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ABSTRACT 

We consider the situation where parts from suppliers have 
to be picked up by a capacitated vehicle for an assembly 
plant that faces stochastic demand. We propose a two-
phase heuristic to calculate “good” base stock policies for 
the stochastic inbound inventory routing problem. In this 
paper, we calculate multiple performance measures for the 
results obtained from the analytical model. The results 
show that the maximum average utilization of the vehicle 
is a significant factor in determining our fill rate. We con-
sider several test cases to  substantiate the results. The in-
teractions between the performance measures for different 
situations are also discussed. 

1 INTRODUCTION 

Coordinating inventory and transportation decisions is a 
major issue in many assembly plants. Managing the in-
bound inventory across multiple suppliers and pickup 
routes is a key issue in the supply process when the de-
mands for the different products are stochastic. In such a 
scenario, the stochastic inbound inventory routing problem 
strikes a balance between the transportation and inventory 
costs. As a result, the overall system efficiency improves 
and the service level to the assembly plant increases. 
 The objective of our problem is to calculate reorder 
intervals and order up-to levels for parts from each supplier 
such that the total cost is minimized. The total cost in-
cludes the inventory carrying cost, transportation cost and 
backlog costs. The inventory routing problem is a complex 
problem. It involves solving the NP-hard vehicle routing 
problem and optimizing a constrained, nonlinear problem. 
The routing component of the proposed heuristic is based 
on the location based heuristic of Bramel and Simchi-Levi 
1995 for the inventory routing problem. 
 A delivery vehicle leaves the assembly plant and 
reaches a supplier. There it picks up a certain quantity of 
parts from the supplier. Once the delivery vehicle has 
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picked up parts, the vehicle may visit other suppliers or it 
may return back to the assembly plant depending on the 
route the vehicle is traversing. Hence, a solution of the sto-
chastic inventory routing problem is a set of routes, each 
assigned to one or more delivery vehicles, the cycle time 
for the routes and the order-up-to levels for parts from each 
supplier. The delivery vehicles travel those routes to pick 
up parts from all the suppliers that are used to satisfy the 
demand for the parts at the assembly plant. 
 In this paper, we present a simulation model for the 
stochastic inbound inventory routing problem. The purpose 
of the model is to assess the effectiveness of the heuristic 
solution procedure developed to obtain “good” solutions to 
the problem. The solution from the heuristic provides a set 
of routes. For the sake of simplicity in the simulation 
model, we consider only one route with three suppliers on 
it. The model is simulated with reorder intervals and order-
up-to levels obtained from the heuristic solution. The dif-
ferent performance measures are calculated and the effi-
ciency of the algorithm is established.  

2 PROBLEM DEFINITION 

We consider an assembly plant that has suppliers close by 
the assembly plant and others at distant locations. Delivery 
vehicles are sent out from the assembly plant to pick up 
parts from the suppliers. The delivery vehicles constitute a 
homogenous fleet of vehicles with limited capacity. The 
pick up routes are fixed and are run at fixed intervals or 
cycle times. When stockouts occur they are completely 
backlogged, and there are an ample number of vehicles to 
cover these routes. The problem is solved to find a trade-
off between transportation costs, cycle inventory and safety 
inventory carrying costs at the assembly plant and stock-
out costs at the assembly plant. In our model, we assume 
stock-outs are completely backlogged. The inventory con-
trol in this system uses base-stock (R, S) policies. 
 The uncertainty in the demand at the assembly plant 
and the fixed cycle times cause the pickup quantities to 
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vary. Before trucks leave the assembly plant, the inventory 
position of the parts from a supplier is checked and an or-
der is placed. The orders on a route are constrained by the 
capacity of the vehicle that is assigned to that route. The 
pickup quantity from each supplier is calculated such that 
the inventory position is raised as close as possible to the 
order-up-to level. 

3 SOLUTION PROCEDURE 

In our problem, we make the routing decisions first assum-
ing an initial set of inventory decisions. Then, we update 
the inventory decisions based upon the routing decisions 
that are made. This iterative approach adds value to the in-
tegrated supply chain by achieving a balance between in-
ventory costs and transportation costs.  
 We solve the first phase of the problem as a routing 
problem with demands approximated by their average de-
terministic values. We follow a fixed partition policy 
where suppliers are grouped using an extension of the loca-
tion based heuristic of Bramel and Simchi-Levi 1995. We 
model the stochastic nature of the demand and the supply 
process as a finite stage Markov chain. At this stage we 
base our solution procedure on a modified newsvendor 
problem. The result of this procedure is a set of base stock 
policies for the parts from each supplier. 

3.1 Outline of Solution Procedure 

1. Phase I: Calculating reorder intervals 
(a) Group suppliers on routes 
(b) Sequence suppliers on routes 
(c) Calculate route frequencies and define cycle 

times for each supplier 
2. Phase II: Calculating order-up-to levels 

(a) Compute order-up-to levels for the capaci-
tated base-stock policies 

3.2 Calculating Reorder Intervals 

To calculate the reorder intervals, we base our solution 
procedure on the Location Based Heuristic (LBH) pro-
posed by Bramel and Simchi-Levi 1995. The LBH is for-
mulated as a capacitated facility location problem, solved, 
and then transformed back to give a solution for the routing 
problem. We calculate the cost of connecting the suppliers 
directly to the assembly plant  
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Figure 1: Calculating Costs 
 

The cost includes the transportation cost and the cycle in-
ventory carrying cost. We then calculate the additional cost 
of adding a supplier to another route. With these costs, we 
solve a binary, integer program to obtain the best grouping 
of suppliers.  
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Figure 2: Grouping Suppliers 
 

Once the suppliers are grouped into their respective routes, 
we solve a traveling salesman problem for each route. The 
traveling salesman problem is used to find the sequencing 
of the suppliers on each route. With the current grouping of 
suppliers on each route, we update the cycle time of each 
route and recalculate the transportation and inventory costs 
associated with suppliers on each route. The cycle time of 
each route gives us the reorder interval for suppliers on the 
route. Thus, the reorder interval for each supplier is calcu-
lated taking into consideration the transportation and the 
cycle inventory carrying costs associated with its route.   
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Figure 3: Sequencing Suppliers on a Route 

3.3 Calculating Order-Up-To Levels 

The calculation of optimal order-up to levels for the 
suppliers is based on Moran’s dam model. The optimal or-
der-up-to levels are calculated by finding a tradeoff be-
tween the safety inventory carrying cost and the stock-out 
cost. First, a shortfall distribution is calculated for each 
supplier. The shortfall is the quantity that we are not able 
to pick up from the supplier due to limited vehicle capac-
ity. The shortfalls are modeled as a truncated Markov chain 
and the stationary distribution of shortfalls is calculated. 
We calculate the convolution of the demand distribution 
and the shortfall distribution. The critical ratio is calculated  
from the inventory carrying rate and the stock-out cost rate. 
The value of the convolution distribution that corresponds 
to the critical value gives the optimal order. The critical ra-
tios and shortfall distributions are different for each sup-
plier and determine the optimal order-up-to level for each 
supplier.  

4 SIMULATION MODEL 

The simulation package ProModel is used to develop a 
discrete event simulation model of the inbound logistics for 
the assembly plant. The model gives information on num-
ber of stock-out occurrences, fill rates, vehicle utilization, 
inventory stored and the costs associated with the logistics.  

The model simulates multiple one day scenarios where 
there are three suppliers. The assumptions in the model 
make the demand process independent of the supply proc-
ess. The stock-outs due to parts from one supplier do not 
affect the demand process and hence the other suppliers. 
Thus, the simulation model can look at each route inde-
pendently.  The following paragraphs detail the logic of the 
simulation model. 
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4.1 Data Input  

The simulation model uses the following input data: 
 

1. Demand distribution at the assembly plant, 
2. Reorder interval for each supplier, 
3. Order-up-to levels for parts from each sup-

plier, 
4. Inventory carrying cost of parts from each 

supplier, 
5. Stockout cost for parts from each supplier, 
6. Capacity of the delivery vehicles, 
7. Allocated vehicle capacity for parts from 

each supplier, and 
8. Fixed cost for a vehicle traveling a route. 

 
The demand at the assembly plant is assumed to fol-

low a Poisson process. Hence the interarrival time between 
demands follows an exponential distribution. The loading 
and unloading time at the suppliers is included in the travel 
time to the supplier.  

4.2 Inventory Processing 

The logic used to updated inventory when a vehicle deliv-
ers parts and when demand occurs are shown in Figures 4 
and 5, respectively. 

 
Si = Order-up-to level for parts from supplier i 
IPi = Inventory position of parts from supplier i 
NIi = Net Inventory of parts from supplier i 
OHi = On-hand Inventory of parts from supplier i 
Qi = Allocated vehicle capacity for parts from supplier i 
ri = Numbers of parts from supplier i used in one unit of 

the end product 
ski = Number of parts from supplier i that are backordered 

at the assembly plant 
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Figure 4: Order Processing Logic 
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List = {i|Suppliers on the route} 
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Figure 5: Demand Processing Logic 
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Figure 9: Main Effects Plot for Daily Inventory Carrying 
Cost 
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Figure 6: Main Effects Plot for Fill Rate 
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Figure 7: Main Effects Plot for Daily Total Cost 
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Figure 8: Main Effects Plot for Daily Transportation Cost 
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Figure 10: Main Effects Plot for Daily Backlog Cost 

5 RESULT ANALYSIS AND COMPARISONS 

The model is executed with different values of inventory 
carrying cost, backlog cost, vehicle capacity and maximum 
average vehicle utilization. Maximum average vehicle 
utilization is the limit placed on the average vehicle utiliza-
tion for the route. The excess vehicle capacity is a sort of 
safety capacity that is needed when demand at the plant is 
high. We conducted 81 experiments using three different 
levels for each of the 4 factors: inventory carrying cost 
(12.5%, 25% and 50%), backlog cost per unit of assembled 
product ($2000, $4000 and $8000), vehicle capacity in 
truckloads (0.75, 1 and 1.25) and maximum average vehi-
cle utilization (85%, 90% and 95%). We conducted 100 
runs where each run was 200 days long with an appropriate 
warm up period. The summary of the results are shown by 
the main effect plots in Figures 6-10. 

In Figure 6, we see that the fill rate increases with in-
creasing backlog cost. This is because we carry more in-
ventory to avoid backlogs. The fill rate also decreases as 
the inventory carrying cost increases. This occurs because 
it becomes more expensive to carry inventory and the less 
1716
inventory we have, the more likely that backlogs will oc-
cur. From Figure 7 we see that the daily total cost increases 
as the inventory carrying rate, backlog cost, vehicle capac-
ity and maximum average vehicle utilization increase. The 
transportation cost plots shown in Figure 8 show that 
transportation cost goes down when the vehicle capacity 
increases due to the reduced number of trips made. The 
transportation cost also decreases when the maximum av-
erage vehicle utilization increases.  

The interesting plots of inventory carrying costs and 
backlog costs are shown in Figures 9 and 10. We see that 
the inventory carrying cost increases at first with an in-
crease in vehicle capacity but starts decreasing once the 
vehicle capacity is increased further. The backlog costs are 
reversed in behavior. With a slight increase in capacity the 
backlog cost stays at almost zero but when vehicle capacity 
is increased further, the backlog costs increase drastically. 
This behavior of the inventory costs is difficult to under-
stand. Further research is needed to understand the cause of 
these effects. The inventory cost and the backlog cost both 
increase when the vehicle utilization approaches 100%. 
This is due to the fact the system cannot clear the out-
standing backorders when the vehicle capacity approaches 
100%.   

6 CONCLUSION 

When the same solution from the analytical model is used 
with a demand distribution that has less variation than an 
exponential distribution, the results are very comparable. 
The high variation of the exponential distribution affects 
the results very much. In terms of future work, we are 
looking to account for this variation better.  
 There are a number of obvious extensions of this 
work. Simulation can be used to determine the order-up-to 
levels, and these order-up-to levels can be compared with 
the results from the analytical model. The analytical model 
must also be modified to account more precisely for the 
system behavior when demand variation is high. 
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