
Proceedings of the 2005 Winter Simulation Conference
M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, eds.

SIMULATION OF GRID COMPUTING INFRASTRUCTURE: CHALLENGES AND SOLUTIONS

Sugato Bagchi

Mathematical Sciences Department
IBM T. J. Watson Research Center

Yorktown Heights, NY 10598, U.S.A.

ABSTRACT

Recent advances in middleware technologies such as grid
computing have provided IT architects with the ability to
design infrastructures that are more flexible and less dedi-
cated to specific application workloads. However, the ca-
pabilities of design and analysis tools that IT architects use
have not kept pace. In this paper, we describe our progress
in developing an IT infrastructure modeling environment
that supports an extensible set of analysis tools. We focus
in particular on a discrete-event simulator for analyzing the
performance of computational workloads that are running
on a grid. The unique modeling requirements and chal-
lenges presented by the grid computing infrastructure do-
main are discussed. Efficient event queue management and
other simulation techniques to address these challenges are
developed. Finally, we position the role of simulation
analysis in the larger context of estimating the business and
financial returns from grid computing investments.

1 INTRODUCTION

Grid computing technology has made it technically feasi-
ble to “virtualize” IT resources by removing the dedicated
linkage between application software workloads and the
hardware assets, such as servers, data storage and net-
works, required for processing them. At the same time,
businesses are becoming more interested in understanding
how their IT infrastructure can support various other as-
pects of an adaptive, on-demand operating environment,
such as being responsive towards unanticipated surges in
workload volumes and being resilient to unexpected out-
ages of individual servers, network links, or entire loca-
tions. These technical objectives are coupled with the busi-
ness need to shift from reliance on fixed capacity (and
therefore cost) assets to a more variable cost structure for
processing IT workloads.

These technology advances and business requirements
have outpaced the traditional IT modeling, design, and
evaluation tools that are currently in use. IT consultants,
architects and their clients are therefore unable to clearly
visualize, estimate, and quantify the technical and financial
17
impact of these grid and other on-demand initiatives. For
example, as IT resources become more flexible and less
dedicated to specific applications, we need the capability to
design schedulers to route workloads to resources and in-
corporate their behavior into planning for the optimal re-
source capacity required over time. To estimate the level of
responsiveness and resiliency in an infrastructure design,
we need the capability to simulate random variability and
shocks in workload demands and resource availabilities.
To estimate the financial impact of these on-demand char-
acteristics, including variable cost structures that are
pegged to the usage of infrastructure rather than their own-
ership, we also need to embed financial analysis capabili-
ties in these design and modeling tools.

We have developed an infrastructure modeling envi-
ronment named IBM Grid Value at Work to provide these
analysis capabilities. Figure 1 shows its architecture. A set
of analysis tools are plugged in to a common infrastructure
model specified in XML. These tools can interact and be
operated through a unified user interface.

Figure 1: IBM Grid Value at Work

The architecture also allows independent development

of new analysis capabilities, to be used in conjunction with
the existing analyses or in a standalone manner.

User Interface Infrastructure Model (XML)

User Interface

Pe
rf

or
m

an
ce

 S
im

ul
at

io
n

Co
st

 A
na

ly
si

s

Bu
si

ne
ss

 V
al

ue
 M

od
el

in
g

Fi
na

nc
ia

l A
na

ly
si

s

G
rid

 C
ap

ac
ity

 P
la

nn
in

g

…

73

Bagchi

In this paper, we focus on the performance simulation
capability in IBM Grid Value at Work. (Note: This paper
describes the issues with simulation of a grid and should
not be confused with running parallel simulations on a
grid.) In the following section, we describe the grid com-
puting environment to be simulated and identify the simu-
lation requirements. Section 3 assesses the ability of exist-
ing simulation tools to address these requirements. Section
4 describes our simulator design, which addresses the gaps
in existing simulation tools with regard to the grid simula-
tion requirements. In Section 5, we analyze the perform-
ance of our design with respect to its scalability to large
simulation models. We conclude in Section 6, by describ-
ing the role of the simulator in the larger context of esti-
mating the business and financial returns from grid com-
puting investments.

2 THE GRID COMPUTING ENVIRONMENT

Grid computing (Foster et al. 2002) enables the aggrega-
tion of distributed computing and data resources, that are
heterogeneous and owned by multiple administrative do-
mains, into a large, integrated computing system that pro-
vides seamless access to multiple, redundant, and disparate
resources. Applications that benefit from grid are those that
have inherent parallelism, require high throughput vol-
umes, or need to integrate data across multiple sources.

Figure 2 shows an operational perspective of a gener-
alized grid environment.

Figure 2: Operational Flows in a Grid Environment

Application workloads that contain a set of tasks to be
processed by the resources on the grid are submitted to re-
source brokers (or managers) that serve as “gateways” to
the grid. In general, there may be multiple such brokers in
the grid environment. Each broker has a scheduling policy
that dictates how to assign the tasks in the workload to the
available resources on the grid. As the figure shows, a bro-
ker may be able to submit tasks to only a subset of all re-
sources on the grid (shown by the dotted ovals). All the re-

Application
Workloads

Resource
Brokers

Availability
Schedules

Tasks with
resource
constraints

—

—

—

Dynamic
Provisioning

Grid Resources

—

—

1774
sources need not be of the same type (unlike clusters) and
could be of heterogeneous hardware platforms and operat-
ing systems. The availability of a resource on the grid may
be dictated by a calendar based schedule (shown by the
clock icons). Resource availability may also be influenced
by dynamic provisioning. Provisioning is the automated
capability of configuring a resource to be able to process
tasks of a certain type. For example, a server may be set up
with application server software to process a certain type
of online transactions. Dynamic provisioning (also known
as orchestration) uses policies to determine when a re-
source should be switched over from being able to process
tasks of one type to another, e.g., from a web server to an
application server (Appleby et al. 2004).

The simulation of a grid environment requires the
modeling and implementation of several features:

• Multi-tasking IT resources: Processors, database

servers, network links, and data storage devices
are all pre-emptive multi-tasking resources. Tasks
submitted to such a resource goes immediately to
the processing queue containing all the other tasks
that are being processed by the resource. Each of
these tasks get processed by the resource for a
pre-defined time-slice and then put back to the
processing queue (if not waiting for other re-
sources). As a result of multi-tasking, the submis-
sion of a new task can change the completion time
of existing tasks being processed by the resource.
A detailed simulation of the task management
within each resource would be too time consum-
ing when considering grid environments with
hundreds of resources simulated for the duration
of weeks. Instead, when a new task is submitted to
a resource, the simulator should perform a good
approximation of the multi-tasking behavior by
re-estimating the completion time of all tasks be-
ing processed by that resource.

• Job decomposition: Each job from a workload
may be composed of multiple resource require-
ments. We use the terminology of a “task” to de-
fine a single resource requirement within a job.
Each resource requirement may be for a specific
configuration of a server or a database. For exam-
ple, a job may be composed of three tasks: get
data from a customer database, perform data-
mining on a compute server, and add the results to
a sales database. Job decomposition is important
to model because grid designs typically focus on
providing a certain type of resource (e.g., compute
servers) on a grid and overlook the impact on
other resources (e.g., databases, network band-
width) needed by the job.

• Task parallelization: Each task in a job (decom-
posed as described above) may be parallelizable.

chi
Bag

This is often the case with grid workloads. Paral-
lelization could be of two types: “Embarrassingly
parallel” tasks can simply be split up into as many
chunks as available resources. The second type of
parallel tasks are more constrained and consist of
a specific number of parallel paths, regardless of
the number of available resources.

• Heterogeneous resources: Grid resources can be
of various vendor platforms, models, and operat-
ing systems. Therefore, the processing time of a
task on a resource is subject to its performance
benchmarks. A resource may be associated with
multiple performance benchmarks that are rele-
vant for different types of computing tasks. For
example, SPEC-FP and SPEC-INT ratings are
relevant for compute-intensive tasks while TPC-C
ratings should be used for transactional tasks that
have substantial data input-output.

• Resource scheduling: The grid simulator must be
able to model the scheduling policies used by re-
source brokers to determine which resource
should process an arriving task. Typical policies
are task dispatch rules such as:

− load leveling: the task is sent to the least util-

ized resource so as to balance utilization
across all resources compatible to the task,

− greedy: the task is sent to the resource that
can complete it the fastest: a function of its
processing power and current utilization,

− round robin: the task is sent to the next com-
patible resource in a defined sequence,

− threshold-based: tasks are sent to a preferred
resource until a certain performance parame-
ter threshold (e.g., server utilization) is
breached.

Grid designers can use simulation to evaluate
these choices compare the respective grid per-
formances to determine the best policy.

• Resource provisioning: The ability to provision
resources for processing particular types of tasks
is another feature to be simulated. These provi-
sioning policies could be either calendar based
(e.g., a department needs a server to be an email
server during 9AM to 5PM every workday and
can release it to be a data-mining processor on the
grid at other times) or based on a more dynamic
policy that monitors workload arrivals and re-
source usage and reacts accordingly. Simulation
of these provisioning policies in conjunction with
the resource scheduling policies would allow grid
designers to determine whether the respective
policies are aligned and consistent with each other
and providing the desired grid performance in
17
terms of resource availability, workload through-
put and processing times.

• Non-programmer user interface: The expected
users of the simulation are grid designers and con-
sultants, who are unfamiliar with simulation lan-
guages. Therefore, the simulator must provide a
graphical modeling environment and user inter-
face. It should also allow the grid designer to
write new resource scheduling and provisioning
policies and incorporate them into the simulation.

3 ASSESSMENT OF EXISTING SIMULATION
TOOLS

The requirements for the simulation of grid computing in-
frastructure have been addressed to varying degrees by a
few simulators designed for grid computing.

GridSim (Buyya and Morshed 2002) is a Java-based
simulation toolkit based on the SimJava library (Howell
and McNab 1998). It was designed specifically to analyze
and compare the performance of resource scheduling algo-
rithms for the grid. The salient capabilities of this toolkit
are the modeling of heterogeneous, multi-tasking grid re-
sources, calendar based resource provisioning, parallel ap-
plication models, and resource scheduling. It has been used
to evaluate the performance of various resource scheduling
algorithms based on deadline and budget based constraints.
The key drawback of this tool is its implementation of each
grid task as a separate thread in the underlying Java Virtual
Machine. As demonstrated by Phatanapherom and Kachit-
vichyanukul (2003), this limits the scalability of the Grid-
Sim in tackling enterprise level simulation requirements
where thousands to millions of grid tasks may have to be
simulated. The toolkit also assumes a programmer-level
interaction with it. For example, it relies on the program-
mer to implement the application job decomposition
model. This makes it not suitable for field use by grid de-
signers and consultants.

SimGrid (Legrand et al. 2003) is another simulation
framework for the purpose of evaluating grid scheduling
algorithms. It has a heterogeneous and multi-tasking re-
source model. Multi-tasking is implemented as a “shared
mode” usage of the resource where all ready tasks are exe-
cuted concurrently. A key strength and focus of SimGrid is
to model the grid network topology and simulate the data
flow over the available network bandwidth. However, it
does not incorporate a realistic view of grid application
workloads by not modeling job decomposition and task
parallelization characteristics. Resource availability (calen-
dar based or dynamic provisioning) is also not modeled.

In contrast, OptorSim (Cameron et al. 2003) explicitly
accounts for both dynamic provisioning and resource sched-
uling policies in its model. It focuses on analyzing the inter-
action of these policies and estimating the resulting perform-
ance. Dynamic provisioning is performed in the context of
replication of data to resources in a data grid. Various data
75

Bag

replication strategies can be evaluated from the perspective
of the maximizing job throughput. However, its focus on the
data aspect is at the expense of the other computational re-
quirements that are also usually provided from a grid. Appli-
cations are considered only from the perspective of their data
requirements. The simulation model also does not consider
heterogeneity among resources both in the sense of resource
types and resource performance.

Common off-the-shelf simulators which provide good
visualization and user interfaces are often used by IT de-
signers and consultants. However, these packages are un-
able to model several of the key requirements for simulat-
ing grids, most notably, resource multi-tasking, task
parallelization, resource scheduling and resource provi-
sioning based on dynamic policies.

4 GRID SIMULATOR DESIGN

The gap between grid simulation requirements and the ex-
isting simulators led us to develop a simulator that can be
used by grid designers and consultants to analyze their cli-
ents’ grid infrastructure environments. It addresses all the
requirements identified in Section 2.

Figure 3 shows the UML diagram of the portion of the
177
chi

Grid Value at Work data model relevant for simulation.
The demand side of the grid is represented on the left, in
terms of applications(1), their task requirements(2), appli-
cation workloads(3) and their arrival statistics(4). The sup-
ply or capacity side is on the right, represented by resource
classes(5) rated by multiple performance benchmarks(6),
and instances of these resources(7) and their availabil-
ity(8). The two sides are linked by one or more resource
brokers(9) that manage the execution of tasks on the grid,
using schedulers(10) that decide on the resource to which
an arriving workload task should be routed for processing.

Simulations can be performed separately for each grid
design scenario(11) as specified in terms of its workloads,
resource instances, and resource brokers. Multiple scenar-
ios can co-exist in a model(12) with common application
and resource class definitions.

With this model, a discrete-event simulation of the
grid can be performed to test various design elements of a
scenario, such as:

1. Type of IT resources (e.g., computational servers,

database servers, storage and network capacities)
available on the grid: their quantities and avail-
ability profile over time.
Grid Model UML

Application

Task

-serviceRate : RandomDist
-maxParallel : int
-resourceType : Type
-setupTime : Time
-benchmarkName : String
-benchmarkValue : double

1..n

1..1processDef

Workload

0..n

ResourceClass

-smp : int

Performance Benchmark

-name : String
-value : double

1..n
1..1benchmarkList

Resource

-quantity : int

0..n

Arrival

-duration : Time
-arrivalRate : RandomDist
-arrivalQuantity : RandomDist

1..n

1..1 arrivalSchedule

AvailabilitySchedule

1..1
0..n
resourceList

Resource Broker

n

1broker

Scheduler

1..1

Type Availability

-resourceType : Type

Availability

-duration : Time
-availability : double

1..n

1..1

1..n 1..1

Model

1..n

1..1

1..n

1..1

Scenario

1..n

1..1

workloads

1..n

1..1

resource instances

1..n
1..1

0..n

1..n

1

2

3

4

5

67

8

9

10

12

11

1..n
0..nbrokers

Figure 3: Grid Model for Simulation
6

Bagchi

2. Grid scheduling and dispatch policies that deter-
mine the resources to which each arriving job
should be routed for processing.

3. Grid resource provisioning policies that determine
how many grid resources to allocate for workload
task types over any time interval.

4. Workload job arrival rates and patterns over time.

Alternate design scenarios, created by varying any

combination of these elements, may be evaluated and
compared on the basis of the outputs from the simulation
analysis.

The simulation outputs provide various performance
metrics on the components of the grid. For grid resources,
these metrics are: the utilization of the available resources
on the grid, the number of jobs processed by each resource,
and the average processing time. The metrics for applica-
tion workloads are: the average and peak response time for
processing jobs on the grid, the number of jobs processed
(throughput) and the number aborted due to lack resource
availability (due to resource provisioning policies).

4.1 Efficient Event Processing Design for Simulating
Multi-tasking Resources

The implementation of multi-tasking resources requires the
design of an efficient simulation event handling mecha-
nism. As described in Section 2, the design alternatives for
simulating multi-tasking resources are tradeoffs between
accuracy and efficiency. Pre-emptive multi-tasking could
be simulated by modeling the scheduling of tasks within
each resource. However this will be too fine grained for the
purposes of simulating a large grid of resources over a
multi-day time frame. Therefore we choose an abstract
model of multi-tasking. Consider a task being processed by
a resource. Its remaining time to completion is a function
of the following factors associated with the resource:

1. The service rate of the task on the resource. This

rate assumes that the resource is processing no
other tasks and is adjusted for the processing
speed of the resource by applying the appropriate
performance benchmark rating.

2. The number of symmetric multi-processors.
3. The number of other tasks in the processing queue

of the resource, where we assume round robin
scheduling of tasks with equal priorities.

4. The percentage availability of the resource. This
parameter defines the fraction of the resource that
may be use for processing tasks submitted through
the grid. For a single resource, this is usually ei-
ther 0 or 1. However, we can also model a cluster
of homogeneous resources and specify that a frac-
tion of these are available to the grid.

17

Figure 4 shows an example of multi-tasking behavior

as tasks are submitted and processed by a resource. Each
chart in the figure shows the tasks being processed (y-axis)
and the processing time duration (x-axis).

 Task 1 with 4 time-units of work arrives
Task 3
Task 2
Task 1 time
 (t=0)

 Task 2 with 1 time-unit of work arrives
Task 3
Task 2
Task 1 time
 (t=1)

 Task 2 completes
Task 3
Task 2
Task 1 time
 (t=3)

 Task 3 with 2 time-units arrives
Task 3
Task 2
Task 1 time
 (t=4)

 Resource availability at 50%
Task 3
Task 2
Task 1 time
 (t=5)

 Resource availability 100% and

 Task 1 completes
Task 3
Task 2
Task 1 time
 (t=7)

Figure 4: Multi-Tasking Event Processing

The sequence of events and the resulting multi-task

processing behavior of the resource is as follows (the nota-
tion (t=i) is short-hand for denoting time-period i):

• Initially (t=0), Task 1 with 4 time-units of work
(service rate of 0.25) is submitted to the idle re-
source. With no other tasks to process, the ex-
pected processing time is 4 time-units with a
completion time at (t=4).
77

Bagchi

• At (t=1), Task 2 with 1 time-unit of work arrives.
Now, with two tasks in the resource, each will
take twice the raw time. The processing time for
the Task 2 is therefore doubled to 2 time-units.
For Task 1, the remaining 3 time-units of work is
doubled to 6 time-units and the expected comple-
tion time is stretched from (t=4) to (t=7). Note
that this adjustment does not (yet) consider the
completion time for Task 2 which is much earlier
than that of Task 1.

• At (t=3), Task 2 completes. Now Task 1 has the
entire resource to itself again and therefore, the
remaining 4 time-units until its completion can be
halved to 2 time-units. Its completion time shrinks
to (t=5).

• At (t=4), Task 3 with 2 time-units of work arrives.
Again, with two tasks in the resource, each task
will take twice as long. So Task 3 has a process-
ing time of 4 time units, expecting to complete at
(t=8). For Task 1, the remaining one time-unit of
processing is stretched to two, with a new comple-
tion time at (t=6).

• At (t=5), the resource availability is reduced to
50% of its original. Now, the two grid tasks will
take twice as long to process. So the remaining 1
time-unit of work for Task 1 will be stretched to 2
time units, completing at (t=7). Similarly, the re-
maining 3 time-units of work for Task 3 will be
stretched to 6 time units, completing at (t=11).

• Finally, at (t=7), two events occur. The resource
availability goes back to 100% and Task 1 also
completes. As a result, the processing power that
can be provided by the resource to Task 3 quadru-
ples, shrinking the 4 time-units of remaining
processing to 1 with completion expected at (t=8).

As shown by this example, the simulation of multi-

tasking resources requires recalculation of the completion
times of all in-process tasks in a resource whenever a new
task arrives or the resource availability changes. This re-
sults in adjustments in the positions of the task completion
events in the simulation engine’s event queue (Law and
Kelton 1991) or future events list (Schriber and Brunner
2004), which maintains all future events to be processed by
the simulator in chronological order.

Adjusting the position of events in a simulator’s event
queue is a potentially expensive activity which can com-
promise the scalability of the simulator’s performance. In
the following section, we evaluate the time complexity of a
simulation model with multi-tasking resources for two
event queue designs: the traditional global event queue
found in most simulation packages and the distributed
event queue design that we have developed.
17
4.2 Simulation Time Complexity for Global and
Distributed Event Queue Designs

Discrete event simulators use an event queue to manage
the flow of a simulation. Each event in the queue has a
time-stamp that indicates the simulation time at which it
becomes ready to be processed. The events are sorted in
the queue according to their time-stamp data. The primary
role of the simulation engine is to step through the event
queue and at each step, extract the most current event from
it and process the event (as specified by the event type),
which may insert new simulation events into the appropri-
ate locations in the event queue so as to maintain its
chronological sorting.

Figure 5 shows an abstract representation of the global
event queue with chronologically sorted events in it. Each
event is a task being processed by one of the m multi-
tasking resources shown above the queue. The time-stamp
on each event is the task completion time on the resource
processing the task.

Figure 5: Global Event Queue Design

Let t be the total number of tasks that arrive for proc-

essing during the course of a simulation. Each of these t
tasks have to be inserted into the event queue once it has
been assigned to a resource and a completion time for it
has been calculated. During the insertion, the completion
times of the other tasks being processed by the same re-
source will have to be adjusted. Assuming even distribu-
tion of the tasks among resources, the number of in-process
tasks at a resource is in the order of t/m, which is denoted
as O(t/m). Therefore, the order complexity of the number
of inserts and re-inserts in the event queue during the
course of the t tasks is given by O(t 2/m). The time com-
plexity of all event inserts into the queue is given by:

 () () ()mttmt 32 OOO =⋅ ,

where O(t) is the worst-case time complexity for perform-
ing a single insertion into the event queue.

Global
event
queue

In-process
tasks

t

resources 1 2 … m

1
78

Bagchi

The time complexity of extracting the next event by
the simulator is O(1) because the event queue is already
sorted by time. Therefore the total time complexity of
simulating t tasks on m multi-tasking resources remains at
O(t 3/m). Assuming that t >> m, the simulation time com-
plexity for a global event queue approximates to O(t 3).

Now lets look at a distributed event queue design
where each multi-tasking resource has its own local event
queue. (Note: Although this design is also amenable to
parallel simulations, we do not rely on parallelization in the
following time-complexity analysis and empirical estima-
tion of simulation performance.) This is shown in Figure 6.

Figure 6: Distributed Event Queue Design

In this design, tasks that arrive for processing at one of
the m resources, are inserted into an event queue that is lo-
cal to that resource, containing events corresponding to the
completion times of the in-process tasks in the resource.
Upon the arrival of a new task, the completion time of the
existing in-process tasks will have to be adjusted by a con-
stant scaling factor. As a result, the chronological sort or-
der of the existing events in the queue will not change.
Therefore, no re-inserts have to take place unlike the global
event queue design. Therefore, the number of inserts into
the event queues is O(t). Given that each insert is into a
queue of O(t/m) events, the time complexity of all event
inserts into their respective local event queues is given by:

 () () ()mtmtt 2OOO =⋅ .

For the distributed event queue design, the time com-
plexity of extracting the next event by the simulator is no
longer as trivial as with a global queue. The topmost event
in each of the m local event queues will have to be exam-
ined with a time complexity of O(m). Therefore the total
time complexity of simulating t tasks on m multi-tasking
resources with local event queues is given by:

 () ()mmtmmt +=+ 22 O)(OO .

Assuming that t >> m, the simulation time complexity
for distributed event queues approximates to O(t 2).

1 2 … m resources

Local (resource-level) event queues

1

t / m

In-process
tasks

17
This order of magnitude improvement due to the dis-
tributed event queue design translates to significant time
efficiency improvements in enterprise-level large simula-
tion analyses with hundreds of thousands to millions of
tasks. This is achieved without any additional memory re-
quirements because it can be seen that the space complex-
ity of the event queues remains O(t) in both designs. The
next section provides empirical evidence of this speedup.

5 SIMULATOR PERFORMANCE

We ran multiple simulations of a grid with 10 multi-
tasking resources processing 1000 to 10,000 tasks and
measured the time taken for each simulation. A single-
CPU computer was used to simulate both the global and
local event queue designs. Figure 7 shows the results, plot-
ting the simulation execution time (in log scale) against the
number of tasks processed in that simulation run.

t3

t2

t3

t2

0.01

0.1

1

10

100

1000

10000

0 2000 4000 6000 8000 10000

Number of Tasks Processed (t)

Si
m

ul
at

io
n

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)
Lo

g
Sc

al
e

Global queue Local queues

Figure 7: Simulation Execution Time Comparison for
Global and Local Event Queue Designs

The figure verifies our expectation in Section 4.2 that

the execution time for the global queue design (thick
dashed line plot) is in the O(t 3) time complexity, as shown
by the thin guide lines for the plot. The time complexity
guide lines show how the execution time for the initial
simulation run with 1000 tasks would scale up as the
square or the cube of the number of tasks processed. The
local event queue design is verified to be in the O(t 2) time
complexity, as shown by its execution time plot (thick
solid line) which closely tracks t 2 the guide line. In practi-
cal terms, a simulation of 10,000 tasks can be performed in
a few seconds using the local event queue design, instead
of an hour with the global event queue design.
79

gchi
Ba

6 CONCLUSIONS

The grid simulator described in this paper has been imple-
mented with the objective to provide the means by which
IT consultants and designers can quantify the value of grid
designs in financial terms and compare with other non-grid
alternatives. The role of the simulator is to assess whether
the expected application workload response times and
throughputs are being met by the grid design and the grid
resources are operating at the desired level of utilization.
Once this assessment is successful, grid infrastructure de-
tails such as the quantity and type of hardware is sent to the
cost analysis module (see Figure 1) for a cost of ownership
analysis. This analysis also accounts for the software, im-
plementation, and maintenance costs for the grid.

Simulation is also required to capture the dynamic cost
drivers that are becoming more prevalent in IT environ-
ments. For example, businesses can rent compute capacity
by the CPU-hour instead of having to own it. Alternatively,
application service providers can process workloads and
charge on the basis of the number of jobs or other related
units of work. The grid infrastructure can be designed to
incorporate both owned assets as well as these pay-per-use
or on-demand services on the grid in a manner transparent
to the user. For example, the business may own enough
compute capacity to handle the usual or average volumes
of workload and access on-demand services during peak
hours or unexpected surges in volume. In such a scenario,
simulation would be necessary to estimate the overall cost
of processing the workloads and to compare it with the cost
of ownership of conventional IT infrastructure.

In addition to costs, IT managers are also interested in
quantifying the business value realized from processing
application workloads. As part of Grid Value at Work, we
have developed industry and application specific business
value models that translate IT metrics such as application
throughput or response time to financial value such as re-
duction in business expenses or increase in revenue. In
these instances, simulation of application performance on a
grid provides the necessary inputs for the business value
analysis. Using these analyses, alternate grid and non-grid
infrastructures can be evaluated with the objective of
maximizing the value to the business after accounting for
infrastructure costs.

As the above scenarios show, simulation of IT infra-
structure has become an essential tool for both the techni-
cal and financial assessment of grid computing infrastruc-
ture. IBM Grid Value at Work provides the necessary
simulation capabilities to meet the grid computing re-
quirements in an efficient manner. It also integrates simu-
lation outputs to financial analysis tools.
1

REFERENCES

Appleby, K., S. B. Calo, J. R. Giles, and K.-W. Lee. 2004.
Policy-based automated provisioning. IBM Systems
Journal 43: 121–135.

Buyya, R. and M. Murshed. 2002. GridSim: A toolkit for
the modeling and simulation of distributed resource
management and scheduling for grid computing. Con-
currency and Computation: Practice and Experience
14: 1175–1220.

Cameron, D. G., R. Carvajal-Schiaffino, A. P. Millar, C.
Nicholson, K. Stockinger, and F. Zini. 2003. Evaluat-
ing scheduling and replica optimisation strategies in
OptorSim. Proceedings of the Fourth International
Workshop on Grid Computing (GRID’03).

Foster, I., C. Kesselman, J. M. Nick, and S. Tuecke. 2002.
Grid services for distributed system integration. IEEE
Computer June 2002: 37–46.

Howell, F. and R. McNab. 1998. SimJava: A discrete event
simulation library for Java. In Proceedings of the 1998
International Conference on Web-Based Modeling &
Simulation, 51-56. The Society for Computer Simula-
tion International, San Diego, CA.

Law, A. M., and W. D. Kelton. 1991. Simulation modeling
and analysis. McGraw-Hill.

Legrand, A., L. Marchal, and H. Casanova. 2003. Schedul-
ing distributed applications: The SimGrid simulation
framework. Proceedings of the 3rd IEEE/ACM Inter-
national Symposium on Cluster Computing and the
Grid (CCGRID.03).

Phatanapherom, S. and V. Kachitvichyanukul. 2003. Fast
simulation model for grid scheduling using HyperSim.
In Proceedings of the 2003 Winter Simulation Confer-
ence ed. S. Chick, P. J. Sánchez, D. Ferrin, and D. J.
Morrice, 1494–1500.

Schriber, T. J., and D. T. Brunner. 2004. Inside discrete-
event simulation software: How it works and why it
matters. In Proceedings of the 2004 WinterSim Con-
ference, ed. R .G. Ingalls, M. D. Rossetti, J. S. Smith,
and B. A. Peters, 142–152.

AUTHOR BIOGRAPHY

SUGATO BAGCHI is a Research Staff Member in the
Mathematical Sciences Department at IBM Thomas J.
Watson Research Center in Yorktown Heights, NY. His
research interest is in financial modeling and valuation of
information technology applications and infrastructure. In
this role, he has assisted several IBM Global Services en-
gagements to help potential adopters of emerging tech-
nologies quantify the predicted benefits in terms of busi-
ness and financial impact. Dr. Bagchi has a Ph.D. in
Electrical Engineering from Vanderbilt University. He is a
member of INFORMS.
780

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

