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ABSTRACT 

This paper investigates the benefits of integrating advance 
demand information (ADI) with pull-kanban type produc-
tion and inventory control systems (PICS). Since efficient 
analytical models for performance evaluation studies of 
these systems are unavailable, we use simulation experi-
ments for the study. In particular, we investigate the impact 
of several PICS design parameters such as kanban card 
limits, target finished goods inventory levels, amount of 
demand information available, and the quality of ADI on 
performance measures such as system throughput, inven-
tory holding costs and customer service levels. Our study 
shows that in many situations, integrating ADI with pull 
systems provides opportunities for efficiencies that might 
be significantly greater that that available using pull sys-
tems alone. Further more, we show that the performance of 
systems operating under pull-type PICS with ADI could be 
fairly robust to the quality of information being shared.  

1 INTRODUCTION 

Recent advances in information technology such as ERP and 
EDI have enabled the sharing of information across supply 
chains. These advances have come at a time when supply 
chain partners are looking for new ways to collaborate and 
improve operational efficiencies to meet the ever increasing 
customer demand for customized products at reduced costs. 
Such collaborations are based on the underlying premise that 
increased information sharing will always result in greater 
efficiencies. While this belief is true, there is little detail on 
the exact nature of improvements that can be realized 
through such collaborations. Sharing information across 
supply chains require significant investments in information 
technology. Therefore, supply chain managers involved in  
information sharing efforts must have a clear understanding 
of the resulting benefits and the environments in which these 
benefits are obtained.  
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 This research focuses on one important aspect of the 
benefit of information sharing - namely the sharing of ad-
vanced demand information (ADI) to improve supply 
chain efficiencies. In particular, it focuses on how ADI can 
be integrated with the production and inventory control 
systems (PICS) being adopted on the factory floor to im-
prove operational efficiencies. Factory operations are com-
plex and the efficiency of operations is sensitive to several 
factors such as machine utilization, inventory limits, and 
promised levels of customer service (Buzacott and Shan-
thikumar, 1993). Hence, it is hard to develop an intuition 
for PICS that would yield good performance. Over the last 
few decades, several PICS have been proposed to effi-
ciently manage production resources, eliminate wasteful 
inventories, and improve customer service levels. Among 
these  the most popular ones are the pull-type PICS such as 
base stock system, kanban system, and CONWIP. These 
systems have been successfully implemented in several in-
dustries and have therefore been the focus of several re-
search studies too. However, none of the above mentioned 
pull-type PICS fully exploit the potential benefits of ADI 
shared across supply chains. A recent study by Karaesman 
et al. (2002)  has shown that integration of advance de-
mand information (ADI) with base-stock-type control poli-
cies could lead to significant improvement in efficiencies. 
Our research compliments this study by investigating the 
performance of PICS that integrating ADI with kanban 
type pull systems. In particular, we investigate the impact 
of design parameters such as target WIP levels or kanban 
card limits, target finished goods inventory levels, demand 
information lead times, and the quality of advance demand 
information on different performance measures. Since effi-
cient analytical models that permit such a study are not yet 
available, we conduct simulation experiments to obtain 
necessary insights.  Our study provides several insights 
with respect to  the impact of integrating ADI with pull 
type PICS. We observe that in many situations, such inte-
gration provides opportunities for efficiencies that are 
greater than that possible using pull systems without ADI. 
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Further more, we observe that there are several situations, 
where the performance of such systems could be fairly ro-
bust to variations in the quality of ADI being shared. Such 
insights could be used to justify collaboration efforts that 
will lead to increased overall supply chain efficiencies.  

The rest of the paper is organized as follows. Section 2 
provides a brief review of the literature. Section 3 de-
scribes the system being studied. Section 4 provides a de-
scription of the simulation set up and design of experi-
ments. Section 5 provides a summary of the results 
obtained for systems operating under pull type PICS with 
perfect ADI. Insights with respect to imperfect in ADI are 
described in Section 6. Section 7 provides a summary of 
the results and discusses extensions of the current research.  

2 LITERATURE REVIEW  

Production and inventory control systems such as the base 
stock policy, MRP systems, and kanban control systems 
(KCS) have been the subject of intensive research for sev-
eral years. Buzacott and Shanthikumar (1993), Hopp and 
Spearman (1996) and Zipkin (2000) provide an excellent 
summary of design and performance issues related to these 
systems. Among these systems the kanban control systems 
is perhaps the most popular. One of the key reasons is that 
the system is simple to implement and yet very efficient. 
Kanban control systems explicitly limit inventories using 
kanbans (cards) - when one unit is consumed from inven-
tory, a kanban signal is sent upstream to begin work to re-
plenish this inventory. Prior research such as that reported 
in Hopp and Spearman (1996) have shown that limiting in-
ventories and triggering production in this manner yields 
better system performance when compared to traditional 
MRP/push systems. Alternative pull systems such as the 
CONWIP system (Hopp and Spearman, 1996), General-
ized Kanban Control System (GKCS) and the Extended 
Kanban Control System (EKCS) discussed in Buzacott and 
Shanthikumar (1993), Zipkin (2000), and Liberopoulos and 
Tsikis (2003) also have similar advantages.  
 However, it must be noted that all pull systems (KCS, 
CONWIP, GKCS, EKCS) trigger production to replenish 
inventory already consumed. All customer demands are 
expected to be satisfied from stock, and information about 
future demands may or may not be explicitly used to de-
termine appropriate stocking levels. Recent studies have 
argued that with increased supply chain collaboration and 
information sharing, greater efficiencies can be obtained 
via hybrid PICS that integrate advanced demand informa-
tion (ADI) with pull control (Buzacott and Shanthikumar, 
1993; Karaesman, et al., 2002; Krishnamurthy et al., 2004). 
Some of these studies (Krishnamurthy et al., 2004) also 
suggest that in manufacturing environments with high 
product variety  pull systems could be inefficient and hy-
brid PICS might be imperative. In addition to imposing 
upper bounds on the WIP and finished goods inventory in 
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the system hybrid PICS such as PAC (Buzacott and Shan-
thikumar, 1993), hybrid CONWIP, (Hopp and Spearman, 
1996) include mechanisms to incorporate information 
about future demands and planned lead times to determine 
the release of production orders into different manufactur-
ing stages. While there are several qualitative arguments to 
support the claim that integration of ADI with pull could 
help improve factory efficiencies, little is known about 
how such integration affects performance measures such as 
average level of work in process (WIP) material, average 
number of backorders and average level of finished goods 
inventories. It is also not clear to what extent the benefits 
depend on the quality of information being shared across 
supply chains. Our research provides some initial insights 
in this area. 
 Our work differs from prior studies on the impact of 
information sharing such as those reported in Hariharan 
and Zipkin (1995) and Gallego and Ozer (2001) in two re-
spects. First, we explicitly consider the effect of finite pro-
duction capacity and queuing effects in quantifying the 
performance PICS that incorporate ADI. Second, we inves-
tigate how the benefits from ADI are sensitive to variations 
in the quality of ADI used. A recent study that is most 
relevant to this work is a study by Karaesman et al. (2002) 
that explores the value of ADI for the single stage continu-
ous time make to stock queue. Karaesman et al. (2002)  
show that ADI helps to reduce stock levels only when sys-
tem loads are  reasonable (not too high, not too low). How-
ever, their study assumes perfect information. By consider-
ing imperfect information and pull/kanban type PICS, this 
research compliments the findings presented in Karaesman 
et al. (2002).  
 Analytical models of systems with imperfect informa-
tion can be quite complex due to the underlying stochastic-
ity. As a first step towards understanding such systems, 
and in order to justify investing in efforts to develop such 
models, we conduct simulation studies to assess the impact 
of quality of ADI on performance of PICS. Our study 
yields several interesting performance insights on PICS 
and the quality of ADI and also suggests several opportuni-
ties for future research.  

3 SYSTEM DESCRIPTION  

In this section we describe the manufacturing system being 
studied and list the assumptions made in our analysis. In 
particular, we describe system operation under three differ-
ent PICS (i) pull PICS without ADI, (ii), pull PICS with 
perfect ADI, and (iii) pull PICS with imperfect ADI.   

3.1 System Description 

We consider a system with three manufacturing stages in 
series (denoted by Mi i=1, 2, 3). See Figure 1. Products  are 
sequentially processed in these three manufacturing stages. 
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It is assumed that the manufacturing stages  have finite 
production capacities, implying that products could poten-
tially queue in the buffers between the stages and wait for 
the resources in a manufacturing stage. The output buffer 
at the end of stage 3, denotes the finished goods inventory 
buffer. We assume that there is sufficient supply of raw 
material at the beginning of stage 1.  External customer or-
ders arrive one at a time and are satisfied whenever possi-
ble from units available in the finished goods inventory 
buffer.  If units are not available, customer requests are 
backordered and are satisfied immediately upon availabil-
ity of inventory. Next we describe the operation of the sys-
tem under different PICS.  
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Figure 1: Manufacturing System 

 
 Pull systems without ADI: When the system operates 
under a pull based PICS without ADI, we assume that the 
inventory in the system is limited by the total number of 
kanban cards, denoted by K. Note that this inventory limit 
is for the total inventory in the system and not at each 
manufacturing stage. In other words, we assume that the 
pull control is of the CONWIP type (Hopp and Spearman, 
1996). In the CONWIP form of pull control the kanban 
cards could either be attached to finished parts in the fin-
ished goods buffer or be attached to semi-finished parts in 
the different stages and buffers of the manufacturing sys-
tem. The system then operates as follows. Customer orders 
are satisfied from finished goods, i.e., when an external or-
der arrives, and if there is at least one item in the finished 
goods (FG) buffer, then it is used to satisfy the order. At 
the same time, the kanban card attached to the item is sent 
back to the beginning of the manufacturing stage 1 author-
izing production. The kanban card together with the raw 
material queue for its turn at stage 1 and sequentially get 
processed in stages 1, 2 and 3 before waiting in the fin-
ished goods buffer. If upon order arrival, there are no items 
in the FG buffer, it is  backordered and the order waits un-
til an item is available. See Figure 2. The dynamics of the 
system implies that in the pull system the total work in 
process inventory is at most equal to the total number of 
kanbans, K. Similarly, the system also ensures that the 
number of units in the finished goods inventory is at most 
equal to K. The inventory limit, K and the characteristics 
of the demand and manufacturing processes determine the 
performance measures such as the system throughput, 
manufacturing lead times and the number of backordered 
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demands. For simplicity, we assume that order arrival 
process is Poisson with rate λ and that  manufacturing sta-
tion Mi has exponentially distributed service times with 
mean :i

-1. 
 Pull systems with ADI: Next we consider the system 
operating under pull based PICS with perfect ADI. We as-
sume that each customer places an order with the manufac-
turing facility τ time units in advance of their actual re-
quirement (due date). We call τ the demand information 
lead time. For the case of perfect ADI, we assume that this 
lead time is constant and same for all customer orders.  
Further, we assume that the orders once placed by custom-
ers are not cancelled or changed. Note that the demand 
lead time τ, is external to the manufacturing system, i.e. 
decided by the customer and is different from the planning 
lead time, LT that corresponds to the lead time used by the 
system to plan production. The planning lead time typi-
cally depends on the average manufacturing flow time - the 
average time taken to actually manufacture a unit. 
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Figure 2: Manufacturing System Operating under Pull 
PICS  
  

In view of the available advance demand information 
the manufacturing system might be able to meet customer 
demand with less finished goods inventory than that re-
quired in a system operating under pull PICS without ADI. 
For instance, if the demand lead time τ is significantly 
greater than the planning lead time, the system might not 
need to have any finished goods inventory. In other words, 
the advance demand information can be used to make the 
system operate in a make-to-order mode, i.e. raw material 
release is timed such that a finished product is available 
just in time to meet customer requirements at the due date. 
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Figure 3: System Operating under Pull PICS with ADI 
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To model these effects precisely in our simulation we 
augment our model by introducing order delay stations Oi, 
i=1, 2. See Figure 3. At order delay station O1, the manu-
facturing system introduces a delay T1 = max (0, τ - LT), 
between when an order is received and when it is activated 
upstream to trigger production via raw material release. 
Raw material is released for production, when an activated 
order and free kanban are available upstream of stage 1. As 
with the pull system without ADI, the kanban card stays 
with the part throughout the manufacturing process.  At or-
der delay station O2, the customer order undergoes a delay, 
corresponding to the demand lead time before manifesting 
as a customer demand on the due date, i.e. T2 = τ. On the 
due date, if there is a unit in the finished good inventory 
the demand is satisfied  and the corresponding kanban card 
is released. If there are no units in the finished goods, the 
demand is backordered. Note that when  0 < τ  < LT, it is 
likely that on the due date, a particular customer demand is 
satisfied from existing finished goods inventory and the 
production triggered by this order is merely used to replen-
ish the inventory consumed to fulfill that order. In other 
words, depending upon whether the actual manufacturing 
flow time is greater or less than τ, the customer orders 
might be satisfied from stock or by making products to or-
der. Clearly, a system with τ =0 corresponds to the case 
with no ADI and the manufacturing system must operate in 
a make-to-stock mode. The factors affecting system per-
formance are the demand lead time, τ, and planning lead 
time, LT, the number of kanbans, K, and the characteristics 
of the manufacturing processes and demand arrivals. Note 
that the system described above is closely related to the 
policy C described in Liberopoulous and Tsikis (2003) and 
that under certain limiting conditions of the parameters (τ, 
LT, K), the hybrid PICS described above reduces to the 
other PICS, such as pull-kanban (τ=0, K<∞), and MRP 
(0<τ< ∞, K=∞) systems.  
 Pull systems with imperfect ADI: Finally, we consider 
the system operating under pull type PICS with imperfect 
ADI. Imperfections in ADI could result due to randomness 
in demand lead times, discrepancies between order quanti-
ties and actual demand, discrepancies in quoted due dates 
and actual need dates. In this paper, we report findings re-
lated to one form of imperfection in ADI, namely, ran-
domness in demand information lead times. The operation 
of the system is similar to that with perfect ADI, except for 
one key difference - in the case of imperfect ADI, the de-
mand information lead times for all customers are not con-
stant and equal to τ. Although customers try to place orders 
τ time units before the due date, the exact timing of their 
order placement is random. In other words, demand infor-
mation lead times of individual customer orders are sam-
pled from a probabilistic distribution with mean τ. For the 
purpose of this study, we assume that this distribution is 
exponential, since this choice allows us to study the impact 
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of the high degree of variability that might exist in demand 
information lead times.  

4 SETUP OF SIMULATION EXPERIMENTS 

In this section, we describe the details of the simulation 
experiments. Section 4.1 describes the details of the simu-
lation model when the system operates under pull strategy 
with ADI. Section 4.2 lists the experimental factors and 
describes the design of the simulation experiment.  

4.1 Simulation of Pull Strategy with ADI 

The simulation experiment conducted as part of this study 
was done using Arena® simulation software, version 
5.00.02. (For more information on Arena® visit 
www.arenasimulation.com.) We describe the simulation 
model in detail for the system operating under a pull sys-
tem with perfect ADI and comment on how this model is 
different from the simulation models for the other two 
PICS. The simulation model consists of three Create 
blocks, one for the orders, one for the kanban cards at the 
FG area, and the other for the kanban cards at the begin-
ning of the stage 1. The three Create blocks generate the 
entities needed at time zero.  The orders created are imme-
diately sent to a Process block where the orders are re-
leased into the system after exponentially distributed time 
intervals with mean λ-1.  When an order is released, a Sepa-
rate block simultaneously creates a duplicate of the order.  
The first copy is sent to the delay node O2 , and the other 
copy is sent to the node O1 where it becomes an activated 
order after waiting for a duration corresponding to max (0, 
τ - LT) time units. Both nodes (O1 and O2) are represented 
by Process blocks.  Once released from the node O1 at the 
beginning of the station, the activated order is routed to a 
Match block that models a fork/join station.  At this block, 
an activated order, a kanban card, and a raw material unit, 
are matched before being routed to the queue at station M1.   
 The processes at stations M1, M2, and M3, are simu-
lated using three Process blocks. Each process block is 
comprised of an infinite queue and an exponential server 
with mean service time equal to 1.   Each entity waits in 
queue at machine Mi, while the server empties the queue 
using a FCFS discipline. Once at the machine, an entity 
seizes the machine and undergoes an exponential delay 
prior to releasing the resource.  Subsequent to departure 
from Machine 3, an entity enters a Match block where a 
unit in FG is matched with a customer demand. When the 
match occurs, at a Separate block the demand and the kan-
ban are separated. The demand leaves the system with a 
unit of inventory, and the kanban card is sent back to the 
beginning of the station M1. A series of Assign and Record 
blocks are used to record the parameters of interest. 
 The simulation model for a system operating under 
pull system without ADI is similar, except that in this case, 
6
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we set τ= 0.  For a system operating under pull system with 
imperfect ADI, corresponding to each customer order we 
define an attribute corresponding to its demand informa-
tion lead time. The value of this attribute is drawn from an 
exponential distribution with mean τ and this value is used 
to determine the delays at O1 and O2 corresponding to this 
order. Figure 4 provides a display of the system model in 
Arena. Note that in the figure, we omit displaying some of 
the record blocks for simplicity. 

4.2 Design of the Simulation Experiments 

The simulation experiments focus on the impact of four 
key factors and their effect on different measures of system 
performance. These include: (i) number of kanban cards, 
K, (ii) the arrival rate of orders, λ , (iii)  the target level fin-
ished goods inventory, FG, and (iv) demand information 
lead time, τ. For the number of kanban cards we use three 
levels, K =5, 10, 20. For the arrival rate of orders we use 
four levels of   λ= 0.5, 0.6, 0.7, and 0.8. For the initial level 
of finished goods inventory, we consider three levels,  0, 
K/2 and K. Note that this implies that the initial inventory 
at FG for these three cases will be equal to 0, K/2 and K 
respectively. When the initial FG inventory is x (x=0, K/2, 
K), we assume that all the remaining K-x  kanbans are in 
stage 1. This yields 9 cases in total. When K=5, initial FG 
inventory could take values 5, 3, and 0 respectively. Simi-
larly when K=10, initial FG inventory could take values of 
10, 5, and 0 respectively, and finally when K=20, initial 
FG inventory could take values of 20, 10, and 0 respec-
tively. For pull systems with ADI, we also vary the amount 
of demand information lead time, τ. We use seven levels 
corresponding to τ = 0 (no ADI), 0.25 LT, 0.5 LT, 0.75 LT, 
1 LT, 1.5 LT, and 2 LT. When perfect ADI is available and 
τ =2LT, then information regarding each demand is ob-
tained exactly 2LT time units in advance. If demand in-
formation is not perfect, then for the same situation, de-
mand information is obtained τ  time units in advance, 
where τ is drawn from an  exponential distribution with 
mean 2LT.  

In all our experiments, we assume that the service 
times at the machines have an exponential distribution with 
mean, :i

-1=1, i =1, 2, 3. We also assume that arrival proc-
ess of demand and orders are Poisson. These assumptions 
are not critical in a simulation model, but have been made 
to enable comparison with future analytical queuing mod-
els. In summary, we have a general full factorial experi-
mental design with four factors. Table 1 represents all the 
experiments for the case of pull systems with perfect ADI 
and K = 5. Similar sets of experiments are used for K=10 
and K=20. These result in an overall set of 252 experi-
ments for the case of systems operating under pull PICS 
with perfect advance demand  information. In Table 1, a 
kanban allocation labeled “K-i” denotes the case where the 
initial finished goods inventory level is i. For each experi-
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ment we run 50,500 units through the system. In each run, 
the statistics corresponding to the first 500 orders are dis-
carded to account for transient start-up effects. 

    The estimates of the lead time, LT for the experi-
ments with ADI are obtained simulation results for the cor-
responding experiment with no ADI. For example, the first 
set in Table 1 corresponds to K=5, λ=0.8, and an initial fin-
ished goods level of 5.  We run this simulation experiment 
with τ = 0 LT and record the average manufacturing lead 
time for that case over all the replications. We set LT to 
this average value and use this value to compute the corre-
sponding order delays at O1 for the cases where τ= 0.25 
LT, 0.25 LT, 0.5 LT, 0.75 LT, 1 LT, 1.5 LT, and 2 LT. For 
systems with imperfect ADI, we run simulations for a re-
stricted set of experiments. In particular, we run simula-
tions for λ= 0.5 and 0.8, with τ varying from 0.25 LT to 1 
LT. The finished goods allocation considered are similar to 
that considered for the case with perfect ADI. The metrics 
of interest are the total WIP, average number of units in the 
FG area, and average number of backorders. 

5 PULL SYSTEMS WITH PERFECT ADI 

This section discusses the simulation results related to the 
systems with perfect ADI. We discuss the impact of key 
parameters on the performance of pull systems with perfect 
ADI. Subsequently, in Section 6 we analyze the impact of 
imperfect ADI on system performance.  

5.1 Results and Insights 

Our first set of results demonstrates the impact of ADI on 
the average total work in process (Total WIP) inventory in 
the system. We define the average Total WIP as the aver-
age number of units in Stages 1, 2 and 3, i.e. we do not in-
clude the average number of units in the finished goods in-
ventory. Figure 5 plots the variation of Total WIP with 
system load, denoted by λ for three different values of K, 
namely, K=5, 10 and 20. For each value of K, we consider 
the three levels of initial finished goods inventory,  K, K/2 
and 0 respectively, and 7 cases of ADI with τ ranging from 
is 0LT to 2LT. This implies that for each value of K, Fig-
ure 5 plots the variation of total WIP with λ  for 21 possi-
ble scenarios. From the figure we notice that as expected, 
the total average WIP increases with increase in K. Addi-
tional kanbans allow the system to achieve higher through-
put, but this higher throughput also implies higher WIP in-
ventories. However, the figure shows that the total average 
WIP is fairly insensitive to initial finished good allocation 
or amount of ADI.  This is to be expected since WIP in-
ventories are primarily a function of the system load.  
 On the other hand, Figures 6 (a) and (b) demonstrate 
an important effect of integrating ADI into pull systems. 
Figure 6(a) plots the variation of average number of back-
orders,  denoted by  BO with system load denoted by  λ.  
7



Krishnamurthy and Claudio 
 

S2

Create_K

Resources
DemandCreator
Resource 1
Resource 2
Resource 3

Queues
Match 2.Queue1
Match 2.Queue2
Demand Creator.Queue
S1.Queue
Match 1.Queue1
Match 1.Queue2
S3.Queue
S2.Queue

End

S1

Entities
Entity 3
Entity 1
Entity 2

Kanban System

Project Counters
finalprod

finalprod

Count
S3

Separate 2
Original

Duplicate

AdvancedOrder
Tmaxof
Tmaxof0
Ttao
Ttao0
T0
T1
T2
T3

Attributes
Max of 0 or Tao minus LT
Tao
ManufLeadTime
Lead Time
Record 3
Record 1
Record 2

Tallies

Record_
LeadTime

Create_
Demand

Demand
Creator

Separate 1
Original

Duplicate

Match 1
Match 2

Delay TaoMax 0 or Tao
minus LT

Create_FG

Assign 1

0

0

0

0 0

0

0

0
0 0

0

00

0

S2

Create_K

Resources
DemandCreator
Resource 1
Resource 2
Resource 3

Queues
Match 2.Queue1
Match 2.Queue2
Demand Creator.Queue
S1.Queue
Match 1.Queue1
Match 1.Queue2
S3.Queue
S2.Queue

End

S1

Entities
Entity 3
Entity 1
Entity 2

Kanban System

Project Counters
finalprod

finalprod

Count
S3

Separate 2
Original

Duplicate

AdvancedOrder
Tmaxof
Tmaxof0
Ttao
Ttao0
T0
T1
T2
T3

Attributes
Max of 0 or Tao minus LT
Tao
ManufLeadTime
Lead Time
Record 3
Record 1
Record 2

Tallies

Record_
LeadTime

Create_
Demand

Demand
Creator

Separate 1
Original

Duplicate

Match 1
Match 2

Delay TaoMax 0 or Tao
minus LT

Create_FG

S2

Create_K

Resources
DemandCreator
Resource 1
Resource 2
Resource 3

Queues
Match 2.Queue1
Match 2.Queue2
Demand Creator.Queue
S1.Queue
Match 1.Queue1
Match 1.Queue2
S3.Queue
S2.Queue

End

S1

Entities
Entity 3
Entity 1
Entity 2

Kanban System

Project Counters
finalprod

finalprod

Count
S3

Separate 2
Original

Duplicate

AdvancedOrder
Tmaxof
Tmaxof0
Ttao
Ttao0
T0
T1
T2
T3

Attributes
Max of 0 or Tao minus LT
Tao
ManufLeadTime
Lead Time
Record 3
Record 1
Record 2

Tallies

Record_
LeadTime

Create_
Demand

Demand
Creator

Separate 1
Original

Duplicate

Match 1
Match 2

Delay TaoMax 0 or Tao
minus LT

Create_FG

Assign 1

0

0

0

0 0

0

0

0
0 0

0

00

0

 
 

Figure 4: Simulation Model in Arena 

 

Table 1:  List of experiments when K=5 
K λ

Allocation 
of K τ λ

Allocation 
of K τ λ

Allocation 
of K τ λ

Allocation 
of K τ

5 0.8 0-5 0 LT 0.7 0-5 0 LT 0.6 0-5 0 LT 0.5 0-5 0 LT
5 0.8 0-5 0.25 LT 0.7 0-5 0.25 LT 0.6 0-5 0.25 LT 0.5 0-5 0.25 LT
5 0.8 0-5 0.5 LT 0.7 0-5 0.5 LT 0.6 0-5 0.5 LT 0.5 0-5 0.5 LT
5 0.8 0-5 0.75 LT 0.7 0-5 0.75 LT 0.6 0-5 0.75 LT 0.5 0-5 0.75 LT
5 0.8 0-5 1 LT 0.7 0-5 1 LT 0.6 0-5 1 LT 0.5 0-5 1 LT
5 0.8 0-5 1.5 LT 0.7 0-5 1.5 LT 0.6 0-5 1.5 LT 0.5 0-5 1.5 LT
5 0.8 0-5 2.0 LT 0.7 0-5 2.0 LT 0.6 0-5 2.0 LT 0.5 0-5 2.0 LT
5 0.8 2-3 0 LT 0.7 2-3 0 LT 0.6 2-3 0 LT 0.5 2-3 0 LT
5 0.8 2-3 0.25 LT 0.7 2-3 0.25 LT 0.6 2-3 0.25 LT 0.5 2-3 0.25 LT
5 0.8 2-3 0.5 LT 0.7 2-3 0.5 LT 0.6 2-3 0.5 LT 0.5 2-3 0.5 LT
5 0.8 2-3 0.75 LT 0.7 2-3 0.75 LT 0.6 2-3 0.75 LT 0.5 2-3 0.75 LT
5 0.8 2-3 1 LT 0.7 2-3 1 LT 0.6 2-3 1 LT 0.5 2-3 1 LT
5 0.8 2-3 1.5 LT 0.7 2-3 1.5 LT 0.6 2-3 1.5 LT 0.5 2-3 1.5 LT
5 0.8 2-3 2.0 LT 0.7 2-3 2.0 LT 0.6 2-3 2.0 LT 0.5 2-3 2.0 LT
5 0.8 5-0 0 LT 0.7 5-0 0 LT 0.6 5-0 0 LT 0.5 5-0 0 LT
5 0.8 5-0 0.25 LT 0.7 5-0 0.25 LT 0.6 5-0 0.25 LT 0.5 5-0 0.25 LT
5 0.8 5-0 0.5 LT 0.7 5-0 0.5 LT 0.6 5-0 0.5 LT 0.5 5-0 0.5 LT
5 0.8 5-0 0.75 LT 0.7 5-0 0.75 LT 0.6 5-0 0.75 LT 0.5 5-0 0.75 LT
5 0.8 5-0 1 LT 0.7 5-0 1 LT 0.6 5-0 1 LT 0.5 5-0 1 LT
5 0.8 5-0 1.5 LT 0.7 5-0 1.5 LT 0.6 5-0 1.5 LT 0.5 5-0 1.5 LT
5 0.8 5-0 2.0 LT 0.7 5-0 2.0 LT 0.6 5-0 2.0 LT 0.5 5-0 2.0 LT  
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Figure 5: Comparison of WIP vs. λ for All the Cases of K, 
Allocation of K, and Variations of τ. 
 
Figure 6(b) plots the variation of average finished goods 
inventory, denoted by  FG with system load for the same 
cases. In the legend for the figures, the cases are denoted 
by the label 10-τ-3, implying that K=10 and the initial fin-
ished goods inventory is 0 (allocation K-0) in all cases. 
 The demand information lead time, τ ranges from 0LT 
(case 10-1-3), 0.5 LT (case 10-3-3), to 1 LT (case 10-5-3). 
From the plots we make several observations. First, we 
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note that the number of backorders increases significantly 
with system load. As expected, as the number of backor-
ders increase, the average amount of finished goods inven-
tory reduces (less than one unit in this case). Second, we 
observe that at high system loads, integrating ADI with 
pull systems could significantly decrease backorders (thus 
improving customer service levels). Third, we note that 
this improved service level is obtained without significant 
increase in finished goods inventories. This coupled with 
the observation in Figure 5, that the total average WIP is 
fairly insensitive to ADI, leads us to conclude that, integra-
tion of ADI with pull systems can help significantly im-
prove customer service levels without significant increase 
in inventory holding costs. For instance, we note that for 
the case where λ=0.8, investment in ADI allows us to re-
duce the average amount of backorders by about 40 %, 
from over 18 units (when τ=0LT)  to a little over 10 units 
(when τ=1LT). However, using ADI to potentially build 
ahead only resulted in an increase in finished goods inven-
tory by roughly 1 unit on the average. 

 The next figure explores the effect of ADI on average 
backorders for different initial allocations of finished 
goods inventories. Figure 7 plots the average backorders 
against system load (λ) for three different cases with K=5 
and initial allocations of finished goods inventories corre-
sponding to 0-K, K/2-K/2 and K-0 respectively. In all three 
cases, we study the impact of ADI on the average number 
of backorders by considering cases where τ takes 5 differ-
ent values (0LT, 0.5LT, 1LT, 1.5LT, 2LT). Figure 7(a) 
plots the tradeoff when the initial finished goods inventory 
level is 5 (allocation 0-K), corresponding to K=5. The spe-
cific cases for the different ADI scenarios are denoted by 
(5-1-1) to (5-7-1) with the case 5-1-1 denoting the case 
with 5-1-1 and the case 5-7-1 denoting the case with 
τ=2LT. Figure 7(b) plots the tradeoff when the initial fin-
ished goods inventory level is 3 (allocation K/2-K/2). The  
8
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Figure 6: (a) Comparison of BO vs. λ. (b) Comparison of FG vs. λ. Both Figures Plot the Tradeoff When K=10, Target Fin-
ished Goods Inventory is 0 (10- τ -3), and τ= 0LT (10-1-3), 0.5 LT (10-3-3), and 1 LT (10-5-3). 
 

specific cases for the different ADI scenarios are denoted 
by (5-1-2) to case (5-7-2). Finally,  Figure 7(c) plots the 
tradeoff when the initial finished goods inventory level is 0 
(allocation K-0) with the specific cases for the different 
ADI scenarios being denoted by (5-1-3) to case (5-7-3). 

The graphs indicate that investment in ADI helps to 
reduce the average number of backorders. Further, this de-
crease is fairly independent of the initial allocation of fin-
ished goods inventory. Additionally, we observe (as in 
Figure 6) that as the amount of ADI (τ ) increases,  the av-
erage number of backorders decrease and that this decrease 
is more significant at higher loads (λ). At lower system 
loads ( λ= 0.5) we see that the pull systems without ADI 
are sufficient to ensure that the average number of backor-
ders is less, implying that investments in ADI might not be 
necessary in these situations. Further, it also appears that 
the percentage decrease in backorders is a function of the 
number of kanbans in the system. While investments in 
ADI yielded a 40% reduction in backorders for the system 
settings in Figure 6 with K=10, only 20% reductions in 
backorders were obtained via investments in ADI for the 
system settings in Figure 7 with K=5. 

Next, we study this effect of increasing the kanbans 
cards on backorders in systems with ADI in more detail. 
Figure 8 plots the average backorders against system load 
(λ) for three different cases with K=5, K=10 and K=20 re-
spectively. For each of these cases, we consider systems 
where the initial finished goods inventory is 0, correspond-
ing to the allocation K-0 of the K kanbans. In all three 
cases, we study the impact of ADI on the average number 
of backorders by considering cases where τ takes 5 differ-
ent values (0LT, 0.5LT, 1LT, 1.5LT, 2LT). Corresponding 
to whether, K=5, 10 or 20, the different cases are labeled 
(5-1-3) to (5-7-3), (10-1-3) to (10-7-3) and (20-1-3) to (20-
7-3), respectively. From the graphs, we observe that the 
average number of backorders decreases as K increases.  
We see the plots for K= 5, 10 and 20 in Figure 8 (a), (b) 
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and (c) respectively.  It appears that from a system point of 
view, there are two main options for reducing backorders  
and improving service levels, namely, investing in ADI, 
(as suggested by Figure 7) or investing in additional inven-
tory (as suggested by Figure 8). The average number of 
backorders can be decreased by investing in additional in-
ventory (increasing K). However, further reductions in 
backorders can be achieved by investing in ADI. The 
graphs also indicate that the beyond a certain point, addi-
tional investment in ADI might not yield significant reduc-
tion in backorders. For instance, when K=10 and K=20, the 
reduction in the average number of backorders as τ in-
creases from 1LT,  to 1.5 LT and 2 LT,  is negligible. 
 These analyses indicate that the improvements ob-
tained by integrating ADI with pull systems depend upon 
parameters such as inventory limits, production capacities, 
and amount of demand information lead time. In order to 
understand the effect of integrating ADI with pull at an ag-
gregate level, we compare systems in different settings in 
terms of a total cost (TC) function that include the cost of 
work in process (WIP), finished goods (FG), and backor-
ders(BO). We write  
 
 TC = h × WIP + f × FG + b × BO (1) 
 
where h is the unit holding cost, f is the unit holding cost of 
finished goods, and b is the penalty cost for each backor-
dered unit. For our comparison, we assume h = $1/unit, f=  
$2/unit, and b= $10/unit, although the performance trends 
reported below hold for other values in this relative range 
of values for h, f and b. After calculating the total cost, we 
plot the results for the different levels of τ for two cases of 
λ, namely, λ =0.5 and λ =0.8.   

Figure 9 presents the plots for such cases when K=10 
and K=20.  For each value of λ and K, we consider the case 
where the target level of FG inventory is (i) 0 denoted by 
the label (K-0) and (ii) K denoted by the label (0-K). 
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Figure 7: Comparison of BO versus λ for Different  Figure 8: Comparison of BO versus λ for Different  
Cases When K=5. Cases When K=5, 10 and 20 
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Figure 9: Total cost  for the different levels of τ. a) K=10, 
λ= 0.5  b) K=20, λ= 0.5  c) K=10, λ= 0.8 d) K=20, λ= 0.8   
 

These plots provide us the following insights.  First, we 
see that when the target finished goods level is K, i.e. case 0-
K, investment in ADI does not provide any cost reduction. 
This is understandable, since in this situation, customers or-
ders are primarily served from existing finished goods stock.  
 In this case, the system operates in a make to stock 
mode even in the presence of ADI and the ADI is merely 
used to replenish consumed inventory. However, we note 
that there is an inherent disadvantage of operating a system 
under this policy, since satisfying demands from stock re-
quires prior commitment of expensive production re-
sources and committing systems ability to be responsive to 
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fluctuations in demand. While this strategy might be rea-
sonable and possibly preferable in high loads (λ =0.8), this 
strategy can be highly inefficient at low values of system 
loads (λ =0.5) which could correspond to cases where the 
market demand is fragment among the different products. 
The limited effect of ADI at higher loads observed in our 
simulation study has been observed in other studies on 
base stock policies with ADI (Karaesman, et al. (2002). 
Second, it reinforces our earlier observation that in many 
cases, investment in ADI beyond a certain levels might lot 
yield significant benefits (see graphs for the case where the 
target finished goods level is zero.  

6 PULL SYSTEMS WITH IMPERFECT ADI 

This section discusses the simulation results related to sys-
tems with imperfect ADI. We focus only on the effect of 
variance in demand information lead times, i.e., we assume 
that although demand information is obtained on the aver-
age τ time units in advance, there are no guarantees with 
respect to demand information lead times for a particular 
order. For individual orders, the demand information lead 
time for particular orders is distributed randomly about this 
mean τ. In particular we assume that this demand informa-
tion lead time distribution is exponential.  

6.1 Results and Insights 

In order to compare perfect versus imperfect ADI we plot 
the average number of backorders versus K for the case 
where the target finished goods inventory level is 0 (case 
K-0) .We do this for the cases where τ is 0.5 LT and 1 LT 
and  λ = 0.8 and λ = 0.5  respectively. We see from Figures 
10 and 11 that as expected, the number of backorders de-
creases with increase in K and increase in τ. Further, the 
benefits of ADI decreases with increase in variance of 
ADI. Our experiments provide insights into whether supply 
chain managers should invest in efforts that increases the 
amount of demand information lead time or invest in ef-
forts that reduces the variability in the demand information 
lead time provided by the customers. It appears that the 
performance of the system is less sensitive to variance in 
demand information lead times.  
 The figures indicate that even if demand information 
has significant variation about the mean for particular or-
ders, the average number of backorders (and hence service 
levels) remain reasonable. The graphs also indicate that the 
magnitude of the demand information lead time is more 
important than the variability in this lead time. For in-
stance, a system with imperfect ADI where the demand in-
formation lead time is exponentially distributed about a 
mean of τ =LT results in fewer backorder than a system 
with perfect ADI but with demand information lead time 
being equal to τ=0.5 LT for each order. This robustness of 



Krishnamurthy and Claudio 

 
system performance against variability in demand informa-
tion lead times can be of significant value in prioritizing 
efforts targeted at improving the quality of ADI. 
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Figure 10: Backorder vs. K Comparing Perfect vs. Imper-
fect ADI for λ = 0.8, When τ = 0.5 LT and 1 LT. 
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Figure 11: Backorder vs. K Comparing Perfect vs. Imper-
fect ADI for λ = 0.5, When τ = 0.5 LT and 1 LT.  

7 SUMMARY AND CONCLUSIONS 

In this paper we used simulation experiments to investigate 
the performance of PICS that integrate ADI with pull-
kanban type systems. We studied the impact of several de-
sign parameters such as kanban card limits, target finished 
goods inventory levels, and the amount of demand infor-
mation available on various performance measures. Our 
study showed that in many situations, integrating ADI with 
pull systems provides opportunities for efficiencies that 
might be significantly greater than that available using pull 
systems alone. Further more, we also showed that the per-
formance of systems operating under such PICS could be 
fairly robust to the quality of ADI being shared, particu-
larly with respect to the variance in the demand informa-
tion lead times. Our ongoing research involves investigat-
ing the performance of pull systems with ADI in the 
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presence of other imperfections in quality of information 
and also developing analytical queuing models that will 
provide more insights into system performance.  
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