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ABSTRACT 

In this paper, we present how a solution framework devel-
oped for (a special case of) the multi-objective simulation-
optimization problems can be applied to evaluate and op-
timally select the non-dominated set of inventory policies 
for two case study problems. Based on the concept of Pa-
reto optimality, the solution framework mainly includes 
how to evaluate the quality of the selected Pareto set by 
two types of errors, and how to allocate the simulation rep-
lications according to some asymptotic allocation rules. 
Given a fixed set of inventory policies for both case study 
problems, the proposed solution method is applied to allo-
cate the simulation replications. Results show that the solu-
tion framework is efficient and robust in terms of the total 
number of simulation replications needed to find the non-
dominated Pareto set of inventory policies. 

1 INTRODUCTION 

Today, companies operate in a fast changing business envi-
ronment. To stay competitive, adaptations and enhance-
ments of manufacturing and service operations and the as-
sociated business processes need to take place constantly. 
One important characteristic of today’s high-tech compa-
nies is that, they operate in global networks that often in-
volve contract manufacturers and third party logistics pro-
viders, driving the underlying systems towards mega-
networks. Complex business processes across the mega-
networks have become more critical and raised new opera-
tional challenges such as how to optimize the collaboration 
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between a line maintenance service company for commer-
cial aircraft and a third party logistics provider to minimize 
the inventory cost for critical spare components. Most of 
the planning and scheduling problems associated with 
these networks are very difficult to solve due to the high 
variability, underlying non-linear dynamics, large problem 
size, and possibly multiple objectives.  

This paper describes the parts of the results obtained in 
one out of ten pilot programmes under the Integrated 
Manufacturing and Service Systems (IMSS) initiative pur-
sued by the Agency for Science, Technology and Research 
(A*STAR) in Singapore (Lendermann et al. 2005). The ob-
jective of this particular programme is to investigate how 
design, analysis, enhancement and implementation of criti-
cal business processes in a manufacturing and service net-
work can be realised using one single simula-
tion/application framework. The overall architecture of the 
framework outlines how commercial simulation packages 
and web-service-based business process application com-
ponents would have to be connected through a commercial 
application framework to achieve maximum leverage and 
re-usability of the applications involved. In the pilot phase 
of this programme, research issues were also addressed 
with regard to mechanisms for interoperation between 
commercial simulation packages, symbiotic interaction be-
tween simulation-based decision support components and 
physical systems, and speed-up of simulation analysis by 
making use of a grid infrastructure.  

In this paper we describe how multi-objective simula-
tion-optimization techniques can also help speed-up simu-
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lation analysis exercises. This is studied and illustrated 
through two complex inventory management problems 
with difficult problem features mentioned above.  

The first one is the differentiated service inventory 
problem, which is to determine an inventory policy to dif-
ferentiate customer groups and offer different services to 
different customers. Unlike the traditional inventory sys-
tem, where all customer demands are treated equally and 
served on a first-come-first-served basis, here customers 
are classified into different groups according to their im-
portance to the decision makers. This is because, for some 
customers, the stock-out cost is so high that they are will-
ing to pay at a higher price for timely replenishment. Ob-
viously, these customers are more valuable and therefore 
they should have higher priority and be provided with 
higher service level. In this setting, the problem is to 
evaluate the cost and service level for customers from dif-
ferent classes and obtain an optimal inventory policy with 
the lowest cost and highest service level.  

The second case study is an aircraft spare parts inven-
tory problem. When a repairable item on an aircraft be-
comes defective, it is removed and replaced by another 
item from the spare stock. The defective part then goes into 
some repair cycle. If the airport does not have the spare 
part in stock, the aircraft will be grounded and delayed un-
til an incoming flight brings a replacement part from the 
Central Repair Depot or from a neighboring airport. To de-
crease departure delays due to unanticipated failures, air-
lines need to keep inventory of spare parts at the associated 
airports. The problem is to determine the number of spare 
parts to be stored at destination airports; and the replace-
ment policy (where to get a replacement part) upon the oc-
currence of a part failure, so that the average cost involved 
is minimized and the fill-rate (percentage of failures ser-
viced) is maximized.  

The difficult features related to the above problems of-
ten make them mathematically intractable. For optimiza-
tion-based approaches to be applicable and effective, they 
often require too many assumptions and simplifications 
made on the problems. On the other hand, simulation-
based techniques are not constrained by analytical assump-
tions and simplifications and can give reasonable solutions 
within acceptable time. However, simulation may be lim-
ited by human imagination of possible alternatives, and 
also it can be both expensive and time consuming. There-
fore, it is important to improve the performance of the 
simulation-based techniques through optimization ap-
proaches. This area of research, known as Simulation Op-
timization, has become a hot and important topic recently. 

A very general formulation of the above simulation 
optimization problem is to minimize the expected value of 
the objective function with respect to its constraint set as:  

 
min ( ).J
θ

θ
∈Θ
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where ( ) [ ( , )]J E Lθ θ ε=  is the performance measure of 
the problem, ( , )L θ ε  is the sample performance, ε  repre-
sents the stochastic effects in the system, θ  is a p-vector of 
discrete controllable factors and Θ  is the discrete con-
straint set on θ . If ( )J θ  is a scalar function, the problem 
is single objective optimization; whereas if it is a vector, 
the problem becomes multi-objective. 

The above problem can be very challenging, both ana-
lytically and computationally, due to three kinds of diffi-
culties inherent to the problem considered: lack of structure 
of the solution space ( Θ ), huge size of the solution space 
( Θ ) and large uncertainties ( ε ) in the performance meas-
ures. In this study, we focus on a simplified version of the 
problem where Θ  is defined as a finite set with a number 
of alternatives. The simplified problem is usually known as 
Ranking and Selection (R&S) problem (Swisher, Jacobson, 
and Yücesan 2003) in the literature. Also, we will consider 
the case where the objective function ( )J θ  is a vector of 
performance measures. So, the problem considered in this 
study is a multi-objective ranking and selection (MORS) 
problem (Lee et al. 2004). 

For the single objective R&S problem, several different 
approaches have been proposed: indifference-zone ranking 
and selection (Rinott 1978; Nelson et al. 2001; Alrefaei and 
Alawneh 2004), optimal computing budget allocation (Chen 
et al. 1997; Chen et al. 2000), decision theoretic methods 
(Chick 1997; Chick and Inoue 2001), subset selection 
(Gupta 1956; Nelson et al. 2001), and multiple comparisons 
procedures (Fu 1994; Hsu 1996). Among them, the optimal 
computing budget allocation (OCBA) method is relatively 
recently developed and more efficient in terms of total num-
ber of replications needed to find the best alternative. More-
over, OCBA is capable of solving problems with relatively 
large number of alternatives. Specifically, OCBA follows a 
Bayesian methodology, making use of information on both 
sample means and sample variances. The rationale here is to 
only simulate likely competitors for the “best”. This is done 
by developing lower bounds for the probability of correct 
selection P(CS), and solving the problem as an optimization 
problem, in which P(CS) is maximized with a given total 
computing budget available. In Chen et al. (1997), additional 
replications are allocated based on gradient information 
from estimated P(CS). In Chen et al. (2000) and Chen et al. 
(2003), simpler and more efficient asymptotic allocation 
rules are derived when an infinite computing budget is as-
sumed to be available.  

For the multi-objective R&S (MORS) problem, one 
common solution framework is to weight several parame-
ters of interest to form a single measure of effectiveness by 
applying multiple attribute utility (MAU) theory (Butler, 
Morrice, and Mullarkey 2001; Morrice, Butler, and Mul-
larkey 1998; Swisher and Jacobson 2002). The problem 
reduces to a single-objective model, and existing methods 
can be applied. One disadvantage of this method is that, the 
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decision maker needs to specify the relative importance of 
the performance measurers before optimization is done. As 
a result, the best solution selected would be strongly de-
pendent on these preferences. Once the preferences of the 
decision makers are changed, the solution may become in-
ferior. Therefore, ideally, all non-dominated solutions 
should be provided to the decision makers, so that they can 
choose their favorite solution under specific circumstances. 
The complete set of non-dominated solutions is referred to 
as the Pareto set of solutions. They represent the “best” de-
signs and are characterized by the definition that no other 
solution exists that is superior in all the objectives. In Lee 
et al. (2004), the authors incorporated the concept of Pareto 
optimality into the R&S scheme, and developed a simple 
sequential procedure to find the non-dominated Pareto set 
of designs to the MORS problem. However, in that study, 
they assume that the number of non-dominated designs in 
the Pareto set is known in advance. In Lee et al. (2005), to 
relax the above-mentioned assumption and consider the 
problem from a more realistic aspect, they presented a dif-
ferent framework for the MORS problem. Computational 
results show that, the solution framework is robust and ef-
ficient in terms of the number of replications needed to 
find the Pareto set. 

In this paper, we study how the solution framework in 
Lee et al. (2005) can be applied to solve real world prob-
lems, and examine its robustness and efficiency through 
the case study problems. The paper is organized as follows. 
Section 2 briefly introduces the sequential solution frame-
work for the MORS problem. In Section 3, we present two 
case study problems and illustrate how efficient and robust 
the solution framework can be when allocating the simula-
tion replications to the designs. Finally some conclusions 
and future research directions are summarized in Section 4. 

2 THE SOLUTION FRAMEWORK FOR THE 
MORS PROBLEM 

We present a brief description of a solution framework for 
the MORS problem in this section. The solution method is 
called the Multi-objective Optimal Computing Budget Al-
location (MOCBA) algorithm. For more details about how 
MOCBA works, please refer to Lee et al. (2005).  

Without loss of generality, we assume that minimiza-
tion of the objectives is our goal throughout this paper. In 
case some of the objectives are maximization, we would 
minimize the corresponding negatives of those objectives. 
Also, we assume that the random variables under study fol-
low continuous distributions. 

2.1 A Performance Index to Measure the Non-
dominated Designs 

When considering Pareto optimality, we are trying to find a 
complete set of those non-dominated designs. Here, we 
168
first need to find a way to measure how non-dominated a 
design is. 

Suppose we have two designs iθ  and jθ , each of 
which is evaluated in terms of H performance measures:  

 
1 2

1 2

: ( ), ( ),..., ( )
: ( ), ( ),..., ( )

i i i H i

j j j H j

J J J
J J J

θ θ θ θ
θ θ θ θ

. 

 
Here performance measures ( )k iJ θ  and ( )k jJ θ  
( 1, 2,...,k H= ) are obtained through simulation, they are 
random variables subject to noise, so we consider the prob-
ability that design jθ  dominates design iθ , as expressed in 
the following condition with at least one inequality being 
strict: 

 
( ) ( ( ) ( ) for 1, 2,..., ).j i k j k iP P J J k Hθ θ θ θ= ≤ =p  

 
Under the condition that the performance measures are in-
dependent from one another and they follow continuous 
distributions, we have 

 

 
1

( ) ( ( ) ( )).
H

j i k j k i
k

P P J Jθ θ θ θ
=

= ≤∏p  (1) 

 
Now suppose we have a total of n designs, i.e., 

nΘ = , we introduce the following performance index to 
measure how non-dominated a design i is:  

 

 
1,

[1 ( )].
n

i j i
j j i

Pψ θ θ
= ≠

= −∏ p   (2)  

 
This performance index measures the probability that 

design i is non-dominated by all the other designs. If iψ  is 
very close to 1, the probability that design i is non-
dominated is very high. Therefore, at the end of simulation, 
all designs in the Pareto set should have iψ  close to 1, and 
those designs outside of the Pareto set should have iψ  
close to 0, because they are dominated.  

2.2 Two Types of Errors of the Selected Pareto Set 

When the true Pareto set is found, all designs in it should 
be non-dominated with probability 1, and all designs out-
side it should be dominated with probability 1. During the 
allocation process, the Pareto set is constructed based on 
observed performance. Here we call it the selected Pareto 
set ( pS ). The quality of the selected Pareto set can be 
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evaluated by two types of errors: Type I error ( 1e ) and 
Type II error ( 2e ). 

Type I error ( 1e ) is the probability that at least one de-
sign in the selected non-Pareto set ( pS ) is non-dominated; 

while Type II error ( 2e ) is the probability that at least one 
design in the selected Pareto set is dominated by other de-
signs. When both types of errors approach to 0, the true 
Pareto set is found. The two types of errors can be bounded 
by the approximated errors 1ae  and 2ae  respectively as 
follows. 

 

1 1 .
p

i
i S

e ae ψ
∈

≤ = ∑                                 (3) 

2 2 (1 ).
p

i
i S

e ae ψ
∈

≤ = −∑                        (4) 

 
Now based on the non-dominated performance index 

iψ  and the approximated type I and type II errors ( 1ae  and 

2ae ), after ranking all the designs in descending order of 

iψ , we can construct the selected Pareto set according to 
one of the three criteria below.  
C1: Assign a maximum number of k designs with the high-

est iψ  into the selected Pareto set pS , so that 

2
1

(1 )
k

i
i

ae ψ ε
=

= − ≤∑ , where ε  is a predefined error 

limit.  
C2: Construct the selected Pareto set by optimizing k so 

that both 1ae  and 2ae  are minimized.  
C3: Select k designs with *kψ ψ≥  into the selected Pareto 

set, where *ψ  is a predetermined non-dominated 
probability. 

2.3 A Sequential Solution Procedure and the 
Asymptotic Allocation rules 

In solving the MORS problem, we are trying to get the true 
Pareto set with high probability by minimizing both Type I 
and Type II errors. This can be done by keeping on allocat-
ing more replications to certain designs until both ap-
proximated Type I and Type II errors ( 1ae  and 2ae ) are 
within an error limit *ε . 

At the beginning of the allocation process, we can per-
form 0N  replications for each design. Based on the simu-
lation output, we then estimate the performance index iψ  
and construct the selected Pareto set pS . Then the MORS 
problem is to determine the optimal allocation of the repli-
cations to the designs so that both 1ae  and 2ae  are within 
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error limit *ε , and the total number of simulation replica-
tions is minimized. 

In this study, we propose a sequential approach for 
solving the above problem. The procedure iteratively allo-
cates the simulation replications according to some asymp-
totic allocation rules (Lee et al. 2005) until both 1ae  and 

2ae  are within error limit *ε .  
The sequential procedure, known as the MOCBA al-

gorithm,  is outlined as follows.  
 

MOCBA algorithm 
Step 0: Perform 0N  replications for each design. Set itera-

tion index v: = 0. 1 2 0...v v v
nN N N N= = = = . 

Step 1: Construct the selected Pareto set pS  according to 

criterion C2 of Section 2.2. Calculate 1ae  and 

2ae  according to equations (3) and (4) in Section 
2.2.  If ( 1 2ae ae< ), construct pS according to the 

criterion C1 of Section 2.2 with 1aeε = . 
Step  2: If (( 1ae  < *ε ) and ( 2ae  < *ε ) ) , go to Step 5. 
Step 3: Increase the simulation replications by a certain 

amount Δ , and calculate the new allocation 
1 1 1

1 2, ,...,v v v
nN N N+ + + according to the asymptotic 

allocation rules (Lee et al. 2005). 
Step 4: Perform additional min( δ , 1max(0, )v v

i iN N+ − ) 
replications for design i  (i =1,…,n). Set 1v v= +  
and go to Step 1. 

Step 5:  Output designs in the selected Pareto set (Sp). 

3 TWO INVENTORY MANAGEMENT CASE 
STUDY PROBLEMS  

In this section, we present two case study problems both of 
which are multi-objective inventory management prob-
lems.  
To avoid too many assumptions and unnecessary simplifi-
cations on the problems, we employ simulation to evaluate 
the performances of the alternatives rather than using the 
analytical methods. Therefore, with a set of given design 
alternatives (inventory policies), the MOCBA algorithm is 
employed to allocate simulation replications efficiently to 
obtain the Pareto set of solutions. In both cases, results 
from MOCBA are compared with those from the Uniform 
Computing Budget Allocation (UCBA), which is to uni-
formly allocate the same number of replications to each 
design. In both cases, the parameter setting of the MOCBA 
algorithm is as follows: the initial runs 0 10N = , the in-
cremental runs 10Δ = , and additional maximum number 
of runs 5δ = . 
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3.1 The Differentiated Service Inventory Problem 

The inventory systems with several demand classes can be 
found in many cases. Several decision policies aiming at 
differentiating customer groups and offering different ser-
vices can be found in the literature. 

One such decision policy is called Critical Level Pol-
icy with 1n − critical levels for n customer groups. It is as-
sumed that demand from the customer with the highest 
priority will always be satisfied. When demand from class 
m arrives, it will be satisfied if the inventory-on-hand is 
higher than the jth critical level; otherwise, it would be re-
jected. Veinott (1965) was the first to consider such inven-
tory policy under periodic review. Dekker, Hill and Klejin 
(1998) applied it in a lost sales continuous ( , )s Q model. 
Instead of fixing the 1n −  critical levels, another policy 
called Dynamic Critical Level Policy also considers the 
lead times preceding the order arrivals. In this policy, the 
decision is made based on both the customer class and the 
lead times. The critical level is thus non-increasing as time 
approaches to an order arrival. This is an approach similar 
to airline revenue management, where the number of seats 
to be sold is controlled based on both the remaining time 
before departure and the type of customers. 

In this case study, we examine the Dynamic Critical 
Level Policy within a ( , )s Q  inventory model. We simulate 
the arrival of customers from 2 different demand classes 
and evaluate the cost and service level of this policy. We 
assume that customer arrivals follow a Poisson distribu-
tion, and the annual demand of both customer classes is 
300. The Critical Level Policy is defined in terms of a two 
dimensional matrix with 2 columns corresponding to 2 cus-
tomer classes and 600 rows corresponding to 600 different 
possible remaining lead times. The lead time is set as 0.03 
year. For customer class 1, all critical levels are set as 0, 
because customers from this class have top priority. Figure 
1 illustrates how critical level changes with remaining lead 
time for customer class 2.  
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Figure 1 Change of Critical Level with Remaining  Time 
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Here, as time passes, the lead time decreases and the 
critical level decreases accordingly. The objective is to ob-
tain the optimal ( , )s Q  with the lowest cost and highest 
service level for this Dynamic Critical Level Policy. Here, 
the cost consists of setup cost, inventory holding cost and 
backorder cost, where the latter two costs are computed 
based on per customer per unit time. The set up cost is as-
sumed to be 1, and the inventory holding cost is set at 2.5. 
The backorder penalty cost used for customer class 1 is 
100 and customer class 2 is 10. The service level is defined 
in terms of backorder fill rate of the two classes of custom-
ers. 

We first generate 25 promising alternatives based on 
different reorder point s  and fixed reorder quantity Q . It 
is assumed that any improvement of backorder fill rate be-
low 0.01 is insignificant. Therefore, the Pareto sets are the 
inventory policies with lowest cost and relatively low 
backorder rate. We apply both MOCBA and UCBA to al-
locate the simulation replications. The number of replica-
tions needed for both MOCBA and UCBA is illustrated in 
Figure 2. 
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Figure 2 Compare MOCBA and UCBA (Case Study 1) 

 
In this case, with similar error limit ( * 0.05ε = ) and 

the same set of designs (designs 1 to 7) in the Pareto set, 
MOCBA takes a total of 1262 replications, and UCBA re-
quires 3450 replications. The speedup of MOCBA over 
UCBA is about 2.73 times. We can observe from Figure 2 
that, for MOCBA, the following designs are allocated more 
replications: (a) those designs that should be in the Pareto 
set, and (b) those designs whose performances are very 
close to designs in (a). This indicates that the MOCBA al-
gorithm is effective 
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3.2 Planning Aircraft Spare Parts Inventory among 

Airports  

In the aircraft spare parts inventory problem, the main de-
cision is to determine how many spare parts to be stored at 
each destination airport; and the replacement policy (where 
to get a replacement part, from airport’s own inventory, 
neighboring airport or Central Repair Depot) upon occur-
rence of a failure.  

This problem is essentially a two-echelon setting for 
supplying repairable spares. Work on the multi-echelon 
technique for recoverable item control (METRIC) by 
Sherbrooke (1968) forms the main motivation for this line 
of research. One difference with our problem is that in the 
METRIC model a defective part can be replaced only by 
another item available at the station or at the central depot. 
Batchoun, Ferland and Cléroux (2003) also considered a 
similar aircraft spare parts inventory problem. They ap-
plied Genetic Algorithms in an adaptive search procedure 
to allocate the initial quantity of spare parts to the airports. 
In both cases above, the problems are assumed to have sin-
gle objective which can be estimated by the average cost 
through analytical methods. 

In this case study, we consider an airport network 
which consists of 20 airports and 1 Central Repair Depot. 
We assume that only one spare part type is considered, and 
there are 60 repairable spares in total. At every mainte-
nance check, a failure occurs at the rate of 0.5%. A defec-
tive part goes into some repair cycle with repair time being 
assumed to be uniformly distributed between 12-24 days. 
We also assume that the repair capacity at the Central Re-
pair Depot is infinite. This assumption can be justified by 
the very low failure rate (0.5%) of the aircraft repairable 
parts, as in this case, the occurrence of the failure event 
would be very rare. When a part failure occurs, re-supply 
of the spare part comes from either the inventory at the air-
port, the Central Repair Depot or from the neighboring air-
ports. 2 flights are required to replace a part from either the 
Central Repair Depot or from the airport’s own inventory.  
This cost is associated with transport of the defective part 
to and from the Central Repair Depot. 3 flights are required 
to replace a part from the neighboring airports, two for 
transporting the defective part to and from the Central Re-
pair Depot, one for obtaining a new spare part. The prob-
lem is to determine the optimal inventory policy (allocation 
of the spare parts among the airports and selection of the 
replacement policy) so that the expected cost of the inven-
tory policy is minimized and the average service level (fill 
rate) of the entire network is maximized. Here the cost is 
defined in terms of inventory cost, and distance traveled to 
repair a defective part and obtain a new spare part. And  
“fill rates” is defined in terms of percentage of fail-
ures/defectives serviced. 

We also generate 25 promising alternatives based on 
different number of spare parts stocked at each airport. 
168
Figure 3 illustrates the number of replications needed for 
both MOCBA and UCBA. 
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Figure 3 Compare MOCBA and UCBA (Case Study 2) 

 
In this case, with similar error limit ( * 0.1ε = ) and the 

same set of designs in the Pareto set (designs 1 to 8), 
MOCBA takes a total of 1048 replications, and UCBA re-
quires 6750 replications. The speedup of MOCBA over 
UCBA is about 6.44 times in this instance. Similar to case 
study 1, we can observe from Figure 3 that most of the rep-
lications are allocated to the competitive designs. 

4 CONCLUSIONS 

In this paper, two case study problems in the area of inven-
tory management are presented to illustrate the applicabil-
ity of a multi-objective simulation-optimization solution 
framework (MOCBA) to address real world complex and 
difficult problems. The MOCBA is developed for the 
multi-objective ranking and selection problem (a special 
case of multi-objective simulation-optimization problem) 
to find all the non-dominated designs in the Pareto set. Re-
sults show that, in comparison with the UCBA (uniform 
computing budget allocation), MOCBA can more effi-
ciently allocate the simulation replications to the designs. 
In the first case study, the speedup of MOCBA over 
UCBA is about 2.73 times, with similar type I and type II 
errors resulted upon termination of the algorithm; while in 
the second one, where the uncertainty involved in the prob-
lem is much higher, the speedup is about 6.44 times. In this 
paper, we assume that the solution space of the case study 
problems is finite and consists of a given set of promising 
alternatives. In future research, it is important to relax this 
assumption and consider how to incorporate a search pro-
cedure into the solution framework so that promising alter-
natives can be found through efficient exploration of the 
9
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solution space. At the same time, we will be exploring how 
MOCBA techniques can be further leveraged by making 
use of a Grid infrastructure for simulation execution. This 
has also been initiated in the above-mentioned pilot pro-
gramme. Details can be found in Julka et al. (2005). 
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