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ABSTRACT 

This paper deals with modeling steady-state behavior of a 
single-product, pull-type, serial supply chain, frequently 
encountered in the automotive industries. The proposed 
analytical method enables projection of the end-customer 
demand information to upstream of the supply chain and 
estimate demand forecast at the individual tier levels. The 
supply chain performance assessment is based on the Due-
Time Performance metric (DTP - probability to ship a re-
quired product/parts volume in a fixed time interval) under 
the assumption of customer demand following a discrete 
time Markov process, a special case for correlated de-
mands. A numerical case study demonstrates the use of the 
DTP measure for a two-tier supply chain. The analytical 
results (verified by simulations) quantify important rela-
tionships in the supply chain, involving reliabilities of ma-
chines/stations, capacities of the buffers, demands correla-
tion, and the due times and will find use in performance 
assessment, optimization and design of supply chains. 

1 INTRODUCTION 

In today’s global economies, customer-driven world mar-
kets experience high demand fluctuations, turbulence of 
which is often amplified by arrival of new products and 
new technologies. To stay competitive under these condi-
tions the entire supply chain needs capabilities for quick 
adjustment of production capacity and functionality (Asl 
and Ulsoy 2002). Understanding how market dynamics is 
carried over from the OEMs to different tier-levels in the 
supply chain has a fundamental importance for both the 
OEMs and the supplier companies in developing new pro-
duction and operation strategies towards improving local, 
as well as overall supply chain performance. 
 Supply chains are studied at different levels of abstrac-

tions and different time scales of operations and decision 
making (Ganeshan, Jack et al. 1998; Shapiro 2001).  

Figure 1 represents one generic pull type, multi layered and 
multi-tier supply chain abstraction. The OEM receives in-
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termediate parts for final assembly from its supplier base 
and delivers the finished product to meet the end-customer 
demands via network of distributors and retailers. Both the 
OEM and the supply base have unreliable capacitated pro-
duction systems. The end aggregated random correlated 
demands for the finished product is seen only by the OEM. 
The end-customer demands first consume finished prod-
ucts from the inventory and the vacancy thus generated 
creates a pull for the entire supply chain. However, the 
production system variability at different tiers, end demand 
fluctuations and different time scales and modes of infor-
mation sharing creates disparity in meeting the end-
customer demands in committed lead times (Cachon and 
Fisher 2000). A well functioning supply chain has to con-
tinuously satisfy the end-customer demands in committed 
due times irrespective of any uncertainties in its supply, 
production and/or demand base without building excessive 
inventories. 

This paper deals with the following questions: A) How 
to evaluate and quantify the end-customer demand satisfac-
tion for a random correlated (or dynamic) demand driven 
supply chain, and B) How to decompose or isolate differ-
ent tier supplier's capabilities in terms of meeting the 
downstream orders that flow from the end-customer orders. 
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Figure 1: Generic Pull Type Supply Chain Network 
 

Due-Time Performance (DTP) is the used (solution to 
problem A) end-customer demand satisfaction metric and 
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is defined as the probability to ship to the customer a re-
quired number of parts during a fixed time interval (Jacobs 
and Meerkov 1995; Li and Meerkov 2001). The approach 
followed for solution to problem B is first projecting the 
end-customer demand model to independent upstream tier 
levels and then calculating DTP against the projected de-
mand model using solution to problem A. This isolation of 
the DTP measure to individual upstream suppliers also 
helps in the root cause analysis and bottleneck identifica-
tion for low end-customer demand satisfaction in the net-
work. Such a measure (that is spatially characterized, flows 
from the end-customer demand model and accounts for all 
modeled uncertainties both in the upstream and down-
stream production sides) empowers each tier-level supplier 
to exert independent control on its own capacity and im-
prove command on its upstream supply base due to im-
proved visibility of its contribution to the overall supply 
chain performance in an otherwise OEM dominated supply 
chain. 

This work focuses on a single product, pull type serial 
supply chain. The purpose and the contribution of this pa-
per is in providing the analytical method to project the cor-
related end-customer demand forecast to the upstream sup-
pliers in midst of all production uncertainties and isolating 
the performance of individual entities in the supply chain. 
It parameterizes and quantifies some significant cause-
effect relationships in complex demand driven supply 
chains for better steady state (strategic) decision making. 

2 PROBLEM FORMULATION 

2.1 Supply Chain Model 

This paper concentrates on a single level serial multi-tier 
supply chain structure as shown in Figure 2, a simplifica-
tion of the generic multi layered supply chain model of  

Figure 1. The suppliers and the final assembly plant are 
characterized by production systems with defined reliabil-
ity models, and are represented by a serial arrangement of 
machines (circles) and buffers (rectangles). The entry point 
is fed with unlimited raw material supply while the end-of-
line is subjected to customer demands. The detailed model-
ing assumptions on part and information flows are as fol-
lows: 

 
[A1] Part type: The overall supply chain architec-

ture is a single part type, pull serial produc-
tion line formed by sub production systems S 
= {0,1,2 ….}, where 0 is the final Assembly 
plant, 1 is the Tier-1 Supplier and so on. 

[A2] Machine/Stations: All machines follow the 
Bernoulli reliability model and work synchro-
nously for equal fixed unit of time to process a 
part. In each time slot equal to the cycle time, 
the machine mSi remains independently “up” 
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(or “down”) with a probability pSi (or respec-
tively 1- pSi ) equal to the isolated production 
rate of that machine.  

[A3] Buffers: All buffers BSi, including the Raw 
Material Buffer (RMB), Intermediate Finished 
Good Buffers (IFGB) and the Finished Good 
Buffer (FGB) has finite capacity NSi; 0 < NSi < 
∞. The buffer state is updated at the end of 
every cycle. 

[A4] Machine and Buffer Interface: Each machine 
has information about immediate upstream 
buffer occupancy (empty or non-empty) and 
status of all machines and buffers downstream. 
A machine starves if the upstream buffer is 
empty at the beginning of the cycle, and is 
blocked if the downstream buffer is full and its 
immediate downstream machine is either 
down or blocked itself. 

[A5] Demands: The end-customer demand follows 
an exogenous random Markovian model (D(i), 
P, T), in the time scale of epoch (1 epoch = T 
machine cycles time); characterized by J de-
mand states { }J21 d d ,d  D L=  with ∞<≤ J2 , 
and transition probabilities 

( )mnnm d  1)-D(i | d  D(i)Pr   P === , where 
{ }Jnm L,2,1, ∈  for transition from demand 

D(i-1) during (i-1)th epoch to D(i) during ith 
epoch. The demands remain constant during 
an epoch, also referred to as the due time pe-
riod or shipment period. This can be consid-
ered as reduced discrete (quantized) dynamic 
model of real demand data. 

[A6] Customer Demand Satisfaction: The end-
customer demand satisfaction is measured in 
terms of Due Time Performance, more for-
mally defined in Eqn. 2. At the beginning of 
epoch (i+1), parts are removed from the FGB 
in the amount of min( H(i), D(i+1) ) and im-
mediately sent for the shipment towards de-
mand D(i+1). H(i) represents the FGB occu-
pancy at the end of the epoch i, and it can take 
any values in the set {0,1 … N0M }, where N0M 
is the FGB capacity. If H(i) ≥ D(i+1), the 
shipment for epoch (i+1) is complete, and the 
parts then produced during the (i+1)th epoch 
will start getting accumulated in the FGB; oth-
erwise, if H(i) < D(i+1), the system continues 
to produce parts and sending them directly for 
the shipment without accumulation until the 
balance demand ( D(i+1) - H(i) ) is met. If the 
shipment still remains incomplete by the end 
of that epoch, an incomplete shipment is sent 
to the customer. No backlog of the demand is 
allowed. 
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Figure 2: Serial Multi-Tier Pull Type Supply Chain Model 
 
[A7] Part Transit: The finished part transfer from 
the assembly plant to the end-customer takes 
place in time scale of epochs (1 epoch = T cy-
cles). The material flow from IFGB of any 
supplier plant to RMB of the consuming plant 
takes place in scale of cycle time through the 
distribution machinery D in the batch size of 
one unit. This difference in supply and de-
mand time scales is fairly common in automo-
tive and furniture industries, where the local 
suppliers refurnish OEM a few times a day on 
a recalculated need basis. 

2.2 Objectives 

The objectives of the presented efforts are described in 
terms of the serial production line without loss of any gen-
erality and will be later extended to the supply chain sce-
nario in the numerical case study. The objectives are to: 

 
1 Develop an analytical method to quantify the DTP 

index for an M machine serial line characterized 
by assumptions [A1-A6]. Since a close form 
solution for DTP calculation for this case is 
intractable, develop a converging estimation 
procedure (Section 3).  

2 Develop an analytical Markovian model in unit of 
cycle times for the projected demand at the entry 
of the M machine serial line governed by 
assumptions [A1-A6] (Section 4). 

3 Extend the projected Markovian demand model in 
unit of cycle times to higher time scales such as 
epoch times and quantify the variability statistics 
of the projected demands (Section 5.3). 

3 DTP CALCULATIONS 

This section briefly describes the analytical approach for 
DTP calculation for Figure 3 representing serial M-
machine production line with FGB, subjected to Mark-
ovian demands. Further details including the proofs can be 
found in Bagdia (2004). Previous works (Li and Meerkov 
2001; Li, Enginarlar et al. 2004) quantified DTP for con-
stant and IID demand models. 
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Figure 3: M Machine Serial Production-Inventory-
Customer System 
 
The production line in  
Figure 3 is governed under assumptions [A1-A6]. The 
overall system forms a stationary ergodic Markovian chain 
in the time scale of epoch and appropriately defined state 
space ( ) ( ) ( ){ } ,1,0;DH,  S 1 JM ddDNH LL ∈∈= , where 
H(i) and D(i) are respectively the FGB occupancy at the 
end of the epoch i, and the demand during epoch i. The er-
godic Markovian characteristic ensures the existence of a 
steady state distribution and hence supports the calculation 
of the steady state DTP measure. The state dynamics are 
governed by Eqn. 1.  

 
 ).()1()( iDtiHiH i −+−=  (1) 

 
where it  is the number of parts produced by the production 
system with FGB in epoch i during the steady state opera-
tion. The due time performance measure can then be de-
fined by 
 
 ( ).)()1(Pr iDtiHDTP i ≥+−=  (2) 
 

The DTP calculation process is broken down into two 
steps: 

 
• Develop an analytical closed form solution for 

DTP calculation for a one machine FGB system. 
• Develop a converging recursive algorithm to con-

vert an M machine FGB system into an equivalent 
one machine FGB system and use DTP formula 
from step 1. 

3.1 DTP of a One Machine FGB System 

Consider a one machine FGB system characterized by 
Bernoulli machine reliability index p, FGB capacity N, and 
subjected to a Markovian demand model ( )T P, D(i), . The 
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following result remains valid for any value of demand 
states di. However under the no demand backlogging as-
sumption, the result carries useful inferences with demand 
states that do not load the system more than its capacity, 

i.e., Load Factor 1≤
×

=
TPR

DLF , where D  is the average 

demand and PR  is the Production Rate of the system. The 
DTP of this one machine FGB system is given by Eqn. 3. 

 

 
( ) ( )

( )PDTNpDTP

mlzPldPDTP
N

l

J

m

J

n
nmnB

,,,,:

,

1

0 1 1

=
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= = =  (3) 

where, 

 ( ) ( )( ) Txpp
j

T
xP jTj

T

xj
B ≤≤−⎟⎟

⎠

⎞
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⎝

⎛
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is the cumulative mass function of the number of parts 
produced in an epoch without the FGB. The joint probabil-
ity mass function of the FGB occupancy and demand in an 
epoch, represented as ( ) ( )mdiDliHmlz === )(,)(Pr,  can 
be calculated using the procedure developed in Bagdia 
(2004).  

3.2 DTP of an M Machine FGB System 

The behavior of a production line does not remain a sta-
tionary random process within an epoch, posing challenges 
for tractable close form DTP analysis for M machine line 
of  
Figure 3. A recursive iteration originally adapted from (Li 
and Meerkov 2001) for estimating DTP of M machine 
FGB system is therefore developed as laid in  Figure 4 and 
described briefly below (Bagdia 2004).  

 

 
Figure 4: Recursive Procedure to Establish One Machine 
FGB System Equivalency 

 
1. Assume that the probability of last machine mM 

not starving is known and denote its estimate by 
pns. 

2. Modify the last machine's reliability index pM by 
multiplying it by pns and convert the line into an 
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equivalent one machine FGB system with modi-
fied machine Mm′ . 

3. Estimate the stationarized probability of FGB 
blocking the equivalent one machine line (by re-
maining filled) in an epoch irrespective of the ma-
chine's working status as developed in Bagdia 

(2004). Denote it by fP̂ . 
4. Remove the FGB from the line by multiplying 

original last machine mM reliability index by non 

blocking probability ( )fP̂1− . This gives a new 
standard serial line without FGB with modified 
last machine Mm ′′ . 

5. Calculate the new pns for the transformed stan-
dard serial line using the recursive aggregate pro-
cedure (Jacobs and Meerkov 1995). Repeat steps 
2-5 until a convergence is obtained. 

6. Finally calculate the DTP for the convergent 
equivalent one machine FGB system using Equa-
tion 3. 

4 UPSTREAM DEMAND PROJECTION 

The order placed by the first machine m1 of  
Figure 3 subsequently becomes demand for the upstream 
raw material supplier in a supply chain scenario. This pa-
per develops a close form, steady state statistical model of 
the projected end customer demand at the entry of the pro-
duction line governed by assumptions [A1-A6]. The pro-
jected demand is modeled as a first order Markovian chain 
in unit of cycle times (same in which the material flow at 
the entry point takes place) with two demand states {1, 0}, 
respectively representing if an order is placed or not by the 
entry machine. The hypothesized model is verified through 
discrete event simulations of the production line. 

This projection analysis builds over the previous 
framework developed for DTP calculations in section 3. 
First, the projection is studied for a one machine FGB sys-
tem and later extended for an M machine FGB system by 
establishing equivalency to a one machine FGB system. 

4.1 Demand Projection by One Machine FGB 
System 

The one machine FGB system considered here is the same 
as discussed in section 3.1. Machine m1, which is assumed 
to have unlimited raw material availability can process a 
part only if it is up and not blocked by the FGB. The block-
ing by FGB will henceforth imply that the FGB is filled 
irrespective of the machine being up or down (also referred 
to as “communication blockage”), and this probability 

fP̂ is calculated as discussed in Section 3.2. The order 
placing state is represented by state 1 of the projected 
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Markovian demand model, while state 0 is when the ma-
chine cannot process a part, it being either down or 
blocked by the FGB. The complete projected Markovian 
demand model in units of cycle times is shown in Figure 5. 
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Figure 5: Projected Markovian Demand Model at the Entry 
Machine of a Production System subjected to Markovian 
End-Customer Demands 
 

A simulation verification of the proposed projected 
demand model is made in Table 2. In each simulation run 
of the corresponding discrete event model, zero initial con-
ditions for all buffers have been assumed. One run con-
sisted of 10000 epochs (1 epoch = T time slots) and statis-
tics were collected after an initial warm up period of 4500 
epochs. proj

anlP  denotes the analytically estimated transition 
matrix of the projected Markovian demand model, while 

proj
simP  represents the empirically calculated transition ma-

trix from one simulation run's logged statistics. The per-
centage error matrix ( ) proj

sim
proj

anl
proj

sim PPPerr −×= 100%  

shows percentage error less than 11% for all the four tran-
sition elements. The deviation results from the approxima-
tion induced in calculating FGB blocking probability fP̂ . 

4.2 Demand Projection by M Machine FGB System 

The proposed analysis involves converting the M machine 
FGB line into an equivalent one machine FGB system us-
ing procedure developed in section 3.2 and then applying 
on it the one machine FGB projection results from section 
4.1. The results from simulation verification are shown in 
Table 1. The less than 6.5% error in most of the calculated 
transition probabilities validates the Markovian projection 
in units of cycle times within the steady state simulation 
and fP̂ estimation accuracies. The projected model accu-
racy is better for multiple machine line than for a single 
machine FGB system. The existing gap still remains to be 
explored, but nevertheless the method should be useful for 
longer lines. 

5 CASE STUDY 

A numerical case study presented here demonstrates the 
use of the DTP measure for multi-tier supply chain exam-
ple (see Figure 6). The supply chain under consideration 
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consists of an assembly plant P, its supplier S1 and it's sup-
plier's supplier S2 following assumptions [A1-A7]; ma-
chine reliabilities, buffer capacities and demand model are 
as indicated. 

 
5.1 Effect of FGB Capacity and Customer Due Time 

on DTP 

DTP is a function of all production, inventory and cus-
tomer subsystem's parameters.  
 Figure 7 shows impact of FGB capacity and demand 
due time parameters on overall DTP of the Supply Chain in 
Figure 6, against following Markovian demand model: 

[ ]17105=D ;  
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

4.03.02.0
2.05.05.0
4.02.03.0

P  

 
with average demand 6627.10=D . 
 Observations  DTP is a monotonic, non decreasing 
function of the FGB capacity, i.e. it only gets better with 
increase in FGB capacity, and gets saturated after a limit-
ing value. This result can be used for optimal selection of 
the FGB capacity for a given due time. DTP shows similar 
non decreasing monotonicity with respect to the due time 
T. Higher allowable customer due times reduce the load 
(measured in terms of the Load Factor LF) on the system 
and increase the DTP. This can be used for negotiating due 
times with the customers to relax production system's load 
constraints and, in turn, guarantee confirmed delivery 
jointly with minimum inventory. The analytical DTP for-
mula should allow multi parameter optimization over any 
of the production-inventory-customer subsystems vari-
ables.  

5.2 Effect of Demand Variability on DTP 

Demand variability is here measured in terms of the Coef-
ficient of Variation (CV - defined for random variable X as 

XCV XX σ= ) and has significant effect on DTP (see Fig-
ure 8). The system in Figure 6 is subjected to different 
Markovian demand models having the same average de-
mand 6627.10=D , but different variabilities. 
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Figure 6: Two Tier Serial Supply Chain for Case Study 
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Figure 7: Overall DTP Variations with FGB Capacity and 
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Figure 8: Overall DTP Variations with Coefficient of 
Variation of Demand 
Table 1: Accuracy of Projected Markovian Demand Model in unit of cycle time for M machine FGB System 

ip  iN  T  D  P  LF  proj
simP  proj

anlP  err%  

65.090.0    32  11 86  ⎥
⎦

⎤
⎢
⎣

⎡
4.03.0
6.07.0  0.9439 ⎥

⎦

⎤
⎢
⎣

⎡
4261.04010.0
5739.05990.0  ⎥

⎦

⎤
⎢
⎣

⎡
4099.04099.0
5901.05901.0  ⎥

⎦

⎤
⎢
⎣

⎡
8007.32189.2
8220.24856.1  

87.0
95.087.0

 
3

21
 7 654  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

3.02.05.0
2.05.03.0
5.03.02.0

 0.8995 ⎥
⎦

⎤
⎢
⎣

⎡
2819.02883.0
7181.07117.0

 ⎥
⎦

⎤
⎢
⎣

⎡
2870.02870.0
7130.07130.0

 ⎥
⎦

⎤
⎢
⎣

⎡
7967.14531.0
7055.01836.0

 

95.0
90.088.0
85.080.0
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43
32

 15 127  ⎥
⎦

⎤
⎢
⎣

⎡
75.075.0
25.025.0

 0.9559 ⎥
⎦

⎤
⎢
⎣

⎡
3032.02808.0
6968.07192.0

 ⎥
⎦

⎤
⎢
⎣

⎡
2833.02833.0
7167.07167.0

 ⎥
⎦

⎤
⎢
⎣

⎡
5528.68991.0
8514.23511.0

 

 

Table 2: Accuracy of Projected Markovian Demand Model in unit of cycle time for one machine FGB System 

1p  1N  T  D  P  LF  proj
simP  proj

anlP  err%  

0.65 3 10 86  ⎥
⎦

⎤
⎢
⎣

⎡
4.03.0
6.07.0

 1.0256 ⎥
⎦

⎤
⎢
⎣

⎡
3755.03710.0
6245.06290.0

 ⎥
⎦

⎤
⎢
⎣

⎡
4688.07360.0
2819.04341.0

 ⎥
⎦

⎤
⎢
⎣

⎡
4688.07360.0
2819.04341.0

 

0.87 3 6 654  
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

3.02.05.0
2.05.03.0
5.03.02.0

 0.9579 ⎥
⎦

⎤
⎢
⎣

⎡
1986.01740.0
8014.08260.0

 ⎥
⎦

⎤
⎢
⎣

⎡
1761.01761.0
8239.08239.0

 ⎥
⎦

⎤
⎢
⎣

⎡
3527.111641.1
8135.22453.0

 

0.5 15 25 2515  ⎥
⎦

⎤
⎢
⎣

⎡
25.05.0
75.05.0  1.5200 ⎥

⎦

⎤
⎢
⎣

⎡
5012.04984.0
4988.05916.0  ⎥

⎦

⎤
⎢
⎣

⎡
5.05.0
5.05.0  ⎥

⎦

⎤
⎢
⎣

⎡
2337.03252.0
2347.03231.0  
 

Observations  Generally the DTP of a system degrades 
with increasing variability of the demand model. But this is 
not strict and there can be counter examples like the one in 
Figure 8 for which 0.1>LF and TD >>max . The sharp fall in 
DTP at one critical value of CV indicates the system hav-
ing some bandwidth for demand variability accommoda-
tion while sustaining higher DTP. Figure 8 can be looked 
upon to judge the demand variability limits (or quantifiable 
risk) that can be suitably afforded for a given production 
load factor and desired customer DTP range. 
163
5.3 Demand Projection and DTP Isolation 

The projection of demand and its later use in independent 
evaluation of each entities and their respective interaction 
is studied here with a simple demand model (DM1) for 
supply chain in Figure 6: constant demand 12=D (special 
case of the Markovian demand model) with due 
time 15=T , for easy interpretation of the results.  
 Observation  Table 3 illustrates progressive incre-
ment of the load factor and associated degradation of DTP 
8
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with addition of unreliability in the supplier base for sup-
ply chain in Figure 6 under demand model DM1.  
 
Table 3 : Load Factor and DTP decomposition for Supply 
Chain in Figure 6 

* Isolated System Load Factor DTP 
P  0.9067 1.0000 

PS1  1.0058 0.9552 
PSS 12  1.0087 0.9344 

* Isolated System: System decoupled from the upstream side by 
assuming unlimited raw material availability at its entry 
 
 However, it will be misleading to arraign only the 
suppliers for this reduced end-customer performance in the 
considered demand driven supply chain. While the up-
stream suppliers can create hardships by causing starva-
tions, the downstream partners can obstruct flow through 
blockages. Table 4 provides some starvation and blockage 
statistics for the entry machine of each entity in the supply 
chain.

simsN (respectively
simbN ) is the number of times a 

machine actually starves simultaneously being up and not 
blocked (respectively gets blocked simultaneously being 
up and not starved) in one simulation run of 10000 epochs 
(1 epoch = 15 time units). 
 
Table 4: Statistics of Blockages and Starvations for Supply 
Chain in Figure 6 under DM1 

Statistics Tier-2 S2 
(m1) 

Tier-1 S1 
(m2) 

Assembly P 
(m4) 

simsN  0 (assumption) 294 13020 

simbN  8864 885 3280 

\
simsP  0 (assumption) 0.0020 0.0868 

simbP  0.0591 0.0059 0.0219 

anlsP  0 (assumption) 0.0027 0.1041 

anlbP  0.0569 0.0043 0.0032 

 
 The assembly entry machine m4 gets significantly 
starved due to the very unreliable upstream supply base. 
However, it also gets blocked significant number of times 
causing obstruction to upstream suppliers, proving that 
DTP degradation's responsibility assignment in a supply 
chain is coupled both in the upstream and the downstream 
directions, and can be complex. The other rows in Table 4 
estimate the probabilities of these starvation and blockage 
events (Ps and Pb respectively) through simulations as well 
as aggregate analysis. The high starvation probability of 
the assembly plant (m4) and simultaneously high blockage 
probability of the Tier-2 Supplier (m1) should be an indica-
tor of possible problem at Tier-1 level. The Tier-2 Supplier 
system though being unreliable still does a decent job as 
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indicated by low starvation probability of machine m2 at 
Tier-1 level. The DTP bottleneck indicator (Li and Meer-
kov 2000) also suggests that machine m2 is the DTP bot-
tleneck machine and its immediate downstream buffer is 
the DTP bottleneck buffer. (A slight increase in the pro-
duction reliability of m2 from 0.8 to 0.81 improves overall 

1.0000  DTP PSS 12
= ) This indicator is however restricted to 

only constant demand case. We will demonstrate a new 
methodology for bottleneck identification by evaluating 
DTP of independent entities against their projected de-
mands from downstream partner, which will hold for any 
demand models including constant, IID and Markovian 
models. 

All of the above important observations including 
DTP calculations in Table 3 were made with respect to the 
end-of-line customer demands as seen only by the final As-
sembly plant. While it is important to be able to evaluate 
the performance of the overall supply chain against a 
common end metric, it is also equally important to be able 
to evaluate the performances of independent entities in the 
supply chain. The Tier-1 Supplier S1 will surely be inter-
ested in knowing its delivery performance to meet its direct 
customer (the Assembly plant) orders both in the isolated 
(S1 alone) and combined (S2 and S1 together) operating re-
gimes. These calculations of

1Sdtp and
12SSdtp will require 

model of ordered parts placed by the assembly plant (or 
demand model seen by the Supplier S1 ), which will be cal-
culated using the analysis in section 4. 

Figure 9 shows simulated projection of orders (in units 
of epoch times) by all three subsystems of the supply chain 
in Figure 6 under DM1 for both the coupled and isolated 
modes. In coupled mode, an actual material transaction 
takes place with the upstream supplier only if the down-
stream machine is up, not blocked and not starving, unlike 
the isolated mode, where no upstream starvation is as-
sumed. Generally there would exist differences between 
the orders placed under these two modes, the magnitude 
being dependent upon the starvation probability of the en-
try machine. For the considered case study, this difference 
is noticeable for the assembly plant, small for the Tier-1 
Supplier, and zero for the Tier-2 Supplier (see Figure 9), as 
also can be inferred from the corresponding starvation 
probabilities in Table 4. The proposed method accounts 
only the downstream variations and calculates the pro-
jected order model for only isolated systems. 

Figure 10 demonstrates the final results for demand pro-
jection and DTP isolation for all isolated subsystems of sup-
ply chain in Figure 6. The capitalized ‘DTP’ and ‘LF’ stands 
for calculations w.r.t. the original end-customer demand in 
epoch periods, while small ‘dtp’ and ‘lf ’ stands for calcula-
tions w.r.t. the projected Markovian demand model in unit of 
cycle times. The high DTP of the Tier-2 Supplier to its pro-
jected Markovian demand d2(t), given by 0.9981  dtp

2S = , in-
spite of its low reliability confirms the previous conclusion 
9
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of it not contributory to the overall DTP degradation. The 
lowest DTP of the Tier-1 Supplier given by 0.9733  dtpS1 =  
with corresponding high load factor 1.0056  lf

1S =  identify it 
as a bottleneck system and suggest to improve its isolated 
production rate to get under unity load factor. A possible 
functional relationship may exist between these different iso-
lated DTPs, but is left unexplored here. 

Also noticeable in Figure 9 are the variations of the 
orders (as low as 8 parts and high up to 15 parts in epoch 
of 15 time units) that gets placed by different tier levels 
even for a constant demand of 12 parts under DM1. Thus 
unreliability in the production system can induce signifi-
cant variations in the orders passed to different tiers of the 
supply chain and hence quantification of these variations 
becomes important for employing any controls. The vari-
ability in the projected demands increases upstream supply 
chain (increasing CV in Figure 10) quantifying the Bull 
Whip effect (Chen, Drezner et al. 2000; Lee, Padamanab-
han et al. 2004). However, care needs to be taken for com-
paring the CVs of projected demands against that of the 
original end-customer demands. For an overloaded system 
(LF > 1.0), high demand variability gets filtered at the FGB 
and hence remains hidden to the upstream tiers. For exam-
ple, if the end-customer demand states of [ ]30155  arrive 
stochastically at the FGB with due time of only T=15 time 
units, then surely the demand of 30 parts is not getting to 
any upstream partners, since when only maximum 15 parts 
can be produced in the allotted due time. Also, it may not 
be a fair comparison as the original and projected demand 
models are in different time scales. 

It is possible to extend the projection results to higher 
time scales and one such method is discussed here. This 
higher time scale analytical distribution can then be veri-
fied against simulated statistics of the projected demands 
from Figure 9. The projected Markovian demand model 
with binary [0, 1] states has one interesting property which 
allows to model it as a binomial distribution in time scale 
of epochs. The self transition probabilities of being in 
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states '0' and '1', sums to one ( i.e. 0.11100 =+ projproj PP ). 
This leads the projected Markovian model steady state dis-
tribution being equal to the corresponding self transition 
probabilities. As established by Bagdia (2004), such Mark-
ovian demand model affects the DTP of a system exactly 
the same way as an IID demand model with the same states 
and probability mass function equal to the steady state dis-
tribution of the Markovian model. Thus the projected de-
mand model can be looked upon as an IID (Bernoulli) de-
mand model in steady state, as far as DTP evaluation is 
concerned. The probability distribution of placing exactly n 
orders in an epoch of T Bernoulli trials, each with prob-
ability projP11 , then becomes a discrete Binomial distribu-
tion as indicated in Eqn. 4. 
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Figure 11 demonstrates a close match between this 

analytically derived binomial distribution and the simula-
tion estimated histogram for isolated projected demands at 
Tier-1 and Tier-2 stages. The large deviations between the 
analytical and simulation achieved Binomial distribution of 
projected orders at the entry of the final Assembly plant 
arise due to inaccuracy in calculating the FGB blocking 
probability for shorter lines. This error gets smaller further 
away from the FGB buffer and hence the proposed analysis 
should work better for longer lines. 

The projected demand statistics (e.g., mean, variance 
and CV) can be calculated analytically for the binomial 
distribution. The CV of the projected demand in the time 
scale of epoch also increases here along the upstream tiers 
of the supply chain and should be carefully compared with 
the CV of the end-customer demand for any meaningful 
inference drawing. 
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Figure 9: Actual and Isolated Orders Projection from different Entities of Supply Chain in Figure 6 
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Figure 10: Final Results of Demand Projections with all Isolated Due Time Performances for Supply Chain in Figure 6 
 

Figure 11: Projected Isolated Order's Probability Mass Function (pmf) in units of epoch times for Supply Chain in Figure 6 
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6 SUMMARY 

In this paper an analytical framework for risk assessment 
and performance quantification of the supply chain in 
terms of due-time performance was presented and verified 
on a simple numerical example. DTP has combined con-
sideration of throughput, lead time, order fulfillment rate, 
bottleneck, operations responsiveness and resiliency. The 
proposed framework enables projection of the random cor-
related end-customer demand to upstream of the supply  
chain and quantifies interrelationship of every entities in-
dividual performance on overall end performance of the 
supply chain. This information mapping via upstream de-
mand projection also weakens the upstream supplier’s de-
pendency on the downstream partners for strategic decision 
making and supports decentralized control structure. The 
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proposed model is fairly general and detailed and ties sig-
nificant supply chain parameters, such as stations reliabil-
ities, buffer capacities, demand correlations and due times. 
This allows not only to carry out assessment of a supply 
chain with given architecture and characteristics, but also 
can be used as a potential design tool.  

The potential for such a tool was explored in the con-
text of a relative simple numerical example, showcasing a 
two-tier supply chain. In this study we have looked only at 
the impact of a few primary parameters. Considering the 
potential size of the parameter space further studies need to 
be conducted, examining potential correlations, eventually 
leading to defining effective operational strategies. While 
the example elaborated here was fairly simple, we expect 
the approach to be equally effective for much more com-
plex supply chain architectures.  
1
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