available data in 
the real system. This paper examines two different meth-
ods of initialization. Special emphasis is placed on explain-
ing the approach of parent model synchronization. Both 
initialization approaches are transferred to the context of 
analyzing and forecasting pedestrian flows in a public 
building. A first prototypical implementation in SLX is 
also briefly presented. 

1 MOTIVATION 

Decision support with a long time horizon is one of the 
classic applications of simulation models. Different pa-
rameters of planned systems have to be evaluated based on 
the results of simulations and planners endeavor to opti-
mize these parameters. In this standard application the 
simulation models are offline, i.e. the models are not di-
rectly coupled with the real system. Often, the simulation 
models developed are not used after the decision-making 
process. 

By contrast, short time decisions have to be made con-
stantly when controlling and managing processes of exist-
ing systems. Nowadays, the complexity of such systems is 
increasing as the need to efficiently control and manage 
them increases. There are two main classes of control 
strategies: Simulation-based strategies and strategies based 
on heuristics rules and mathematical equations. Simulation 
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based on the current state of the real system can provide 
decision makers higher quality support.  

Such simulation-based online control systems require: 
  
• A validated simulation model of the real system in 

which the level of detail of the simulation model 
must be equivalent to structures in the real system. 
This particularly applies to control strategies used 
or the incorporation of human decision making. 

• An online connection of the simulation model 
with the real system, i.e. the inputs from the envi-
ronment are identical for the real system and the 
model. 

• The simulation including multiple different runs 
must be executed in a short timeframe because the 
results of the simulation(s) have to be available 
before a certain deadline. The simulation engine 
has to be fast enough to deliver the results in a pe-
riod of time that allows using the results in the 
subsequent decision process. 

 
A special problem in this context is the initialization of 

online simulation models. It requires mapping between 
system-describing variables in the model and the available 
data in the real system. Different problems exist where, for 
example, the real world measured data is incorrect or 
measuring the value for the model variable in the real sys-
tem is problematic. Errors resulting during the initialization 
process have to be minimized. Normally, the consequences 
of such deficiencies diminish as the duration of the simula-
tion increases. However, in contrast to traditional “non-
terminating” simulation, online simulation cannot use a 
transient phase to tune the model because the simulation 
models need to deliver results right from the start.  

This paper describes methodologies for initializing 
online simulation models in which the measured online 
data is either incorrect or unavailable. Section 2 of this pa-
per examines related work on online simulation and section 
3 explains different initialization methods. Section 4 de-
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scribes a case study in which two of the methods described 
were applied. Section 5 highlights some aspects of imple-
mentation in the simulation language SLX. A summary 
and outlook in section 6 finish the paper.  

2 RELATED STUDIES ON ONLINE-
SIMULATION 

Online simulation designates a category of simulation ap-
plications in which the simulation model is connected 
online with the reality to be simulated and the results of the 
simulation are available before a certain time limit expires. 
(Davis 1998). 

The uncertainty of the simulated results correlates with 
the length of the simulation. The greater the difference be-
tween the forecast horizon and the current time, the more 
flawed the results are. 

A typical area of application for online simulation 
(also called real-time simulation) is proactive decision sup-
port for scheduling problems in manufacturing systems 
(Katz and Mannivannan 1993; Harmonsky 1995; Sivaku-
mar 1999; Gupta, Sivakumar, and Sarawgi 2002; Chong, 
Sivakumar, and Gay 2002; Glinsky and Wainer 2002). 
This scheduling practice is also known as real-time sched-
uling. Additional areas of application are the simulation of 
street traffic (Mazur, Chrobok, and Hafstein 2004) and the 
simulation of pedestrian flows in public buildings (Hanisch 
et al. 2003).  

One of the fundamental tasks in online simulation is 
the online supply of the simulation model with the data 
from the real system. At the actual start of the simulation, 
the simulation model must reproduce the state of the real 
system. In a simple case, the states of all objects in the 
simulation model can be matched with the data from real-
ity. The condition of data availability and correctness is not 
given for all applications, yet the methods for initializing 
simulation models described in the literature require these 
conditions. Data warehouses and factory databases make 
data available for solving scheduling problems in manufac-
turing systems. Fowler and Rose 2004 point out that a 
chief problem is the availability of on-time and correct data 
from the factory.  

There are other applications such as traffic and pedes-
trian flow simulations in which collecting the required data 
is not possible or the collected data is incorrect.  

Successful application of online simulation requires 
possibilities to initialize the models with sufficient preci-
sion. The longer the forecast time is, the less influence in-
sufficient initialization has. Classic non-terminating simu-
lation incorporates this fact in the appropriate procedures. 
By contrast, online simulation has a brief forecast period, 
i.e. insufficient model initialization inevitably leads to an 
erroneous forecast. Users must accept that the results are 
erroneous. Suitable methods can be used to reduce the 
magnitude of the error. 
17
The following presents the problems of initialization 
in more detail and proposes different methods for initiali-
zation. 

3 INITIALIZATION METHODS FOR ONLINE 
MODELS  

In the classical simulation approach, the simulation model 
is initialized with “empty” and “idle” and started. Depend-
ing upon the kind of simulating system, a transient phase 
may be used to adjust the statistics. Consider a classical 
example, the simulation of counter operations in a bank. If 
the simulation time is designated with t, the model will be 
initialized with “empty” and “idle” at the time t0. Custom-
ers stream into the bank, are served at the counters and 
leave the bank afterward. At a certain point in time tE the 
doors of the bank are closed and the simulation terminates 
once the last customer has left the bank. 
 The online simulation starts at the time tS, the follow-
ing applying: t0 < tS < tE. 

In online simulation, the simulation model certainly 
can not be initialized and started as “empty” and “idle” 
since customers will already be in the bank. The system 
variables of the model have to be assigned initial values. 
These values must be taken over from the real system. The 
real data and the system variables have to be mapped so 
that the model can be started as a reproduction of the real 
system with its current state. 

The real data of the system can be accessed in two 
ways: Direct measurement by means of sensors or access 
of information systems. The utilizable data is assigned two 
characteristics: Availability and quality. 

The characteristic of availability specifies whether the 
data from the material system can be determined or meas-
ured at all. The following values are distinguished here: 
Complete and incomplete availability. When availability is 
complete, all necessary data is present and can be com-
puted from existing data on the basis of context-dependent 
rules. By contrast, when availability is incomplete, not all 
necessary data can be provided, acquired or computed. 

The second characteristic of quality describes the cor-
rectness of the data. A difference is made between the at-
tributes of measuring errors and up-to-dateness. Measuring 
and acquisition errors are unavoidable concomitants of 
data acquisition. The magnitude of the error depends on the 
measuring and collection devices employed and the appli-
cations. For example, the results from recording persons 
waiting at a ticket counter contain more errors than data on 
machine parts inventories derived from an information sys-
tem. The other attribute of up-to-dateness specifies the 
value of the difference between the time of model initiali-
zation and the time of measurement. This plays an impor-
tant role in the provision of data in information systems. 
When the update frequency of this data is low, it does not 
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reflect the current state of the real system. (Fowler and 
Rose 2004) 

The ideal case is a combination of complete data 
availability and high data correctness. Established ap-
proaches to online model initialization presume the ideal 
case. Combinations of incomplete availability of poor qual-
ity data are more typical. This paper abstracts the lack of 
quality of the data, i.e. it is assumed that the data is accu-
rate and time-equivalent at the time of retrieval. Other 
studies will have to examine the incorporation of the char-
acteristic of data quality and the determination of its effects 
on the simulation results. 

Two different methods can be applied to initialization: 
 
• Synchronization of a parent model with the real 

system and creation of an initialized child model, 
and 

• Model generation including initial settings based 
on existing data. 

 

3.1 Synchronization of a Parent Model 

A so-called parent simulation model is synchronized with 
available data. The parent model reflects the real system. 
One or more child models can be created at dedicated time 
points. These child models inherit all system variables in-
cluding their values from the parent model. The simula-
tion-based forecast is executed on one or more of these 
child models. Each child model has to run as fast as possi-
ble meaning it has to operate with a time advance mecha-
nism different than its parent’s.  

Use of this synchronization method of a parent model 
requires a special simulation software functionality: Crea-
tion of a child model. In general, not all simulation soft-
ware is capable of creating a copy of the running model 
and executing this copy with a different time advance 
mechanism as an independent process on the same or on 
another computer. Two possibilities for creating child 
models exist. Either the child models run as independent 
processes of the operating system or the child models as 
part of the parent are only emulated inside the parent 
model and do not start a new operating system process. 

Figure 1 shows the first approach of using different 
operating system processes. This approach has the advan-
tage that different forecasts can be executed simultane-
ously. The simulation system eM-plant supports such an 
approach. 

The other possibility is to emulate the child model in-
side the parent model. This approach requires the simula-
tion software be able to roll back the simulation time and 
switch between different time-advance mechanisms. The 
same capabilities are required to execute so-called nested 
simulations. The simulation system SLX and the old simu-
lation language SIMULA have features that can emulate 
17
such a child model. The disadvantage of this approach is 
that no more than one child model can run at one time. 
Each has to be executed sequentially. The SLX features 
utilized are described in section 5 of this paper. 
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Figure 1: Child Model Execution as Different Parallel 
Processes of the Operating System 

 
So far the possibilities for synchronizing the parent 

model with the real system have not been described. Basi-
cally, permanent and requested synchronization are distin-
guished. When synchronization is permanent, the parent 
model is continuously updated with received new values 
for model variables representing the state of the real world-
real system variables. Therefore, a time advance mecha-
nism proportional to real-time has to be implemented for 
the parent model. For a simulation-based forecast, a child 
model of this parent model has to be created on demand. 
Figure 2 shows the relations between parent model and 
generated child. 
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Figure 2: Child Model Creation and Execution with Per-
manent Synchronization of a Parent Model 
 

Other applications also exist in which the underlying 
data sources are not permanently updated. The information 
system is updated only every five minutes, for example. In 
such a case, the real world data can no longer be continu-
ously synchronized with the parent model and thus has to 
be synchronized upon request. This is requested synchroni-
zation. The parent simulation model “sleeps” until it is 
time to update the data source occurs or a request arrives. 
Thereupon, the parent model is updated, initiates the crea-
tion of one or more child models and starts each of the 
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child models. Afterward, the parent model returns to its 
dormant state until a new update or request arrives. Figure 
3 shows the basic principle with one child model. 
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Figure 3: Child Model Creation and Execution with Re-
quested Synchronization of a Parent Model 

 
If the real time at which the measured data from inter-

val k is available and at which the forecast should be 
started is designated with TNOW and the current time of the 
simulation model is designated with ti, then the following 
applies: TNOW  >  ti . 

The parent model simulation starts at real time TNOW 
with a time ti and runs until the simulation time t has 
reached the value of TNOW.  Including the measured values 
for the inputs from the interval k, a new model state is 
computed in the mode “as fast as possible”. Incorporating a 
comparison with the measured or computed values of the 
real system from the interval k, the model variables are 
then modified based on the model. No generally accepted 
correction instruction can be specified to do this. This cor-
rection has to be made allowing for the conditions specific 
to the model. 

Figure 4 shows the correlation between real-time T 
and simulation time t in the parent model and in the child 
model at each synchronization request. 
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ti
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Figure 4: Correlation between Real-time T and Parent 
Model Simulation Time t with One Child Model 
 

Mannivan and Banks (Mannivan and Banks 1991) also 
employ this synchronization approach without child model 
creation for exception detection. 
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3.2 Model Generation 

Model generation is the other approach for initializing 
online simulation models. This approach is very similar to 
the classical simulation application: The online simulation 
model is created, initialized and started. This approach can 
be implemented very easily. Figure 5 shows the principle 
behind this approach.  
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Figure 5: Model Generation including Initial Settings 
based on Existing Data  
 

3.3 Comparison of Both Methods Allowing for the 
Incompleteness of the Data 

The advantage of the model generation approach is clearly 
its simple implementation. Most simulation packages 
available can create simulation models based on formatted 
files. The critical disadvantage of this approach is that the 
data available must be complete. Missing data must be 
computed or assumed. The error in these computations or 
assumptions correspondingly affects the validity of the 
forecast. 

By contrast, the reaction to the incompleteness of the 
data can be better when the synchronization approach is 
used for certain applications. A prerequisite is that the 
simulation model is completely synchronized with reality 
at a real time T0. Thus, for example, it could be assumed 
that, if all entrances to a subway station are closed, no per-
sons will be in the station. If a simulation is supposed to be 
started at the time Ti > T0 then the model will be initialized 
based on the state at the time Ti-1 and the available data on 
the real system. To estimate the missing data, two sources 
can be reverted to, the last state of the model and the real 
data. In view of the integration of the “simulated” knowl-
edge about the system at the time Ti-1 better quality is 
achieved when the initialization is at the time Ti. This 
knowledge is dispensed with in model generation ap-
proach. 

Both approaches are presented in the following case 
study. 

4 CASE STUDY 

University of Magdeburg and the Fraunhofer Institute IFF 
Magdeburg jointly developed a case study for online simu-
lation. The real system can be compared with a train sta-
tion concourse entered by persons some of whom then 
make use of a particular service and then leave the con-
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course again. A portion of the persons does not make use 
of any service. Sensors are installed at the system’s points 
of entry and exit. Based on direction, these counting sen-
sors detect the number of persons who have gone through 
in one interval (5 minutes). Persons who make use of the 
services dwell in the service area in the concourse. The 
simulation model is used to predict the density of persons 
in the service area. Anytime the limit value of person den-
sity is exceeded, this should be indicated. 

Figure 6 shows the simplified structure of the real sys-
tem.  
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Figure 6: Simplified Real System Structure 

4.1 Formal Description 

The following has been defined: 
 
• n the total number of gates, and i the index for 

each gate 
• m the total number of time intervals and j the in-

dex for each interval 
• Ii,j the number of persons entering through gate i 

in interval j, 
• Oi,j the number of persons exiting through gate i 

in interval j 
• Cj the number of persons in the system in interval 

j (contents) 
• CPj the total number of persons on the paths in in-

terval j  
• CSj the total number of persons on the service 

area in interval j,  
• CWj the total number of persons remaining in the 

service area in interval j, and  
• CAj the total number of persons interacting with 

the service facilities in interval j.  
 

The goal of the simulation is to forecast the total num-
bers of persons in the system and the number of persons 
17
waiting on the basis of the state of the real system at the 
real time T and further incoming persons to be anticipated. 

The values for Cj und CSj for the intervals j have to be 
predicted, the time Tj for these intervals being greater than 
the real time TNOW.  

The dependencies are: 
 

Cj = CPj + CSj 
CSj =  CWj + CAj. 

 
The simulation model itself is based on a simple struc-

ture. Every person is simulated as an entity and every per-
son entering the system is assigned the path system. The 
appropriate path through the system is selected on the basis 
of distribution functions derived from historical data. 

4.2 Offline Input Data 

Offline data designates data and information that do not 
describe the current state of the system but are necessary 
for the simulation. The following different kinds of offline 
data were employed for the case study: 

 
• Arrival rate at the points of entry  
• Departure rate at the points of departure 
• Service rate on the service area 
• Speed of the persons 
• Distribution of the persons at the different 

destinations 
• Path network with path lengths 

 
Arrival rate at the Points of Entry. Counting sensors 
measured entries of individual persons at the points of en-
try. This historical data was aggregated to an arrival rate of 
persons per 5 minutes. The arrival rates at the points of en-
try exhibit typical non-stationary behavior. Figure 7 shows 
the number of persons measured per 5 minutes who en-
tered the concourse through a point of entry over a 24 hour 
period. 
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Figure 7: Arrival Rate at One Gate 
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This non-stationary behavior was approximated by 
piecewise-constant arrival rates.  

 
Departure Rate at the Points of Departure. The depar-
ture of individual persons from the concourse was likewise 
measured with counting sensors installed above the points 
of departure. The number of persons in the system can be 
calculated from the total sum of persons arrived minus the 
total sum of persons that left the system. Figure 8 shows 
the number of persons in the system over a period of 24 
hours. This is typical curve for the real system.  
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Figure 8:  Number of Persons in the System (Calculated). 

 
Service rate in the service area 

The service rate (SR), the number of persons that can 
be served in one time unit, cannot be measured directly. 
Therefore, a service level (SL) is estimated based on his-
torical data. This service level describes the probability 
that a person will make use of the service. The quantities of 
persons departing and an assumption about the service 
level of the system can be used to estimate the service rate 
in the service area. This time-dependent service rate is used 
for the simulation. 

 
If the following are designated thusly: 

 
• SR j  the service rate at interval j, 
• O●j the number of persons that have exited the 

concourse through any door during interval j, and 
• SL the service level 
 

then the service rate can be calculated for interval j by us-
ing 

 
 .*, SLOSR jj •=  (1) 

 
Speed of the Persons. A triangular distribution of 
(0.5,1.0,1.5) m/s is assumed for the speed of the persons. 
 
Distribution of the Persons at the Destinations. The dis-
tribution of the persons at a destination cannot be meas-
18
ured. Optimization calculations were used to determine the 
percentage distribution of entering persons with respect to 
the reachable destinations.  
 
Path network with Path Lengths. The persons’ paths and 
the corresponding path lengths were determined by using 
the local conditions and were quantified. 

4.3 Online Data for Model Initialization  

At the start of the forecast, the simulation model has to be 
initialized. Two problems arose when initializing the 
model:  
 
• Not every model variable can be assigned a corre-

sponding measured value from the real system. 
• The measured valued contain measuring errors.  
 

Defining k as the interval that corresponds to the cur-
rent time and at which the simulation should start, then 
only the following variables (see table 1) can be measured 
or computed: 
 

Table 1: Measurable and Computable Model Variables 
Model variables Measurable Computable 

Ij,k yes - 
Oj,k yes - 
Ck No Yes 

CSk No No 
CPk No No 
CWk No No 
CAk No No 

 
Only two model variables can be measured directly, 

the number of incoming and the number of exiting persons 
for any gate in last interval.  

That means, the number of persons in the system can 
be computed based on both measurable variables.  

If the following are designated thusly: 
 
• I●j the number of persons that have entered the 

concourse through any door during interval j and 
• O●j the number persons that have exited the con-

course through any door during interval j, 
 

then the number of persons Ck still in the system at the end 
of interval k can be calculated by using  

 
 .

1 1
∑ ∑

= =
•• −=

k

j

k

j
jjk OIC  (2) 

 
The values necessary for the model variables of num-

ber of persons from the service area CSk, number of per-
sons on the paths CPk, number of persons in the waiting 
00



Hanisch, Schulze, and Tolujew 

 
area CWk and number of persons in the service area CAk 
can be neither computed nor measured.  

Section 5 demonstrates how the assumptions for these 
values in initialization were arrived at. 

4.4 Errors in Measurement 

All measured valued are erroneous. In this case-study it 
was possible to estimate an error function for each of the  
measuring devices and all measured values were respec-
tively adjusted before they were stored in the data base. 
Hence, all measuring data can be considered correct. 
 

5 IMPLEMENTATION IN SLX 

The simulation system SLX was used to implement the 
methods for initialization described in section 3. 

5.1 Initialization with Model Generation 

In this form of initialization, the model variables are initial-
ized for the interval k with the available measured data or 
the computable data. The remaining model variables are 
initialized based on model-dependent historical observa-
tions or assumptions. The following was assumed for vari-
ables that are not measurable and not directly computable: 

 
• CPk – number of persons on the paths equals zero 
• CSk – number of persons in the service area equals 

the number of persons in the system Ck   
• CAk - total number of persons interacting with the 

services equals 1 
• CWk  - number of persons waiting equals the dif-

ference of CSk - CAk  
 

The forecast simulation starts on the basis of these 
model initialization parameters. 

5.2 Initialization with Parent Model Synchronization 

The “requested” synchronization approach is used for syn-
chronization. The update rhythm of the measured data ne-
cessitates this. The update interval, i.e. the time between 
two updates, is 5 minutes, thus ruling out permanent syn-
chronization approach for this case study. 

The parent model receives a request for synchroniza-
tion at the real time TNOW. This time TNOW marks the end of 
the interval k. The parent model reflects the current state of 
the interval k-1. The current simulation time in the parent 
model is ti-1. The simulations starts and uses as input data 
the measured values for the number of persons that entered 
through corresponding entrances in the interval k. The 
simulation is terminated when the current simulation time t 
has reached the value of TNOW. 
18
Taking all the measured data and known conditions in 
the real system into account, the values of variables com-
puted by means of simulation then have to be corrected if 
necessary. The correction for the variable of the number of 
persons in the service area is shown can be cited as an ex-
ample. 

If the following are designated thusly: 
 
•  SIM

kC the simulated number of persons in the 
system for interval k,  

•  MEAS
kC the number of persons in the system for 

interval k computed from the measured data, 
•  SL  the service level (probability that a person 

uses this service) 
•  SIM

kCS the simulated number of persons on the 
service area for interval k and  

•  CORR
kCS the corrected number of persons in the 

service area for interval k, 
 

then the corrected number can be calculated by using 
Equation 3: 

 
 ( )MEAS

k
SIM
k

SIM
k

CORR
k CCSLCSCS −+= *  (3) 

 
The simulated number corrected by the proportional 

difference from the simulated total number minus the com-
puted total number of persons for the interval k produces 
the corrected number used for initialization. If, in the simu-
lation, “too many” persons in the system were calculated, 
then, when the inflow of persons is correctly simulated, the 
outflow of persons has to be corrected. In this case, persons 
are removed from the service area. In the case that are not 
enough persons are in the system, additional persons are 
inserted to the service area. 

Analogous corrections were made for the other vari-
ables. These correction algorithms were implemented in 
parent model. 

Since the simulation system SLX does not have the 
capability to generate an external child model, the child 
model was emulated within the parent model. The parent 
model is operated with a combination of two different time 
advance mechanisms. 

The SLX simulation system has options for storing the 
current model state (checkpoint) and resetting a model to a 
stored state (restore). The first applications of check-
point/restore technology go back to the beginnings of 
simulation when the simulation runs lasted much longer 
than hardware and operating systems could run without in-
terruption or crashes. When a simulation was interrupted, 
an available checkpoint could be reverted to. 

This technology is now used to emulate a child model. 
After the parent model has been synchronized, a check-
01
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point is set at the time and the parent model switches into 
the model range of the child model. The simulation runs is 
executed until the end of the forecast period, the results are 
evaluated and the model is reset to the model state stored 
in the checkpoint. If necessary, several independent runs 
are executed. 

After the forecasts with the child model have been 
completed, the model range of the parent model is reset. 
The parent model sleeps until it receives another request 
for synchronization. Figure 9 illustrates the main flow in-
side the SLX-Implementation based on UML activity dia-
grams. 
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Figure 9: Main Loop in the SLX-Implementation 
 

The emulation approach requires the simulation-based 
forecasts with child model to be terminated before the par-
ent model receives a new request for synchronization. 

Figure 10 illustrates the real and the simulated pro-
gression of the system variables of persons in the service 
area. The thick line describes the progression up to the start 
of a forecast. The thin lines indicate different forecast pro-
gressions. The differences result from the application of 
different random numbers for the forecast. 

6 SUMMARY AND OUTLOOK   

Online simulation provides a way to improve the quality of 
online controls and simulation-based early warning sys-
tems. The online simulation models must reflect the cur-
rent state of the system to be simulated. On the one hand, 
18
Measured and Forecasted Number of Persons in the 
Service Area

0

50

100

150

200

250

300

350

0:00 6:00 12:00 18:00 0:00

Time

 
Figure 10: Measured and Forecasted Number of Persons in 
the Service Area 

 
in many cases, not all the variables used in the models can 
be initialized with measurable or computable values from 
the real system. On the other hand, the measured values 
contain measuring errors or the measured values are not 
up-to-date. Since transient phases have to be omitted to ad-
just the statistics, incorrect initialization of the online mod-
els directly affects the findings derived. Possibilities have 
to be sought to keep the deficiencies during initialization as 
slight as possible.  

To realize this goal, the synchronization approach is 
recommended during initialization. This approach incorpo-
rates the “knowledge” implicit in a model and allows 
qualitatively better initialization. This advantage comes at 
the cost of more effort for implementation. 

A similar approach of the implementation shown in 
this paper can be transferred to more complex systems 
also. However, no generally accepted correction instruction 
can be specified to do this. The correction are specific to 
conditions of the model.  

Other studies will examine the problem of allowing 
for measuring errors in online data as well as the efficient 
organization of the management of parallel child models. 
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