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ABSTRACT 

The supply chain of Freescale Semiconductor from fabri-
cation through final test and delivery was modeled and 
analyzed using discrete event simulation in Arena.  Frees-
cale starts products in manufacturing based on a make-to-
order and make-to-stock master production schedule. Since 
customer lead time is often less than the supply chain cycle 
time, Freescale maintains strategic safety stock throughout 
the supply chain and as finished goods inventory.  Manu-
facturing entry rate is determined by the amount of product 
in WIP and inventory.  Our analysis concentrates on the 
relationship between on-time delivery in the major supply 
chain segments and on-time delivery to the customer in an 
environment of significant inventory and WIP level 
changes.  The goal is to predict the effect of internal on-
time delivery, inventory and WIP changes on the customer 
order fulfillment service level.  In our analysis, we evaluate 
supply chain production and inventory control policies and 
the impact of lead time reductions. 

1 INTRODUCTION 

Freescale Semiconductor, Inc. is a global semiconductor 
company focused on providing embedded processing and 
connectivity products to large, high-growth markets. The 
company provides products to the automotive, networking 
and wireless communications industries. Freescale offers 
families of embedded processors, which provide the basic 
intelligence for electronic devices and can be programmed to 
address specific applications or functions, as well as a broad 
portfolio of complementary devices that provide connec-
tivity between products, across networks and to real-world 
signals, such as sound, vibration and pressure. Through its 
embedded processors and complementary products, Frees-
cale is able to offer customers platform-level products. On 
October 6, 2003, Freescale was created when Motorola an-
nounced its intention to separate its semiconductor opera-

 

1718
tions into a separate company. In late 2004, it was spun off 
and Motorola ceased to be a controlling stockholder. 
 The semiconductor industry is a rapidly changing indus-
try with shortening life cycles, fluctuating demand and con-
tinuous price and cost pressures.  To keep up with this dy-
namic environment, a company must be flexible in the 
quantity and type of product kept in inventory.  On hand in-
ventory loses value quickly and in contrast, not enough in-
ventory can lead to stock outs and late deliveries.  Therefore, 
there is an on going balance in the industry between mini-
mizing inventory and keeping on time service levels at an 
optimum point.  Additionally, a company must be able to 
predict with a reasonable degree of certainty the result of 
changes in this balance and the impact on customer delivery. 

When modeling a complex process such as manufac-
turing and assembly supply chain, it is best to start as sim-
ple as possible and expand only as necessary.  With this in 
mind, the objective was to create a model that is as accu-
rate and simple as possible to drive ease and flexibility of 
use. The model in this application is used for aggregate 
level inventory planning in the supply chain. Hence, rather 
than considering hundreds of individual SKU’s, modeling 
is done at an aggregate level thus eliminating several layers 
of data and modeling complexity. The resultant model is a 
queuing-based simulation that approximates various ele-
ments of a semi-conductor supply chain in order to capture 
the aggregate level inventory behavior and service levels.  
Other related work on semiconductor supply chain produc-
tion and inventory control that contains more detailed, 
complex, and sophisticated models is found in Braun et al. 
(2003), Vargas-Villamil et al. (2003), and Kempf (2004). 
For simplicity and specificity, we did not directly leverage 
this other work in our paper. However, we plan to consider 
certain aspects of it in our future work. 

This simulation study has helped Freescale to better 
understand the relationship between inventory, internal on 
time delivery and customer delivery metrics. As a result, 
Freescale Semiconductor is more accurately able to model 
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the result of operational decisions, predict the impact on 
customer on time delivery, and set the right expectations 
internally to drive supply chain behavior.  This is critical 
for long lead-time supply chains such as those found in 
semi-conductor fabrication.  Secondly, sensitivity analysis 
on fab lead times revealed a lead time reduction of 20% 
substantially improves service levels without a significant 
increase in inventory levels. 

2 MODEL CREATION PROCESS 

When creating this model, several steps had to be taken to 
accurately rationalize all of the processes and inventories.  
First, an outline of the supply chain needed to be created.   
This can be seen in Figure 1.   This was done to develop 
and quantify the links between each process in the supply 
chain and their corresponding inventory amounts and im-
pacts on customer delivery rates for Freescale.  Once this is 
accomplished, each process can be broken down to obtain 
a more realistic model.  
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Figure 1: Overview of Freescale Supply Chain 
 

Next, we needed to partition off the supply chain in 
order to better understand how all of the processes interact.   
There are two main divisions called the front end and back 
end.  The front end consists of the wafer fabrication and 
wafer probe.  At wafer probe, a wafer is subdivided into 
many die (die are the basic logic elements that used in 
computer chips and other electronic devices).  The number 
of die per wafer varies based on the size of the wafer and 
percent of acceptable die (i.e., the yield percentage). Wafer 
sizes range from a few inches to a few feet in diameter and 
the yield percentage can vary between 80-90%.  Note, in 
this study yield loss is ignored in order to reduce the com-
plexity of the simulation model. In future work, we plan 
embellish the simulation model with more detail and add 
such things as yield loss (see Section 7 for more discussion 
on future work).  

The back end consists of the assembly and final test 
processes.  This is where the die is placed in a product, 
tested, and packaged to be a finished good.  Both the front 
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end and back end have a metric called Factory On Time De-
livery (FOTD) to determine the on time service rates.  There 
is an additional logistics process to deliver the finished 
goods and another metric to count on time delivery to cus-
tomers called Customer On Time Delivery (COTD).  The 
COTD is the most important metric in that it measures the 
total on time service rate to customers.  These service level 
metrics are what we want to relate to inventory levels. 

When the decision was made to create a simulation 
model, more detailed information was needed.  This began 
with the front end which includes everything from manu-
facturing order creation through the die and rawstock in-
ventory (see Figure 1 – this is also referred to as die cage 
inventory).  Freescale provided data from the past year to 
show the times orders spent in front end.  After eliminating 
outliers, a proper mean and standard deviation was found.  
This same reasoning was taken for all other processes.  
Data was gathered over the same time horizon from Frees-
cale for each process and then rationalized to create distri-
butions in the simulation model. 

3 CONCEPTUAL DESCRIPTION OF THE 
SIMULATION MODEL 

A conceptual overview of the simulation model of the sup-
ply chain is given in Figure 2.  There are three main por-
tions of the supply chain: front end (fabrication and wafer 
probe), back end (assembly and final test), and logistics.  
In front end, manufacturing orders are created and wafers 
are sent through the fab and probe to produce die.  Back 
end takes the die matched with a projected customer order 
to create a fully functional product.  Logistics takes the fin-
ished goods with a confirmed customer order to deliver the 
final product.  Confirmed customer orders differ from pro-
jected customer orders due to order changes and demand 
fluctuations that occur over the period of time it takes for 
orders move through the back end of the supply chain.  
 There are two main inventories.  The first is between 
die cage inventory between front end and back end: the 
second is the finished goods inventory located between 
back end and logistics. The other two inventories shown in 
Figure 1 between wafer fab and wafer probe and between 
assembly and final test are not explicitly represented in the 
model because they are much smaller inventories in prac-
tice due to the fact that these front end and back end activi-
ties are completed in pairs often in the same facilities. 

Manufacturing orders are created on a constant basis 
everyday to approximate aggregate demand creating a con-
stant flow of materials into the fabrication facility. While 
this is an approximation, it works well due to the level of 
aggregation and to the fact that manufacturing orders are 
released in controlled manner and are not subject to the 
same level of fluctuations as end customer demand.  The 
manufacturing orders can be increased or decreased based 
on the size of inventory in the die cage waiting for cus-
tomer orders as shown by the feedback loop in Figure 2. 
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Figure 2:  Overview of Simulation Model  

 
When the orders reach the fabrication facility, they are 

processed (fabricated, probed, and then cut into die) and 
sent to the die cage inventory.  The total amount of time 
orders spend in the front end of the supply chain was found 
to be approximately normally distributed. This distribution 
was created with the use of actual fabrication data from 
Freescale.  All parts were aggregated and the distribution is 
representative of the entire inventory. On average, front 
end time represents about 80 percent of the total time or-
ders spent in the supply chain.  In the simulation, the time 
in the front end is recorded for each order and then it is 
compared to a benchmark set by Freescale to calculate 
front end FOTD.  This benchmark is set such that order cy-
cle time can be effectively compared to its planned time no 
matter the part.  This also has been aggregated due to each 
part having a different planned cycle time.  

Next, manufacturing orders are converted into the av-
erage equivalent number of customer orders.  The conver-
sion factor is randomly generated from a discrete probabil-
ity distribution determined from Freescale historical data 
and expert opinion.  These equivalent number of customer 
orders are matched with projected customer orders if the 
latter are waiting in backlog, else they are placed into the 
die cage as inventory to wait for matching with projected 
customer orders when the latter are generated at a later 
point in time.  After this matching occurs, projected cus-
tomer orders proceed to the back end stage.  Projected cus-
tomer orders are generated at a constant rate. Similar to 
manufacturing orders, this approximation is sufficient due 
to the level of aggregation and the somewhat controlled na-
ture in which projected customer orders are released to the 
back end. It is important to note that that the stochastic na-
ture of demand is accounted for in the deviation of final 
customer orders from projected customer orders at the end 
of the supply chain model. Based on historical data, this 
deviation was found to be approximately normally distrib-
uted with a coefficient of variation of about twelve percent. 
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As mentioned previously, the level of die cage inven-
tory acts as a control on the rate at which manufacturing 
orders are released into the fab. If die cage inventory ex-
ceeds a certain maximum level (we will refer to this as  
MaxDieQueue for short) the release rate is decreased until 
the inventory drops back below MaxDieQueue. 
MaxDieQueue is a design parameter that is determined in 
our simulation analysis.   

In the back end, the delay times for assembly and test 
are both modeled using triangular distributions. Parameters 
for these distributions were based on historical data and 
expert opinion. The latter was used because of the rela-
tively short amount of time spent in these steps compared 
to fabrication.  Also, assembly and test have little varia-
tions in time required to finish compared to that of fabrica-
tion and probe.  The time taken from the creation of a pro-
jected customer order until it finishes back end is 
compared against a Freescale benchmark time to calculate 
back end FOTD.    

After leaving back end, the projected customer order is 
either matched up with a waiting final customer order and 
shipped via logistics or it goes into finished goods inven-
tory and waits to be matched to a final customer order. 
Again the discrepancy between projected and final cus-
tomer orders is intended to represent supply/demand mis-
matches due to errors in forecasting random demand. Simi-
lar to the control defined by die cage inventory on the 
release rate of manufacturing orders, the level of finished 
goods inventory is used to control the release rate of pro-
jected customer orders (see Figure 2). In other words, this 
is used as a way of controlling mismatches between pro-
jected and final customer orders. Specifically, if finished 
goods inventory exceeds a certain maximum level 
(MaxFGIQueue), the release rate of projected customer or-
ders is decreased until the inventory falls back below 
MaxFGIQueue. MaxFGIQueue is another design parame-
ter that is determined in our simulation analysis. 
0
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The logistics stage is the process to get the matched 

customer orders and deliver them to the appropriate cus-
tomers on time.  For this logistics delay distribution, we 
used average delivery times from historical data.  To en-
sure a tight controlled distribution, we used a triangular 
distribution that had a firm minimum and maximum based 
on expert opinion. Just before the model ends, the time 
from the creation of a final customer order to the end of the 
logistics step is compared against a benchmark time to cal-
culate COTD.  

It is interesting to note that this same model is simple 
and universal enough to be used to illustrate any large 
manufacturing process with several inventories and process 
stages. 

4 ARENA MODEL 

We implemented the simulation in Arena (Kelton et al. 
2004). Figure 3 contains the process flow diagram. Follow-
ing the logic of the process flow diagram, manufacturing 
orders are generated, processed in the fab, and then trans-
lated into the equivalent number of customer orders to 
form die inventory. When projected customer orders are 
generated, they are matched against die inventory and then 
proceed to assembly and test. After assembly and test,  
they become finished goods inventory where they are 
matched against final customer orders. Lastly, orders incur 
a logistics (shipping) delay before reaching the customer.    

By three pairings of Assign/Record modules, the 
model captures the time in the back end of the supply 
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chain, the  time in the front end of the supply chain (i.e., 
from the time a projected customer order is generated until 
the order leaves assembly and test) , and the logistics lead 
time (i.e., from the time the final customer order is gener-
ated until the order is filled). These times are used to calcu-
late the aforementioned service delivery statistics. 

Manufacturing orders and projected customer orders are 
released at a constant rate. Manufacturing order releases are 
controlled by the amount of inventory in the die inventory 
order match queue. Similarly, projected customer order re-
leases are controlled by the amount of inventory in the final 
order match queue. Final customer orders are generated ran-
domly to represent the stochastic nature of demand. Random 
delays occur at the fab, assembly, test, and logistics. 

5 SIMULATION EXPERIMENT 

One of the main objectives of this simulation study for 
Freescale was to understand how they might control order 
release rates into the front end and back ends of the supply 
chain in order to reduce average inventory levels and main-
tain desired service levels. To do this, we ran sensitivity 
analysis on MaxDieQueue and MaxFGIQueue. Note that 
we did not consider sensitivity analysis on the amount by 
which release rates change because these amounts were not 
considered to be highly flexible in practice. In other words, 
there are certain discrete amounts by which these quantities 
can be realistically changed.  
 

Figure 3: Arena Simulation Model of Freescale’s Supply Chain 
1
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Further experimentation considered the impact on in-
ventories and service levels of reducing average front end 
processing time. Front end processing time represents about 
80 percent of total supply chain flow time. By reducing this 
time, we decrease the time necessary to correct shortages or 
stockpiles in inventory.  Faster response time could lead to a 
change in average inventory needed to satisfy on time re-
quirements.  Front end processing time was changed through 
the introduction of a variable called FabTime which repre-
sents the mean number of days in the front end .  
 A scenario is defined by a specific set of values for the 
parameters. Ten simulation replications were made for 
each scenario in order to generate confidence intervals. 
Each replicate is simulated for ten years after a 300 day 
warm-up period. The warm-up period was chosen by vis-
ual inspection using an approach similar to Welch’s proce-
dure (Law and Kelton 2000). One additional measure was 
taken to reduce initialization bias in the statistics. The gen-
eration of the first projected and final customer orders were 
delayed by about the length of the average lead times from 
manufacturing order generation to each of these points in 
the process. This was done so that customer orders would 
not be generated and sit waiting, artificially biasing these 
queue statistics as the first manufacturing orders fill up the 
supply chain. By experimentation, we determined that a ten 
year simulation replication was sufficient because statistics 
had stabilized indicating that we were approximating long-
run steady state results.  

6 SIMULATION RESULTS 

The simulation results that follow are illustrative of the 
type of analysis for which we used the model. We focused 
first on the parameters designed to control the order release 
rate, i.e., MaxDieQueue and MaxFGIQueue. After ranges 
were decided for each parameter, three equally spaced lev-
els were assigned to each parameter. Some additional runs 
were made to illustrate the impact of additional inventories 
on the service levels and to demonstrate the impact of lead 
time reduction on both inventory and service levels. 

Tables 1 and 2 contain queue statistics and service 
level statistics, respectively, generated by Arena. The sce-
narios are defined by the MaxDieQueue and 
MaxFGIQueue pair given in parentheses at the top of each 
column in both tables. For both inventory and backlog, Ta-
ble 1 provides averages and half widths for a 95% confi-
dence interval. Table 2 contains averages and standard de-
viations for the three classifications of service level: early, 
late, and on time. For front end FOTD, a combined 
early/on time percentage exceeding 90% is considered a 
minimum acceptable target level. For back end FOTD and 
COTD, on time percentages alone must exceed this mini-
mum acceptable level because early delivery of product to 
either finished goods inventory or the customer are not 
considered acceptable.  
172
Several patterns emerge from the data Tables 1 and 2, 
most of which are intuitive.  

 
1. From Table 2, it is evident that front end FOTD 

exceeds minimum acceptable service levels and 
remains fairly constant across all scenarios. This 
is expected since MaxDieQueue and 
MaxFGIQueue impact queues following the front 
end. 

2.  As MaxDieQueue increases, the average level of 
die inventory increases, die backlog decreases, 
and  back end FOTD improves. In general, inven-
tory and backlog changes are statistically signifi-
cant (as measured by non-overlapping confidence 
intervals). Back end  FOTD becomes more con-
sistent (standard deviation of  back end FOTD de-
creases). 

3. As MaxDieQueue increases, the average level of 
finished goods inventory generally increases and 
the order backlog generally decreases although 
the results are  not statistically significant. Corre-
spondingly, COTD on time percentages generally 
increase and become more consistent.  Increasing 
MaxDieQueue indirectly impacts the finished 
goods metrics because as more front end inven-
tory becomes available, front end customer orders 
are delayed less often and flow through to the 
back end more quickly. 

4. As MaxFGIQueue increases, the  general trend in 
is an increase in the average level of finished good 
inventory and a decrease in finished goods order 
backlog. However, statistical significance was not 
easy to establish because of the noise in this proc-
ess. The additional noise is due to the aforemen-
tioned mismatch between supply and demand . 

 
It is important to note that none of the scenarios con-

sidered thus far achieve a minimum acceptable COTD. 
Hence, we conducted two more simulation runs with 
MaxDieQueue and MaxFGIQueue pairs of (350,350) and 
(400, 400) (see Tables 3 and Tables 4). Scenario (400,400) 
achieves services levels exceeding 90% for all three stages. 
Additional simulation runs were made to with 
MaxDieQueue and MaxFGIQueue above 400 but it was 
found that inventory levels grew much more rapidly in or-
der to get additional increases in service level.   

Our last scenario shown in the last column of Tables 3 
and 4 (denoted by “LT-20%” as the last term in the paren-
theses) considers a 20% reduction in front end lead time. A 
10% reduction was considered but the results were not in-
cluded because it did not have much on an impact on the 
statistics. A reduction of 20% was deemed to be the largest 
feasible reduction that could be considered at this time. 
Comparing these results with the corresponding scenario in 
Tables 1 and 2 without the lead time reduction (i.e., with 
2
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Table 1:  Inventory and Backlog Queue Statistics for Main Scenarios 
Scenario (200, 200) (250, 200) (300, 200) (200, 250) (250, 250) (300, 250) (200, 300) (250, 300) (300, 300)

Die Inventory Average 123.97 158.62 201.32 121.70 160.13 200.16 121.45 161.60 202.84
Half Width 2.84 5.82 6.81 4.51 7.04 8.29 4.30 4.91 6.49

Order Backlog for Die Average 32.78 20.22 11.00 34.67 20.74 10.43 37.77 17.87 9.93
Half Width 4.05 3.34 1.70 5.78 5.31 2.57 6.50 2.61 2.17

Finished Goods Inventory Average 108.65 116.22 129.03 114.43 157.85 157.68 175.09 192.39 208.21
Half Width 29.55 19.31 24.47 46.49 21.04 25.49 50.39 27.45 30.39

Order Backlog for Finished Goods Average 41.20 21.43 18.73 61.78 15.14 14.69 41.19 13.69 12.96
Half Width 40.66 8.70 13.08 49.26 7.24 14.23 40.79 10.52 11.18  

 
 

Table 2:  Service Level Statistics for Main Scenarios 
Scenario (200, 200) (250, 200) (300, 200) (200, 250) (250, 250) (300, 250) (200, 300) (250, 300) (300, 300)

Front End FOTD
Early Average 38.039 37.904 38.045 37.909 37.918 38.024 37.925 37.913 38.222

Stdev 0.407 0.527 0.456 0.476 0.352 0.362 0.468 0.318 0.400
Late Average 8.791 8.864 8.955 8.888 8.957 9.056 8.978 9.128 8.882

Stdev 0.223 0.363 0.237 0.228 0.352 0.220 0.294 0.260 0.197
On Time Average 53.171 53.232 53.000 53.203 53.125 52.920 53.097 52.959 52.896

Stdev 0.411 0.570 0.501 0.504 0.391 0.358 0.385 0.294 0.394
Back End FOTD

Early Average 3.424 3.759 4.039 3.398 3.752 4.076 3.335 3.823 4.085
Stdev 0.147 0.118 0.120 0.229 0.215 0.141 0.228 0.118 0.145

Late Average 11.337 7.749 5.208 11.939 7.858 5.127 12.766 7.101 4.980
Stdev 1.727 1.384 0.611 2.363 2.100 0.947 2.511 0.998 0.840

On Time Average 85.239 88.493 90.753 84.663 88.390 90.797 83.899 89.076 90.935
Stdev 1.600 1.278 0.500 2.142 1.898 0.819 2.294 0.892 0.714

COTD
Early Average 1.469 1.597 1.661 1.294 1.703 1.748 1.509 1.734 1.754

Stdev 0.454 0.178 0.241 0.551 0.150 0.222 0.476 0.211 0.191
Late Average 21.529 14.848 12.152 30.453 10.154 9.062 20.789 9.081 8.478

Stdev 22.860 7.445 10.679 27.479 6.345 10.677 23.578 9.294 8.629
On Time Average 77.001 83.555 86.187 68.254 88.143 89.190 77.703 89.185 89.768

Stdev 22.407 7.270 10.438 26.929 6.196 10.456 23.102 9.084 8.439  
 

 
Table 3: Inventory and Backlog Queue Statistics  
for Additional  Scenarios 

Scenario (350, 350) (400, 400)
(200, 200, 
LT-20%)

Die Inventory Average 244.08 289.06 128.21
Half Width 4.11 7.72 3.54

Order Backlog for 
Die Average 4.61 2.16 16.79

Half Width 1.32 0.67 1.83
Finished Goods 
Inventory Average 230.54 280.68 123.89

Half Width 34.19 25.51 15.94
Order Backlog for 
Finished Goods Average 14.03 7.63 17.78

Half Width 13.46 7.21 10.09  
 

Table 4: Service Level Statistics for Additional   
Scenarios 

Scenario (350, 350) (400, 400)
(200, 200, 
LT-20%)

Front End FOTD
Early Average 37.696 38.150 37.755

Stdev 0.458 0.459 0.479
Late Average 8.845 8.794 8.924

Stdev 0.226 0.245 0.247
On Time Average 53.459 53.057 53.322

Stdev 0.443 0.505 0.430
Back End FOTD

Early Average 4.318 4.406 3.847
Stdev 0.087 0.059 0.107

Late Average 3.619 3.027 6.691
Stdev 0.482 0.179 0.626

On Time Average 92.063 92.567 89.462
Stdev 0.413 0.150 0.535

COTD
Early Average 1.769 1.836 1.669

Stdev 0.236 0.106 0.171
Late Average 8.350 4.802 11.395

Stdev 10.701 4.872 7.385
On Time Average 89.881 93.361 86.935

Stdev 10.465 4.767 7.215  
1723
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scenario (200, 200)) , it is evident that back end FOTD and 
COTD improve by shortening the front end lead time. The 
average level of die inventory has increased with the short-
ened lead time but not significantly. More importantly, the 
back end FOTD and COTD for the scenario (200, 200, LT-
20%) are more comparable with scenarios (300, 200) or 
(250, 250) which hold a lot more inventory, especially in 
the die cage to achieve comparable service levels. 

7 CONCLUSIONS 

Simulation analysis permitted us to quantify/predict the ef-
fect of internal on time delivery, inventory and WIP 
change on the customer order fulfillment service level. In 
particular, it allowed us to establish appropriate control 
levels at various stages in a semi-conductor supply chain 
based on inventory and service level metrics. It also al-
lowed us to explore the benefit of reducing front end lead 
times.   

As part of future work, we intend to examine the bene-
fit of including more detail in the simulation model without 
creating a model that becomes too cumbersome to analyze. 
This would include such things as adding more details in 
the various processes throughout the supply chain, incorpo-
rating yield losses,  and considering finer levels of control 
more closely spaced throughout the supply chain. If possi-
ble, we intend to leverage some of the more sophisticated 
methods found in Braun et al. (2003), Vargas-Villamil et 
al. (2003), and Kempf (2004) without making the modeling 
and analysis overly-complex. 
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