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ABSTRACT 

Recent advances in middleware technologies such as grid 
computing have provided IT architects with the ability to 
design infrastructures that are more flexible and less dedi-
cated to specific application workloads. However, the ca-
pabilities of design and analysis tools that IT architects use 
have not kept pace. In this paper, we describe our progress 
in developing an IT infrastructure modeling environment 
that supports an extensible set of analysis tools. We focus 
in particular on a discrete-event simulator for analyzing the 
performance of computational workloads that are running 
on a grid. The unique modeling requirements and chal-
lenges presented by the grid computing infrastructure do-
main are discussed. Efficient event queue management and 
other simulation techniques to address these challenges are 
developed. Finally, we position the role of simulation 
analysis in the larger context of estimating the business and 
financial returns from grid computing investments. 

1 INTRODUCTION 

Grid computing technology has made it technically feasi-
ble to “virtualize” IT resources by removing the dedicated 
linkage between application software workloads and the 
hardware assets, such as servers, data storage and net-
works, required for processing them. At the same time, 
businesses are becoming more interested in understanding 
how their IT infrastructure can support various other as-
pects of an adaptive, on-demand operating environment, 
such as being responsive towards unanticipated surges in 
workload volumes and being resilient to unexpected out-
ages of individual servers, network links, or entire loca-
tions. These technical objectives are coupled with the busi-
ness need to shift from reliance on fixed capacity (and 
therefore cost) assets to a more variable cost structure for 
processing IT workloads. 

These technology advances and business requirements 
have outpaced the traditional IT modeling, design, and 
evaluation tools that are currently in use. IT consultants, 
architects and their clients are therefore unable to clearly 
visualize, estimate, and quantify the technical and financial 
17
impact of these grid and other on-demand initiatives. For 
example, as IT resources become more flexible and less 
dedicated to specific applications, we need the capability to 
design schedulers to route workloads to resources and in-
corporate their behavior into planning for the optimal re-
source capacity required over time. To estimate the level of 
responsiveness and resiliency in an infrastructure design, 
we need the capability to simulate random variability and 
shocks in workload demands and resource availabilities. 
To estimate the financial impact of these on-demand char-
acteristics, including variable cost structures that are 
pegged to the usage of infrastructure rather than their own-
ership, we also need to embed financial analysis capabili-
ties in these design and modeling tools. 

We have developed an infrastructure modeling envi-
ronment named IBM Grid Value at Work to provide these 
analysis capabilities. Figure 1 shows its architecture. A set 
of analysis tools are plugged in to a common infrastructure 
model specified in XML. These tools can interact and be 
operated through a unified user interface. 

 

 
Figure 1: IBM Grid Value at Work 

 
The architecture also allows independent development 

of new analysis capabilities, to be used in conjunction with 
the existing analyses or in a standalone manner. 
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In this paper, we focus on the performance simulation 
capability in IBM Grid Value at Work. (Note: This paper 
describes the issues with simulation of a grid and should 
not be confused with running parallel simulations on a 
grid.) In the following section, we describe the grid com-
puting environment to be simulated and identify the simu-
lation requirements. Section 3 assesses the ability of exist-
ing simulation tools to address these requirements. Section 
4 describes our simulator design, which addresses the gaps 
in existing simulation tools with regard to the grid simula-
tion requirements. In Section 5, we analyze the perform-
ance of our design with respect to its scalability to large 
simulation models. We conclude in Section 6, by describ-
ing the role of the simulator in the larger context of esti-
mating the business and financial returns from grid com-
puting investments. 

2 THE GRID COMPUTING ENVIRONMENT 

Grid computing (Foster et al. 2002) enables the aggrega-
tion of distributed computing and data resources, that are 
heterogeneous and owned by multiple administrative do-
mains, into a large, integrated computing system that pro-
vides seamless access to multiple, redundant, and disparate 
resources. Applications that benefit from grid are those that 
have inherent parallelism, require high throughput vol-
umes, or need to integrate data across multiple sources. 

Figure 2 shows an operational perspective of a gener-
alized grid environment. 

 
Figure 2: Operational Flows in a Grid Environment 
 

Application workloads that contain a set of tasks to be 
processed by the resources on the grid are submitted to re-
source brokers (or managers) that serve as “gateways” to 
the grid. In general, there may be multiple such brokers in 
the grid environment. Each broker has a scheduling policy 
that dictates how to assign the tasks in the workload to the 
available resources on the grid. As the figure shows, a bro-
ker may be able to submit tasks to only a subset of all re-
sources on the grid (shown by the dotted ovals). All the re-
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sources need not be of the same type (unlike clusters) and 
could be of heterogeneous hardware platforms and operat-
ing systems. The availability of a resource on the grid may 
be dictated by a calendar based schedule (shown by the 
clock icons). Resource availability may also be influenced 
by dynamic provisioning. Provisioning is the automated 
capability of configuring a resource to be able to process 
tasks of a certain type. For example, a server may be set up 
with application server software to process a certain type 
of online transactions. Dynamic provisioning (also known 
as orchestration) uses policies to determine when a re-
source should be switched over from being able to process 
tasks of one type to another, e.g., from a web server to an 
application server (Appleby et al. 2004). 

The simulation of a grid environment requires the 
modeling and implementation of several features: 

 
• Multi-tasking IT resources: Processors, database 

servers, network links, and data storage devices 
are all pre-emptive multi-tasking resources. Tasks 
submitted to such a resource goes immediately to 
the processing queue containing all the other tasks 
that are being processed by the resource. Each of 
these tasks get processed by the resource for a 
pre-defined time-slice and then put back to the 
processing queue (if not waiting for other re-
sources). As a result of multi-tasking, the submis-
sion of a new task can change the completion time 
of existing tasks being processed by the resource. 
A detailed simulation of the task management 
within each resource would be too time consum-
ing when considering grid environments with 
hundreds of resources simulated for the duration 
of weeks. Instead, when a new task is submitted to 
a resource, the simulator should perform a good 
approximation of the multi-tasking behavior by 
re-estimating the completion time of all tasks be-
ing processed by that resource. 

• Job decomposition: Each job from a workload 
may be composed of multiple resource require-
ments. We use the terminology of a “task” to de-
fine a single resource requirement within a job. 
Each resource requirement may be for a specific 
configuration of a server or a database. For exam-
ple, a job may be composed of three tasks: get 
data from a customer database, perform data-
mining on a compute server, and add the results to 
a sales database. Job decomposition is important 
to model because grid designs typically focus on 
providing a certain type of resource (e.g., compute 
servers) on a grid and overlook the impact on 
other resources (e.g., databases, network band-
width) needed by the job. 

• Task parallelization: Each task in a job (decom-
posed as described above) may be parallelizable. 
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This is often the case with grid workloads. Paral-
lelization could be of two types: “Embarrassingly 
parallel” tasks can simply be split up into as many 
chunks as available resources. The second type of 
parallel tasks are more constrained and consist of 
a specific number of parallel paths, regardless of 
the number of available resources. 

• Heterogeneous resources: Grid resources can be 
of various vendor platforms, models, and operat-
ing systems. Therefore, the processing time of a 
task on a resource is subject to its performance 
benchmarks.  A resource may be associated with 
multiple performance benchmarks that are rele-
vant for different types of computing tasks. For 
example, SPEC-FP and SPEC-INT ratings are 
relevant for compute-intensive tasks while TPC-C 
ratings should be used for transactional tasks that 
have substantial data input-output. 

• Resource scheduling: The grid simulator must be 
able to model the scheduling policies used by re-
source brokers to determine which resource 
should process an arriving task. Typical policies 
are task dispatch rules such as:  

 
− load leveling: the task is sent to the least util-

ized resource so as to balance utilization 
across all resources compatible to the task, 

− greedy: the task is sent to the resource that 
can complete it the fastest: a function of its 
processing power and current utilization,  

− round robin: the task is sent to the next com-
patible resource in a defined sequence,  

− threshold-based: tasks are sent to a preferred 
resource until a certain performance parame-
ter  threshold (e.g., server utilization) is 
breached. 

 
Grid designers can use simulation to evaluate 
these choices compare the respective grid per-
formances to determine the best policy. 

• Resource provisioning: The ability to provision 
resources for processing particular types of tasks 
is another feature to be simulated. These provi-
sioning policies could be either calendar based 
(e.g., a department needs a server to be an email 
server during 9AM to 5PM every workday and 
can release it to be a data-mining processor on the 
grid at other times) or based on a more dynamic 
policy that monitors workload arrivals and re-
source usage and reacts accordingly. Simulation 
of these provisioning policies in conjunction with 
the resource scheduling policies would allow grid 
designers to determine whether the respective 
policies are aligned and consistent with each other 
and providing the desired grid performance in 
17
terms of resource availability, workload through-
put and processing times. 

• Non-programmer user interface: The expected 
users of the simulation are grid designers and con-
sultants, who are unfamiliar with simulation lan-
guages. Therefore, the simulator must provide a 
graphical modeling environment and user inter-
face. It should also allow the grid designer to 
write new resource scheduling and provisioning 
policies and incorporate them into the simulation. 

3 ASSESSMENT OF EXISTING SIMULATION 
TOOLS 

The requirements for the simulation of grid computing in-
frastructure have been addressed to varying degrees by a 
few simulators designed for grid computing.  

GridSim (Buyya and Morshed 2002) is a Java-based 
simulation toolkit based on the SimJava library (Howell 
and McNab 1998). It was designed specifically to analyze 
and compare the performance of resource scheduling algo-
rithms for the grid. The salient capabilities of this toolkit 
are the modeling of heterogeneous, multi-tasking grid re-
sources, calendar based resource provisioning, parallel ap-
plication models, and resource scheduling. It has been used 
to evaluate the performance of various resource scheduling 
algorithms based on deadline and budget based constraints. 
The key drawback of this tool is its implementation of each 
grid task as a separate thread in the underlying Java Virtual 
Machine. As demonstrated by Phatanapherom and Kachit-
vichyanukul (2003), this limits the scalability of the Grid-
Sim in tackling enterprise level simulation requirements 
where thousands to millions of grid tasks may have to be 
simulated. The toolkit also assumes a programmer-level 
interaction with it. For example, it relies on the program-
mer to implement the application job decomposition 
model. This makes it not suitable for field use by grid de-
signers and consultants. 

SimGrid (Legrand et al. 2003) is another simulation 
framework for the purpose of evaluating grid scheduling 
algorithms. It has a heterogeneous and multi-tasking re-
source model. Multi-tasking is implemented as a “shared 
mode” usage of the resource where all ready tasks are exe-
cuted concurrently. A key strength and focus of SimGrid is 
to model the grid network topology and simulate the data 
flow over the available network bandwidth. However, it 
does not incorporate a realistic view of grid application 
workloads by not modeling job decomposition and task 
parallelization characteristics. Resource availability (calen-
dar based or dynamic provisioning) is also not modeled.  

In contrast, OptorSim (Cameron et al. 2003) explicitly 
accounts for both dynamic provisioning and resource sched-
uling policies in its model. It focuses on analyzing the inter-
action of these policies and estimating the resulting perform-
ance. Dynamic provisioning is performed in the context of 
replication of data to resources in a data grid. Various data 
75
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replication strategies can be evaluated from the perspective 
of the maximizing job throughput. However, its focus on the 
data aspect is at the expense of the other computational re-
quirements that are also usually provided from a grid. Appli-
cations are considered only from the perspective of their data 
requirements. The simulation model also does not consider 
heterogeneity among resources both in the sense of resource 
types and resource performance. 

Common off-the-shelf simulators which provide good 
visualization and user interfaces are often used by IT de-
signers and consultants. However, these packages are un-
able to model several of the key requirements for simulat-
ing grids, most notably, resource multi-tasking, task 
parallelization, resource scheduling and resource provi-
sioning based on dynamic policies. 

4 GRID SIMULATOR DESIGN 

The gap between grid simulation requirements and the ex-
isting simulators led us to develop a simulator that can be 
used by grid designers and consultants to analyze their cli-
ents’ grid infrastructure environments. It addresses all the 
requirements identified in Section 2.  

Figure 3 shows the UML diagram of the portion of the 
177
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Grid Value at Work data model relevant for simulation. 
The demand side of the grid is represented on the left, in 
terms of applications(1), their task requirements(2), appli-
cation workloads(3) and their arrival statistics(4). The sup-
ply or capacity side is on the right, represented by resource 
classes(5) rated by multiple performance benchmarks(6), 
and instances of these resources(7) and their availabil-
ity(8). The two sides are linked by one or more resource 
brokers(9) that manage the execution of tasks on the grid, 
using schedulers(10) that decide on the resource to which 
an arriving workload task should be routed for processing.  

Simulations can be performed separately for each grid 
design scenario(11)  as specified in terms of its workloads, 
resource instances, and resource brokers. Multiple scenar-
ios can co-exist in a model(12) with common application 
and resource class definitions. 

With this model, a discrete-event simulation of the 
grid can be performed to test various design elements of a 
scenario, such as: 

 
1. Type of IT resources (e.g., computational servers, 

database servers, storage and network capacities) 
available on the grid: their quantities and avail-
ability profile over time. 
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2. Grid scheduling and dispatch policies that deter-
mine the resources to which each arriving job 
should be routed for processing. 

3. Grid resource provisioning policies that determine 
how many grid resources to allocate for workload 
task types over any time interval. 

4. Workload job arrival rates and patterns over time. 
 
Alternate design scenarios, created by varying any 

combination of these elements, may be evaluated and 
compared on the basis of the outputs from the simulation 
analysis. 

The simulation outputs provide various performance 
metrics on the components of the grid. For grid resources, 
these metrics are: the utilization of the available resources 
on the grid, the number of jobs processed by each resource, 
and  the average processing time. The metrics for applica-
tion workloads are: the average and peak response time for 
processing jobs on the grid, the number of jobs processed 
(throughput) and the number aborted due to lack resource 
availability (due to resource provisioning policies). 

4.1 Efficient Event Processing Design for Simulating 
Multi-tasking Resources 

The implementation of multi-tasking resources requires the 
design of an efficient simulation event handling mecha-
nism. As described in Section 2, the design alternatives for 
simulating multi-tasking resources are tradeoffs between 
accuracy and efficiency. Pre-emptive multi-tasking could 
be simulated by modeling the scheduling of tasks within 
each resource. However this will be too fine grained for the 
purposes of simulating a large grid of resources over a 
multi-day time frame. Therefore we choose an abstract 
model of multi-tasking. Consider a task being processed by 
a resource. Its remaining time to completion is a function 
of the following factors associated with the resource:  

 
1. The service rate of the task on the resource. This 

rate assumes that the resource is processing no 
other tasks and is adjusted for the processing 
speed of the resource by applying the appropriate 
performance benchmark rating. 

2. The number of symmetric multi-processors. 
3. The number of other tasks in the processing queue 

of the resource, where we assume round robin 
scheduling of tasks with equal priorities. 

4. The percentage availability of the resource. This 
parameter defines the fraction of the resource that 
may be use for processing tasks submitted through 
the grid. For a single resource, this is usually ei-
ther 0 or 1. However, we can also model a cluster 
of homogeneous resources and specify that a frac-
tion of these are available to the grid. 

 

17
 
Figure 4 shows an example of multi-tasking behavior 

as tasks are submitted and processed by a resource. Each 
chart in the figure shows the tasks being processed (y-axis) 
and the processing time duration (x-axis).   
 
 Task 1 with 4 time-units of work arrives   
Task 3             
Task 2             
Task 1            time
 (t=0) 

 
  Task 2 with 1 time-unit of work arrives  
Task 3             
Task 2             
Task 1            time
  (t=1) 

 
    Task 2 completes    
Task 3             
Task 2             
Task 1            time
    (t=3) 

 
     Task 3 with 2 time-units arrives 
Task 3             
Task 2             
Task 1            time
     (t=4) 

 
      Resource availability at 50% 
Task 3             
Task 2             
Task 1            time
      (t=5) 

 
     Resource availability 100% and 

        Task 1 completes 
Task 3             
Task 2             
Task 1            time
        (t=7) 

 
Figure 4: Multi-Tasking Event Processing 

 
The sequence of events and the resulting multi-task 

processing behavior of the resource is as follows (the nota-
tion (t=i) is short-hand for denoting time-period i): 

• Initially (t=0), Task 1 with 4 time-units of work 
(service rate of 0.25) is submitted to the idle re-
source. With no other tasks to process, the ex-
pected processing time is 4 time-units with a 
completion time at (t=4).  
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• At (t=1), Task 2 with 1 time-unit of work arrives. 
Now, with two tasks in the resource, each will 
take twice the raw time. The processing time for 
the Task 2 is therefore doubled to 2 time-units. 
For Task 1, the remaining 3 time-units of work is 
doubled to 6 time-units and the expected comple-
tion time is stretched from (t=4) to (t=7). Note 
that this adjustment does not (yet) consider the 
completion time for Task 2 which is much earlier 
than that of Task 1. 

• At (t=3), Task 2 completes. Now Task 1 has the 
entire resource to itself again and therefore, the 
remaining 4 time-units until its completion can be 
halved to 2 time-units. Its completion time shrinks 
to (t=5). 

• At (t=4), Task 3 with 2 time-units of work arrives. 
Again, with two tasks in the resource, each task 
will take twice as long. So Task 3 has a process-
ing time of 4 time units, expecting to complete at 
(t=8). For Task 1, the remaining one time-unit of 
processing is stretched to two, with a new comple-
tion time at (t=6). 

• At (t=5), the resource availability is reduced to 
50% of its original. Now, the two grid tasks will 
take twice as long to process. So the remaining 1 
time-unit of work for Task 1 will be stretched to 2 
time units, completing at (t=7). Similarly, the re-
maining 3 time-units of work for Task 3 will be 
stretched to 6 time units, completing at (t=11).  

• Finally, at (t=7), two events occur. The resource 
availability goes back to 100% and Task 1 also 
completes. As a result, the processing power that 
can be provided by the resource to Task 3 quadru-
ples, shrinking the 4 time-units of remaining 
processing to 1 with completion expected at (t=8). 

 
As shown by this example, the simulation of multi-

tasking resources requires recalculation of the completion 
times of all in-process tasks in a resource whenever a new 
task arrives or the resource availability changes. This re-
sults in adjustments in the positions of the task completion 
events in the simulation engine’s event queue (Law and 
Kelton 1991) or future events list (Schriber and Brunner 
2004), which maintains all future events to be processed by 
the simulator in chronological order.  

Adjusting the position of events in a simulator’s event 
queue is a potentially expensive activity which can com-
promise the scalability of the simulator’s performance. In 
the following section, we evaluate the time complexity of a 
simulation model with multi-tasking resources for two 
event queue designs: the traditional global event queue 
found in most simulation packages and the distributed 
event queue design that we have developed. 
17
4.2 Simulation Time Complexity for Global and 
Distributed Event Queue Designs 

Discrete event simulators use an event queue to manage 
the flow of a simulation. Each event in the queue has a 
time-stamp that indicates the simulation time at which it 
becomes ready to be processed. The events are sorted in 
the queue according to their time-stamp data. The primary 
role of the simulation engine is to step through the event 
queue and at each step, extract the most current event from 
it and process the event (as specified by the event type), 
which may insert new simulation events into the appropri-
ate locations in the event queue so as to maintain its 
chronological sorting.  

Figure 5 shows an abstract representation of the global 
event queue with chronologically sorted events in it. Each 
event is a task being processed by one of the m multi-
tasking resources shown above the queue. The time-stamp 
on each event is the task completion time on the resource 
processing the task. 

 
Figure 5: Global Event Queue Design 

 
Let t be the total number of tasks that arrive for proc-

essing  during the course of a simulation. Each of these t 
tasks have to be inserted into the event queue once it has 
been assigned to a resource and a completion time for it 
has been calculated. During the insertion, the completion 
times of the other tasks being processed by the same re-
source will have to be adjusted. Assuming even distribu-
tion of the tasks among resources, the number of in-process 
tasks at a resource is in the order of t/m, which is denoted 
as O(t/m). Therefore, the order complexity of the number 
of inserts and re-inserts in the event queue during the 
course of the t tasks is given by O(t 2/m). The time com-
plexity of all event inserts into the queue is given by: 

 
 ( ) ( ) ( )mttmt 32 OOO =⋅ , 
 
where O(t) is the worst-case time complexity for perform-
ing a single insertion into the event queue. 

Global  
event  
queue 

In-process 
tasks 

t 

resources 1 2 … m 

1 
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The time complexity of extracting the next event by 
the simulator is O(1) because the event queue is already 
sorted by time. Therefore the total time complexity of 
simulating t tasks on m multi-tasking resources remains at 
O(t 3/m). Assuming that t >> m, the simulation time com-
plexity for a global event queue approximates to O(t 3). 

Now lets look at a distributed event queue design 
where each multi-tasking resource has its own local event 
queue. (Note: Although this design is also amenable to 
parallel simulations, we do not rely on parallelization in the 
following time-complexity analysis and empirical estima-
tion of simulation performance.) This is shown in Figure 6. 

 

 
Figure 6: Distributed Event Queue Design 

In this design, tasks that arrive for processing at one of 
the m resources, are inserted into an event queue that is lo-
cal to that resource, containing events corresponding to the 
completion times of the in-process tasks in the resource. 
Upon the arrival of a new task, the completion time of the 
existing in-process tasks will have to be adjusted by a con-
stant scaling factor. As a result, the chronological sort or-
der of the existing events in the queue will not change. 
Therefore, no re-inserts have to take place unlike the global 
event queue design. Therefore, the number of inserts into 
the event queues is O(t). Given that each insert is into a 
queue of O(t/m) events, the time complexity of all event 
inserts into their respective local event queues is given by: 

 
 ( ) ( ) ( )mtmtt 2OOO =⋅ . 
 

For the distributed event queue design, the time com-
plexity of extracting the next event by the simulator is no 
longer as trivial as with a global queue. The topmost event 
in each of the m local event queues will have to be exam-
ined with a time complexity of O(m). Therefore the total 
time complexity of simulating t tasks on m multi-tasking 
resources with local event queues is given by: 

 
 ( ) ( )mmtmmt +=+ 22 O)(OO . 
 

Assuming that t >> m, the simulation time complexity 
for distributed event queues approximates to O(t 2). 

1 2 … m resources 
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1 
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This order of magnitude improvement due to the dis-
tributed event queue design translates to significant time 
efficiency improvements in enterprise-level large simula-
tion analyses with hundreds of thousands to millions of 
tasks. This is achieved without any additional memory re-
quirements because it can be seen that the space complex-
ity of the event queues remains O(t) in both designs. The 
next section provides empirical evidence of this speedup. 

5 SIMULATOR PERFORMANCE 

We ran multiple simulations of a grid with 10 multi-
tasking resources processing 1000 to 10,000 tasks and 
measured the time taken for each simulation. A single-
CPU computer was used to simulate both the global and 
local event queue designs. Figure 7 shows the results, plot-
ting the simulation execution time (in log scale) against the 
number of tasks processed in that simulation run. 
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Figure 7: Simulation Execution Time Comparison for 
Global and Local Event Queue Designs 

 
The figure verifies our expectation in Section 4.2 that 

the execution time for the global queue design (thick 
dashed line plot) is in the O(t 3) time complexity, as shown 
by the thin guide lines for the plot. The time complexity 
guide lines show how the execution time for the initial 
simulation run with 1000 tasks would scale up as the 
square or the cube of the number of tasks processed. The 
local event queue design is verified to be in the O(t 2) time 
complexity, as shown by its execution time plot (thick 
solid line) which closely tracks t 2 the guide line. In practi-
cal terms, a simulation of 10,000 tasks can be performed in 
a few seconds using the local event queue design, instead 
of an hour with the global event queue design. 
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6 CONCLUSIONS 

The grid simulator described in this paper has been imple-
mented with the objective to provide the means by which 
IT consultants and designers can quantify the value of grid 
designs in financial terms and compare with other non-grid 
alternatives. The role of the simulator is to assess whether 
the expected application workload response times and 
throughputs are being met by the grid design and the grid 
resources are operating at the desired level of utilization. 
Once this assessment is successful, grid infrastructure de-
tails such as the quantity and type of hardware is sent to the 
cost analysis module (see Figure 1) for a cost of ownership 
analysis. This analysis also accounts for the software, im-
plementation, and maintenance costs for the grid.  

Simulation is also required to capture the dynamic cost 
drivers that are becoming more prevalent in IT environ-
ments. For example, businesses can rent compute capacity 
by the CPU-hour instead of having to own it. Alternatively, 
application service providers can process workloads and 
charge on the basis of the number of jobs or other related 
units of work. The grid infrastructure can be designed to 
incorporate both owned assets as well as these pay-per-use 
or on-demand services on the grid in a manner transparent 
to the user. For example, the business may own enough 
compute capacity to handle the usual or average volumes 
of workload and access on-demand services during peak 
hours or unexpected surges in volume. In such a scenario, 
simulation would be necessary to estimate the overall cost 
of processing the workloads and to compare it with the cost 
of ownership of conventional IT infrastructure. 

In addition to costs, IT managers are also interested in 
quantifying the business value realized from processing 
application workloads. As part of Grid Value at Work, we 
have developed industry and application specific business 
value models that translate IT metrics such as application 
throughput or response time to financial value such as re-
duction in business expenses or increase in revenue. In 
these instances, simulation of application performance on a 
grid provides the necessary inputs for the business value 
analysis. Using these analyses, alternate grid and non-grid 
infrastructures can be evaluated with the objective of 
maximizing the value to the business after accounting for 
infrastructure costs. 

As the above scenarios show, simulation of IT infra-
structure has become an essential tool for both the techni-
cal and financial assessment of grid computing infrastruc-
ture. IBM Grid Value at Work provides the necessary 
simulation capabilities to meet the grid computing re-
quirements in an efficient manner. It also integrates simu-
lation outputs to financial analysis tools. 
1
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