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ABSTRACT 

Load building is an important step to make the delivery 
supply chain efficient. We present a family of load makeup 
algorithms using market control-based strategy, named 
LoadMarket, in order to build efficient loads where each 
load consists of a certain number of finished products 
having destinations. LoadMarket adopts minimum 
spanning tree graph algorithm for generating initial 
endowment for Load Traders who cooperate to minimize 
either total travel distance or the variance with respect to 
the travel distances of loads through a spot market or 
double-sided auction market mechanism. For the simulated 
load shipment market, the efficiency of the LoadMarket 
algorithms is analyzed using simulation experiments.   

1 INTRODUCTION 

Load building is a process of assigning a set of products to 
a number of transportation carriers like truck or railcar. 
Companies have made an effort to achieve more efficient 
shipment planning and execution of finished products on 
their delivery supply chain. The efficiency in shipment 
planning and execution can improve customer fulfillment 
with fast delivery and reduce total transportation cost. We 
present LoadMarket, a family of load assignment methods 
using market-based control mechanism.   
 Let us consider an example scenario where the 
optimization of load assignment is crucial issue. Suppose 
an automotive company produces cars and transports them 
to the customers nationwide (Yee, 2002). As shown in 
Figure 1(a), whenever an ordered car is produced in the 
plant, it moves to the yard where cars wait to be assigned 
to a truck, the transportation carrier. Maintaining cars in 
the yard results in costs. Each truck has a limitation for the 
maximum number of vehicles to carry and after containing 
one load of cars, it starts to visit each city to deliver cars. 
The transportation cost of each truck is proportional to the 
total travel distance. In summary, the daily cost model for 
this scenario has the following: 
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 Cost model = (average # of cars in the yard × 
maintenance fee per a day) + (daily # of trucks departing 
from the yard × average travel distance of trucks) 

 
The above cost model implies that the main costs 

saving problems are: (1) fast shipping out cars waiting in 
the yard and (2) finding a shortest average travel distance. 
In this paper, we consider the second problem that is, 
finding a shortest average travel distance.  
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Figure 1(a): A scenario of the load assignment 
 

If there is a large truck with the ability to carry all 
daily produced cars and cover all destination cities, this 
problem is reduced to a traveling salesman problem (TSP) 
(i.e., finding a path through a weighted graph which starts 
and ends at the same vertex) (Flood, 1956). However, in 
the real world, a truck can carry at most ten cars at one 
shipment and can travel at most over thirty neighboring 
cities. Thus, the problem needs to employ multiple trucks 
in order to deliver many daily produced cars, which leads 
to the capacitated vehicle routing problem (CVRP) (Clark 
and Wright, 1964). For solving CVRP, as shown in Figure 
1(b), we can use the k-tree covering algorithm which is 
NP-complete proven by reduction from the Bin-Packing 
Problem (Even et al., 2003). 
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Figure 1(b): k-tree covering 
 
The presented scenario often occurs in many other 

industries that aim to Order to Delivery (OTD) service. 
However, identifying minimized cost value when the 
number of cities to visit and size of items to deliver increase, 
is a challenging task, since in real application, such numbers 
can be many and non-trivial. Therefore, there is an imminent 
need for the method that systematically and mechanically 
helps to plan a load assignment such that average travel 
distance for delivering the loads is minimized or load 
balancing between the loads is satisfied. 

Market-based automated negotiation, or more 
commonly market-based control, is a paradigm for 
controlling complex system that would otherwise be very 
difficult to handle, by taking advantage of some desirable 
features of a market (especially a free market) including 
decentralization, interacting agents, and some notion of 
resources that need to be allocated (Clearwater, 1996). This 
approach has been applied to a wide range of fields such as 
supply chain management (Hinkkanen et al., 1997; Sauter 
et al., 1999), vehicle routing (Sandholm, 1993), 
manufacturing scheduling (Tilley, 1996; Baker, 1996), and 
process control (Jose and Ungar, 1998).  The load 
assignment problem domain can be classified into the case 
of distributed resource allocation having a team objective. 

In this paper, we consider two market control 
mechanisms (Lee, 2002) that are designed as follows: 

 
• Double Auction (DA): Within the control window, 

multiple sellers and multiple buyers place or ask 
bids for the exchange of a designated commodity 
in a virtual market which matches buyers and 
sellers immediately on detection of compatible 
bids; 

• SpotMarket: A market is established for a seller 
and a buyer within the control window, meaning 
that the seller sells any commodity that is most 
benefit to the buyer. 

 
Based on this setting, we can define our load problem 

in detail. In general, when considering the load assignment 
problem, the following definitions hold: 
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Definition 1   Let Load denote the graph >< EV ,  
which contains V as a set of products intended to be 
delivered to their destinations and E as a set of distances 
between  destinations, )( Vvi ∈  and )( Vv j ∈ . 

Definition 2      Let TD(Loadi) denote the length of the 
shortest path of Loadi i=1,…,k. 

Definition 3   LoadMakeup is a set of Loadi i=1,…,k. 
Let W products intended to be delivered from the yard to 
customers. Then, U

k

i i WLoadV
1

)(
=

= . When a 

LoadMakeup is obtained, ∑ =

k

i iLoadTD
1

)(  is the total 
distance required to deliver all the products of W. 

Definition 4    Load Trader is an agent that processes 
a Load and participates in DA or SpotMarket in order to 
minimize: (1) TD(Load) or (2) ∑ =

k

i iLoadTD
1

)(  by 
cooperation with other Load Traders. 

In this paper, we aim at solving the following 
problems. 

Given a set of products, W, effectively find a 
LoadMakeup such that for LoadMakeupLoadi ∈∀  (1) 

∑ =

k

i iLoadTD
1

)(  is minimized; or (2) variance w.r.t  

)( iLoadTD  is minimized. 
In particular, the second problem of finding a 

LoadMakeup with minimized variance over TD(Load) is 
what we refer to as the Load Balancing problem, and can 
be essentially formulated by balance spanning tree (BST). 
A spanning tree T of a graph G is called a BST if it 
minimizes the difference between the most costly arc and 
the least costly arc selected (that is, from among all 
spanning trees of G, the difference between the maximum 
arc cost in T and the minimum arc cost in T is as small as 
possible). Obviously, one very inefficient (if not 
intractable) method of finding a BST is to enumerate all 
spanning trees of G and then select the balanced spanning 
tree from among these. Since we aim at obtaining a set of 
Loads rather than discovering just a single balanced 
shortest path, such existing BST solution is, however, not 
feasible.  

In the following section, we investigate alternative, 
non-exhaustive, but approximate solution based on both 
Prim’s MST algorithm (Prim, 1957) and aforementioned 
DA or SpotMarket. 

2 OVERVIEW OF LOADMARKET 

In handling our problems with market-based control, two 
issues are critical: (1) the initial Loads to be assigned to 
Load Traders for their endowment; and (2) the market 
mechanism to control Load Traders. To address the issues, 
we propose techniques – generating initial load assignment 
using the tree covering technique adopting Prim’s MST 
and two market control-based algorithms. 
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2.1 LOADMARKETMST 

Input: W : all products, E : distance matrix, and 
             # : one load size 
Output: L : a set of loads 

φ←l , φ←L  and W←δ ; 
while  φδ ≠ do 

 );#,,(Pr EMatchingl im δ←  
      l\δδ ←  
       print l , “⇒ ”; 
end 
print L ; 

Algorithm: LOADMARKETMST 
 

LOADMARKETMST uses a naïve tree covering algorithm 
for obtaining initial assignment. δ denotes the set of 
products waiting their assignment to some Load and 
l denotes a Load which product size is # . imMatching Pr  
adopts Prim’s MST algorithm to cut out one feasible Load 
l with a size of # from δ . It is fixed point algorithm 
because when #|| =W , it has a computational 

complexity )(#2O  which is the same as that of the 
partially-ordered set problem (i.e., lattice). 

 
Input: V , E , and # 
Output: )( VU ⊆  

φ←T  and }1{=U ; 
while  #|| ≠U  do 
 };\,|),{( UVvUuvu ∈∈←δ  

       ));)(,(MIN( with ))(,(),( min Evudvuvu ∈∈← δ  
        )};,{( vuTT U←  
 };{vUU U←  
end 
print U ; 

Algorithm: imMatching Pr  

2.2 LOADMARKETDA 

The main idea of this algorithm lies on the post process to 
run DA (i.e., double-sided market between Load Traders) 
to enhance a initial assignment generated by 
LOADMARKETMST such that each Load can make their 
TD(Load) shorter. 
 

Input: W : all products, E : distance matrix, and 
             # : one load size 
Output: L : a set of loads 

φ←L ; 

)#,,(' EWLOADMARKETL MST←  
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while  trueConverged ≠ do 
 );'(' LDAL ←  
end 
print )'( LL ← ; 

Algorithm: LOADMARKETDA 
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(a1) Do Sync

Seller
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(a3) Ask

(a4) Bid

(a5) Reject

(a6) Confirm
Iterate until 
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Calculate 
TD(Load)

Calculate 
TD(Load)

X
(a5) Confirm

 
 

Figure 2(a): DA Protocol 
 
As shown in Figure 2(a), when a new iteration of DA 

begins, a Virtual Market sends out “Do Sync” signals to all 
Load Traders. Next, since Load Traders have an option to 
choose one role from either a buyer or a seller, they pick 
up one role and respond to the Virtual market. 
Subsequently, the Virtual market matches buyers and 
sellers. For matched buyer and seller, they start a 
negotiation to decide on exchanging their products. If 
exchanging activity is beneficial to both of them, they 
immediately conduct the exchanging activity.  

All traders have a common policy, that is, minimize 
TD(Load). With this policy, the DA protocol exchanging 
process is iterated until the market converges or a pre-
defined iteration is satisfied. The iterating DA protocol 
process is expected to reach emergent behavior that is, a 
more efficient load assignment (i.e., more reduced travel 
distance). 

2.3 LOADMARKETSpotMarket 

Like LOADMARKETDA, it also applies a post process to 
the initial assignment created by the MST based tree 
covering algorithm. One thing different from 
LOADMARKETDA is that it runs afore-defined 
SpotMarket mechanism which allows only two Load 
Traders to trade each other. In this context, one Load 
Trader with the most costly TD(Load) becomes a buyer 
while the other Load Trader with the least costly TD(Load) 
becomes a seller. The seller’s role is focused on supporting 
the buyer by allowing the buyer to exchange any product 
which the buyer wants as long as her loss is not greater 
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than some threshold. In other words, the seller’s policy is 
to minimize )(max ii

LoadTD such that load balancing on 

the corresponding LoadMakeup is obtained even though 
she can take some loss. The definition of LoadMakeup is 
found in the previous section. 
 

Input: W : all products, E : distance matrix, and 
             # : one load size 
Output: L : a set of loads 

φ←L ; 

)#,,(' EWLOADMARKETL MST←  
while  trueConverged ≠ do 
 );'(' LAuctionL ←  
end 
print )'( LL ← ; 

Algorithm: LOADMARKETSpotMarket 

 
Compared with LOADMARKETDA which invokes the 

Load Traders to seek their immediate increased benefit (i.e., 
greedy behavior), LOADMARKETSpotMarket drives the 
Load Traders to cooperate each other. Figure 2(b) shows 
the protocol between the buyer and seller. This 
SpotMartket protocol exchanging process is iterated until 
the market converges or a pre-defined iteration is satisfied. 
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Figure 2(b): SpotMarket Protocol 

3 EXPERIMENTAL VALIDATION 

3.1 Set-up 

To validate the efficacy of our proposals, we conducted 
experiments using simulation. First, we built a simulator 
whose scenario is identical to the example scenario in the   
Introduction section. In other words, the simulator mainly 
consists of three parts: (1) a plant, (2) a yard and (3) a 
transportation system (i.e., a set of trucks). Every day, the 
plant produces 50 cars that move into yard. Each produced 
17
car has its delivery destination indexed by city i. We 
assume that the daily available number of trucks is five so 
that a LoadMackup can be generated daily meaning that 
ten cars are wrapped in one Load together and contained in 
one truck. Each truck carries ten cars and delivers them to 
destination cities. 

In order to analyze the effect of the number of cities to 
visit, we simulated the aforementioned scenario for 3 cases 
where the number of cities is 50, 100, and 200 respectively. 
For example, in the case of 50 cities, each city is assigned 
with unique index between 1 and 50, and the distance 
between any two cities, i and j are defined by |i-j|. For 
example, city 2 and city 28 has the distance of 26.  

At the end, overall, we experimented a combination of 
3 different numbers of cities × 3 different algorithms = 9 
combinations. Each combination has five replications. 
Furthermore, we assume that the protocol exchange 
iteration per a trading is 100. Finally, we note that each 
Load is assumed as an un-rooted tree for the convenience 
of analysis. That is, in TD(Load), the distance from the 
yard to the first and last visiting city is ignored. In addition, 
a shortest travel path within a Load starts from a city with 
the smallest index and goes along cities with increasing 
number of index and ends at a city with the largest index 
because all cities are assumed to be connected. 

3.2 Results 

Figure 4(a) and Table 1(a) summarize the average travel 
distance time of LoadMakeup w.r.t three algorithms over 
three different numbers of cities, where all algorithms’ 
performance get worse reasonably as the number of cities 
increases. When it comes to the sample size of the 
simulation, we generate 18,250 data (i.e., 50 cars per a day 
× 365 days) with 5 replications using the simulator 
mentioned in the previous section. Assigning a city index 
to a generated data (i.e., a car) follows the uniform 
distribution which is specified by the number of cities.  
 The distribution LOADMARKETDA slightly 
outperforms LOADMARKETMST while 
LOADMARKETSpotMarket performs worse than others. 
Figure 4(b) and Table 1(b) summarize the standard 
deviation (STD) with respect to the travel distance between 
loads within the same LoadMakeup, where all algorithms’ 
performance get worse as the number of cities increases. 

 
Table 1(a): Average Travel Distances 

Number of cities Algorithm 
50 100 200 

LOADMARKETDA 38.35 79.92 162.09 

LOADMARKETMST 40.13 81.35 163.72 

LOADMARKETSpotMarket 41.23 83.05 166.55 
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Table 1(b): STD w.r.t Travel Distances 
Number of cities Algorithm 

50 100 200 

LOADMARKETDA 8.24 13.42 23.75 

LOADMARKETMST 5.66 10.75 20.26 

LOADMARKETSpotMarket 3.43 5.71 10.88 

 
 Interestingly, LOADMARKETSpotMarket outperforms 
other algorithms with a big difference. When the number 
of city is 200, the difference of STD between 
LOADMARKETSpotMarket and LOADMARKETDA reaches 
around 13. This is somewhat intuitive since 
LOADMARKETDA stimulates Load Traders to act a 
greedy behavior seeking their immediate increased benefit 
while LOADMARKETSpotMarket drives the least costly Load 
Trader to yield the most costly Load Trader its benefit. 
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Figure 3(a): Comparison of Travel Distance for Different # 
of Cities 
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Figure 3(a): Comparison of STD w.r.t Travel Distance for 
Different # of Cities 
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Figure 4(a): Comparison of Average Travel Distance w.r.t 
Load Traders (# of Cities = 50) 
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Figure 4(b): Comparison of Average Travel Distance w.r.t 
Load Traders (# of Cities = 100) 
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Figure 4(c): Comparison of Average Travel Distance w.r.t 
Load Traders (# of Cities = 200) 

 
Figure 4(a)-(c) illustrates the average total distance 

w.r.t each Load Trader on different # of cities. Consistently, 
LOADMARKETDA outperforms other algorithms but as 
far as the Load Balancing problem is concerned, it 
performs worse. For example, in the case of 200 cities, the 
unbalance of travel distance between Load 5 and Load 1 
exceeds 6. 
3
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4 CONCLUSION 

In this paper, we have considered the problem of finding 
an efficient load assignment, and suggested a solution 
using (1) Prim’s minimum spanning tree algorithm, and (2) 
market controls such as DA and SpotMarket. Despite its 
worse performance of average travel distance, 
LOADMARKETSpotMarket algorithm showed the best 
performance as far as the balanced load assignment is 
concerned. 

Several directions exist for further research. Rather 
than the one-shot assignment we dealt with, dynamic load 
assignment can be considered next. For example, whenever 
a product is produced from the plant, our proposals can be 
applied and the load assignment is updated continuously. 
Also, we can address a problem to find an optimal iteration 
number of protocol exchange per a trading. 
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