
Proceedings of the 2005 Winter Simulation Conference 
M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, eds. 
  

 
 

THE USE OF SIMULATION FOR PRODUCTIVITY ESTIMATION 
BASED ON MULTIPLE REGRESSION ANALYSIS 

 
 

     Seungwoo Han 
 

      Construction Management Program 
Georgia Southern University 
Forest Drive, Carruth Bldg. 

      Statesboro, GA 30460-8047, U.S.A. 

    Daniel W. Halpin 
 

  Division of Construction Engineering & Management 
Purdue University 

550 Stadium Mall Drive 
       West Lafayette, IN 47907-2051, U.S.A. 

   
   
   
ABSTRACT 

Productivity estimation has been fundamental subject in-
vestigated in academia and industry. There are two com-
mon methods for estimation of productivity: (1) determi-
nistic and (2) simulation methods. The deterministic 
method does not reflect actual conditions, such as random-
ness of work duration, whereas simulation method can 
overcome this limitation. However, the user without a 
background in simulation may struggle with implementa-
tion due to the difficulty of modeling. The presented pro-
ductivity estimation model in this research was created us-
ing multiple regression analysis with data generated by 
WebCYCLONE. The model representing the mathematical 
relations between conditions and productivity allows plan-
ners or site personnel to estimate productivity by simply 
entering input data reflecting actual site conditions. In aca-
demia, the research methodology utilized in this research 
provides a framework for the user to establish other appli-
cation models for estimating or evaluating the perform-
ances of new technologies. 

1 INTRODUCTION 

In general, one of the most important tasks confronting 
planners in the construction industry is performance esti-
mation of operations prior to commencement of construc-
tion. Productivity has been used as one criterion for ex-
plaining operational performance. Earthmoving is a 
fundamental construction operation and productivity esti-
mation of earthmoving operations has provided people in 
both academe and industry with an important subject for 
research.  

Planners have relied upon three methods to estimate 
productivity based on: (1) historical data; (2) references, 
such as R.S. Means and equipment handbooks; (3) particu-
lar methods such as construction simulation or statistic 
analysis. The method based on historical data or references 
is typically referred to deterministic analysis. 
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2 CONVENTIONAL PRODUCTIVITY 
ESTIMATION METHODS 

2.1 Deterministic Analysis 

Deterministic analysis was developed for simple calcula-
tion of the productivity of an earthmoving operation based 
on the equipment characteristics, equivalent grades, and 
the haul distance provided by performance handbooks pub-
lished by most manufacturers. A deterministic model pri-
marily focuses on the use of time durations that are fixed 
or constant values, with the assumption that any variability 
in the task duration is assumed to be ignored (Halpin et al. 
1992).   

Halpin et al. (1992) describes an example of a simple 
deterministic model for earthmoving operations, consisting 
of a scraper for a hauling and a pusher dozer for a loading. 
The deterministic durations for the scraper travel times to 
and from the fill location are available by using simple 
nomographs. Deterministic analysis tends to overestimate 
actual field productivity.  

2.2 Simulation Methods 

With rapid advances in computer technologies, researchers 
have tried to create simulation models to help construction 
engineers estimate construction productivity prior to com-
mencing actual activities. Simulation models have been ex-
tensively developed and broadly used as a management 
tool within the manufacturing and business industries.  

The CYCLONE (CYCLic Operation Network) system 
approach was developed in the early 1970s. This system 
demonstrated the potential for modeling and simulation of 
repetitive construction processes. In 1982, Lluch and Hal-
pin developed a microcomputer version of CYCLONE 
named MicroCYCLONE. Many improvements to Micro-
CYCLONE have been developed in the past two decades. 
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Construction simulation has been broadly adapted for 
analysis of repetitive construction processes ranging from a 
mason supply system to a real project, such as the Isle of 
Palm Connector Bridge. In general, construction simula-
tion is conducted in several steps (i.e., site observation, du-
ration and resource data collection, modeling using 
CYCLONE, running simulation, and sensitivity analysis) 
(Kannan 1997; Wang 2004). 

3 MULTIPLE REGRESSION ANALYSIS 

In compliance with the need for a new productivity estima-
tion tool to overcome the limitations of both deterministic 
and simulation models, a multiple regression model has 
been developed.  

Regression analysis is the most commonly performed 
statistical procedure for prediction of certain tendencies 
based on observed datasets. The ultimate goal of regression 
analysis is not only to find the values of parameters, but 
also which type of mathematical function fits best. Using 
this tool, researchers have been able to investigate and un-
derstand the relationships between the so-called explana-
tory variables and a result called a response variable. 

In the linear regression model, the response variable is 
assumed to be a linear function of one or more explanatory 
variables associated with error. The response variable can 
also be estimated by curvilinear functions interacting with 
multiple explanatory variables in a nonlinear regression 
model. Several examples of equations are shown below:  

 
1. Linear regression model:  
 

Yi = β0 + β1Xi1 + β2Xi2 + ····· + βpXip + εi 
 

2. Nonlinear regression models: 
        ▪ Quadratic model:  
 

Yi = β0 + β1Xi1 + β2Xi22 + ····· + βpXip2 + εi 
 

        ▪ Exponential model:  
 

Yi = β0 + β1 exp(Xi1) + ····· + βp exp(Xip) + εi 
 

        ▪ Periodic model:  
 

Yi = β0 + β1 sin(Xi1) + ····· + βp sin(Xip) + εi 
 
• Yi is the response variable corresponding the ex-

planatory variables x1, ····· , xp at the i th observa-
tion. 

• β is the coefficient of each explanatory variable. 
In the single linear regression model, β0 indicates 
the intercept and β1 does the slope. 

• εi indicates a normally distributed random error 
(Neter et al. 1996). 
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In order to create a best-fitted multiple regression 
model, several concerns must be taken into account: (1) 
correlation between explanatory variables; (2) relationships 
between the predicted variable and the residuals; (3) resid-
ual variance and R-square; and (4) correlation coefficient R 
(Devore 2000). 

4 DATA GENERATION BASED ON 
EXPERIMENTAL DESIGNS 

The acquisition of the large input datasets associated with 
actual site conditions is fundamental to creating a new pro-
ductivity estimation model based on a multiple regression 
model. Actual data acquisition from construction sites is 
limited due to the characteristics of the construction indus-
try. Each construction site produces different and some-
times uneven data because of the uniqueness of construc-
tion site conditions. Generated data reflecting actual 
situations can be used in a multiple regression model. With 
reference of Kelton (2003) and Wang (2004) recommend 
the use of simulation to generate input datasets. 

Simulation allows users to find and estimate outputs 
by considering various inputs. To do so effectively, careful 
planning of the model design is necessary. This careful 
planning of how models are to be used is important (Kelton 
et al. 2003).  

A variety of approaches, methods, and analysis tech-
niques, known as experimental design, have been intro-
duced and documented by many researchers over the past 
30 years. According to Kelton and Barton (2003), one of 
the principal goals of experimental design is to estimate 
how changes in input factors affect the results, or re-
sponses, of the experiment. 

To illustrate this technique, it is supposed that two 
values, or levels of each input factor, should need to be 
identified. If there are k input factors, 2k different combina-
tions of the input factors and each defining a different con-
figuration of the model can be reviewed, which is called a 
2k factorial design. A design matrix is then formed includ-
ing “+” level (i.e., representing the optimistic conditions) 
and “-” level (i.e., representing the pessimistic conditions). 
In the case of three input factors to be studied, there are 23 
= 8 configurations (Kelton et al. 2003; Wang et al. 2004). 

The main effect of Factor 2 in the above example is 
defined as the average difference in response when this 
factor moves from its “-” level to its “+” level. Conse-
quently, the main effect of Factor 2 is described as (-R1 – 
R2 + R3 + R4 – R5 – R6 + R7 +R8)/2k-1. The main effect of 
interaction can be produced with the same procedure as 
that of an individual factor. For instance, the main effect of 
interactions of factors 1 and 3 can be achieved by the for-
mula that multiplies the columns of factors 1 and 3 and 
adds them and then divides by 2k-1. That is, (+R1 – R2 + R3 
- R4 – R5 + R6 - R7 +R8)/2k-1 (Kelton et al. 2003). 
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The problem of conducting full factorial experimental 
design is that if the number of factors becomes even mod-
erately large, the number of runs extremely increases as 2k. 
Thus, it would be most helpful to identify early in the 
course of experimentation which factors are important and 
which are not. The unimportant factors can then be fixed at 
reasonable values and dropped from consideration, and fur-
ther experimentation can be conducted on the important 
factors, which is called factor-screening design. When ex-
perimental design is successfully completed, the validation 
of the model by experimental design is considered. In gen-
eral, an algebraic regression-model is utilized. The best and 
the worst combinations are tested using a regression model 
that is created based on the experimental design and com-
pared with the result by responses, which is conducted by a 
simulation model in this research (Kelton et al. 2003; 
Wang et al. 2004). 

5 IMPLEMENTATION 

5.1 Data Acquisition 

As the first phase, data collection was conducted in con-
struction sites where earthmoving operation was executed 
in Indiana from May through November in 2003. Table 1 
describes six construction projects where data collection 
was conducted. 

 
Table 1: Descriptions of Earthmoving Projects 

Project Name Location Fleet 
Organization 

Haul 
Distances 

(miles) 
Purdue Nano 
Technology 

Center Phase 1 

W.Lafayette, 
IN 

1 Excavator, 
7 Trucks 3 

Stadium 
Avenue 

Reconstruction 

W.Lafayette, 
IN 

1 Excavator, 
1 Dozer  
2 Trucks 

2.9 

Discovery 
Park Road 

Construction 

W.Lafayette, 
IN 

1 Excavator, 
4 Trucks 15.8 

Purdue Nano 
Technology 

Center Phase 2 

W.Lafayette, 
IN 

1 Excavator, 
10 Trucks 4.8 

West 
Lafayette Trail 

Road 
Construction 

W.Lafayette, 
IN 

1 Excavator, 
2 Trucks 1.1 

Ace Hardware 
Building 

Construction 
Lafayette, IN 1 Excavator, 

7 Trucks 9.4 

 
From the projects described in Table 1, data per hour 

were collected for four or five hours in two or three days at 
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each jobsite. Total 23 separate hourly data were collected 
Accordingly, each hourly dataset covered a period of mul-
tiple cycles. Each dataset represents a remarkable sample 
of earthmoving operations in both a two-link system com-
posed of an excavator and trucks and a three-link system 
composed of an excavator, a dozer, and trucks due to its 
project size, different fleet managements, and varied condi-
tions.  

The pictures that were recorded from the jobsites pro-
vided consistent observations for analyzing the event times 
of each piece of equipment using stop watch analysis. The 
basic information about sieve analysis was conducted us-
ing soil samples that were taken from the jobsites in order 
to investigate the soil characteristics. Through this observa-
tion and analysis, the travel time, loading time, machine 
break time and surveying time were acquired. The basic 
conditions of the jobsite, such as haul distance, capacities 
of excavator buckets and trucks, and the number of pieces 
of equipment, were established as well. Table 2 is a sum-
mary of the data collected from the selected jobsites. 

 
Table 2: Summary of Data Characteristics Collected from 
the Jobsites 

Site Observation 
Stopwatch 
Analysis 
based on 

Videotaping 

Interviews 
Field 

Measurement Calculation 

Machine 
break time 

Bucket 
capacity Soil condition Hauling 

speed 

Survey time Truck 
capacity 

Hauling 
distance Productivity 

Loading 
time 

Number of 
equipment   

Travel time Operators’ 
experience   

Number of 
loading 

Age of 
equipment   

 
Figure 1 demonstrates simulation modeling based on 

one dataset collected from Ace Hardware Construction 
Project. This simulation model is designed to measure the 
productivity in terms of truck-dump per hour. During ex-
cavation process, 8.93 % of interruption by on-site sur-
veyor was observed. This interruption was due to restaking 
the knock down stacks by surveyors. This kind of interrup-
tion was usually observed in all sites where earthmoving 
was operated. Conducting simulation reflecting this actual 
conditions and interviews with site personnel indicate that 
this interruption causes the delay of cycle time and eventu-
ally provides lower productivity. All the durations of each 
task were obtained by the combination between video tap-
ing and stop watch analysis. The durations associated with 
various cycle times, such as loading the earth to truck, 
trucks’ traveling to dump location and returning were as-
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sumed to be fit to beta distribution. AbouRizk’s paper 
(1992) recommended that the beta distribution be used in 
modeling random input processes of construction durations 
for simulation studies.   

 

1
Ground
available

3
Check

(0.2 min)

6
Survey

(4.53 min)

7
Surveyor

Avail

57

2
Prepare

(0.25 min))

5
Ready

33
Excavator

Avail
31

Return

8
Stockpile
(0.2 min))

10
Wait

53
Load

55
Haul

56
Dump

(1.5 min)

58
Return

59
Truck
Avail

0.0893

0.9107

(BETA 1.03 1.88 1.10 2.71)(BETA 9.77 13.63 2.66 1.48)

(BETA 8.08 11.27 2.66 1.48)

 
Figure 1: CYCLONE network of the Simplified Earthmov-
ing Operation in Ace Hardware Construction Project 

 

5.2 Data Generation 

5.2.1 Major Input Factors and Estimated Effects 

The fractional factorial experimental design is used for 
providing guidelines to generate input datasets for applica-
tion models. One dataset collected from Ace Hardware 
Construction as jobsite is used as a sample experiment.   

In the first phase, the main factors significantly im-
pacting productivity were determined. In this research, a 
maximum of four main factors was considered since the 
number of experimental combination was increased at the 
rate of 2k. Through interviews and site observations, the 
four main factors were determined: (1) surveying probabil-
ity, (2) number of trucks, (3) number of excavators, and (4) 
surveying time. Table 3 shows the main factors and the 
low and high levels of each factor. The low and high levels 
of each factor were determined by checking the availability 
of resources on jobsites based on interviews, and the actual 
values presented the real value associated with one dataset 
for the experiment. 

Based on Table 4, the effects of each main factor and 
each interaction associated with the main factors were es-
timated, following the equation suggested in the experi-
mental design manual. The estimated effects are shown be-
low in Table 5. 
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Table 3: Main Factors for the 2k Experimental Design 

Factor Low (-) High (+) Actual 
Value 

Surveying 
probability A 0.05 0.3 0.0893 

Number of 
trucks B 5 10 7 

Number of 
excavators C 1 3 1 

Surveying 
time (min.) D 4 20 4.53 

 
A design matrix and response for experimental design 

based on identification of main factors were conducted. 
Table 4 describes the design matrix and response, and note 
that the response actually the productivity derived from the 
simulation results using each specified main factor.  

 
Table 4: Design Matrix and Responses 

Run A B C D Prod. 
1 - - - - 11.71 
2 + - - - 11.46 
3 - + - - 22.19 
4 + + - - 18.74 
5 - - + - 11.72 
6 + - + - 11.48 
7 - + + - 22.34 
8 + + + - 19.06 
9 - - - + 10.00 

10 + - - + 6.70 
11 - + - + 15.48 
12 + + - + 7.55 
13 - - + + 10.04 
14 + - + + 6.75 
15 - + + + 15.64 
16 + + + + 7.65 

 
Table 5: Estimated Effects 

Factors Effects Factor Effects 
D 6.1123 BC 0.0748 
B 6.0974 BCD 0.0364 
A 3.7184 ABCD 0.0307 

BD 2.8916 ACD 0.0302 
AB 1.9439 CD 0.0197 
AD 1.9116 AC 0.0176 

ABD 0.3840 ABC 0.0119 
C 0.1041   

 
The results from checking the estimated effects indi-

cate that factor D (surveying time) provide the most impact 
on the productivity and factor B (number of trucks) and 
factor A (probability of surveying) followed.  
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5.2.2 A Regression Model for Experimental Designs 

Most experimental designs, including those mentioned 
above, are based on an algebraic regression model assump-
tion about the way the input factors used as main factors 
affect the outputs used as the productivity. The SAS pro-
gram using input data and output data mentioned above al-
lowed finding the best fitted regression model as follows: 

 
Y = 4.02129 + (1.81254·B) + (-0.18042·D) 

 + (0.96546·AD) + (-0.28228·ABD) 
 
The capability and availability of this regression 

model created based on the specific range between the low 
and high levels through interviews and site observations, 
need to be investigated in two cases: 1) conducting in an 
inbound range and 2) conducting in an outbound range.   

Table 6 presents the input data and the outputs and 
comparisons between the regression outputs using either 
inbound or outbound data and simulation outputs using the 
same input data. The comparison rates shown in Table 6 
represent the percentage rate of regression output to simu-
lation output. 

 
Table 6: Test Results of Data Range in a Regression Model 

Data 
Range A B C D 

Reg. 
(cy-
cles 
/hr) 

Sim. 
(cy-
cles 
/hr) 

Comp 
rate 
(%) 

In-
bound 
data 

0.25 7 2 12 11.51 11.30 101.85 

Out-
bound 
data 

0.5 15 5 3 25.77 18.54 138.99 

 
Accordingly, the experimental design and the data 

range test in the regression model provide several guide-
lines for input data generation using simulation models. 

Several main factors significantly influence productiv-
ity: surveying time, the probability of surveying, and the 
number of resources. Low and high levels for each dataset 
can be determined by analysis of the datasets collected 
from jobsites. The range of low and high levels can be de-
termined by the actual value of data collected and the mean 
value of distribution of all datasets collected from six con-
struction sites. Each number of datasets generated based on 
one actual dataset must be the same in order to achieve 
proper applications where all datasets are evenly reflected. 

5.2.3 Input Data Generation Based on Simulation 
Models 

To determine the low and high levels of the probability of 
surveying and surveying time, the data distributions were 
149
investigated in order to find the mean value of each sys-
tem. Figures 2 and 3 show the best fitted distributions, us-
ing the BestFit program, of surveying time and the prob-
ability of surveying. 

 
BetaGeneral(0.23418, 0.48605, 0.00000, 0.66670)
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Figure 2: Beta Distribution of Datasets for the Probability 
of Surveying 
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Figure 3: Gamma Distribution of Datasets for Surveying 
Time 

 
The number of resources associated with simulation 

models is within the range of availability on jobsites. This 
information was determined through interviews with site 
6
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personnel. If a two-link system was used, the numbers of 
excavators and trucks were subject to change from low 
level to high level. In the cases where a three-link system 
was used, the numbers of dozers, excavators, and trucks 
were subject to change from low level to high level. 

Based on the guidelines provided by experimental de-
signs, one dataset collected from actual jobsites can gener-
ate 192 datasets (i.e., combinations of 2 ×  2 × 3 × 16 in 
cases of two-link systems or 2 × 2 ×  2 ×  3 ×  8 for three-
link systems). Accordingly, a total of 4,416 datasets were 
generated based on 23 actual datasets (i.e., 23 ×  192).  

 
Table 7: Information of Best Fitted Distribution and Mean 
Values 

Factor Distribution Mean 

Probability of sur-
veying Beta 21.68 % 

Surveying time Gamma 14.43 min. 
 

5.3 A New Productivity Estimation Model Based on  
Multiple Regression Analysis 

5.3.1 Model Configurations 

In accordance with the variables, denoted as factors, col-
lected from jobsites, there were three models to be consid-
ered and examined: (1) Model I: a full model with 17 vari-
ables, (2) Model II: a reduced model with 10 variables, and 
(3) Model III: a reduced model with 7 variables. Model I is 
associated with all variables considered, including infor-
mation for the probability of surveying/checking and sur-
veying time.  

All of the variables associated with model I were ob-
tained from all the data collected from jobsites where work 
tasks were conducted. In order to create a productivity es-
timation model allowing users to predict results and to se-
lect a system, models II and III were considered with the 
limited information that can be found prior to actual opera-
tions. For instance, information about the probability of 
surveying and surveying time cannot be obtained before 
starting actual operations. 

The reduced model can be separated into the model 
with sufficient information, named model II, and the model 
with insufficient information, named model III. The differ-
ence between models II and III involves consideration of 
three variables: the experience of the excavator’s operator, 
the age of excavator, and the age of trucks. Through inter-
views and site observations, the variables used in each 
model were determined. The variables used in each of 
models are shown in Table 8. 
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Table 8: Variables Used in Each Model 
Variables I II III 

Haul distance A O O O 

Hauling speed B O X X 
Bucket capacity of C O O O 
Number of loading D O O O 

Probability of  
machine break E O X X 

Machine break 
ti

F O X X 

Prob. of surveying G O X X 
Surveying time H O X X 

Soil conditions I O O O 
Loading duration J O X X 

Travel duration K O X X 
Number of trucks L O O O 
Number of dozers M O O O 

Number of  
excavators N O O O 

Experience of ex-
t ’ t

O O O X 
Age of excavator P O O X 

Age of trucks Q O O X 
Productivity by simulation 

models O O O 

 

5.3.2 A Multiple Regression Model 

A multiple regression model provides estimations of spe-
cific results, demonstrating the relationship between a re-
sponse variable, which is the productivity of each dataset 
in this study, and the explanatory variables, which are the 
factors affecting productivity (i.e., travel times, loading 
times, and hauling distance).  

In order to achieve the best-fitted regression model, 
three steps were conducted in this research. These are (1) 
step regression, (2) transformations, and (3) ridge regres-
sion. 

Table 9 shows the finalized multiple regression mod-
els I, II, and III of each model through three steps men-
tioned above.  

They present mathematical relationships between the 
explanatory variables, denoted as predictors, and a re-
sponse variable. These mathematical relationships allow 
the user to estimate productivity when input data which re-
flect actual situations are provided prior to actual com-
mencement site work. 
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Table 9: Variables and Coefficients of Each of Multiple 
Regression Models 

Model Variables and Coefficients 
I G L AI AL BG 
 1.2702 0.1018 -0.0729 0.0081 -0.0646 
 BI BM CK CL CM 
 0.0443 0.0260 -0.0045 0.0185 -0.5733 
 DH DI EF FN GG 
 -0.0042 -0.0252 -0.1777 0.0028 1.5072 
 GH GI GK GL HH 
 -0.1593 -0.5425 0.0420 -0.1206 0.0003 
 HJ HK HL HO HQ 
 0.0051 0.0007 -0.0014 -0.0013 0.0080 
 IL IM JK JP LL 
 0.0088 -0.4720 -0.0087 -0.0247 -0.0075 
 LM LN LO JM INT. 
 0.0087 0.0017 0.0642 -0.0776 2.0584 

II L AC AI AL CL 
 0.0179 -0.0049 0.0272 -0.0018 -0.0138 
 DL DP IO LL LM 
 -0.0013 -0.0055 -0.0195 0.0013 -0.0014 
 LN LO MM MO INT. 
 -0.0003 0.0016 0.0156 -0.0230 0.6912 

III N AD AI AL AM 
 -0.0028 -0.0004 0.0314 -0.0018 -0.0137 
 CC CL DD DI DL 
 -0.0078 -0.0042 -0.0044 -0.0430 -0.0009 
 DM IL LL LM INT. 
 0.0018 -0.0043 0.0013 -0.0020 0.6984 

 

6 VALIDATION OF NEW PRODUCTIVITY 
ESTIMATION MODEL BASED ON MULTIPLE 
REGRESSION ANALYSIS 

The best-fitted models were determined through the proce-
dures based on these statistical criteria in previous sections 
in this research. In this section, comparison of the results 
by between the simulation models and the multiple regres-
sion models is conducted. As previously mentioned, the 
reliability of regression models is determined by two crite-
ria: R-square and MSE; however, the comparison of the 
results between the simulation models and the regression 
models demonstrate how close the results of the regression 
models are to the simulation model. The comparison rates 
shown in Table 10 represent the percentage rate of regres-
sion output to simulation output. 

According to Table 10, the factors included in model I 
and excluded in models II and III (i.e., the probability of 
surveying, surveying durations, the probability of machine 
breaking, and repair durations of machine) functioned as 
significant factors impacting the results. However, the fac-
tors included in model II and excluded in a model III (i.e., 
age of equipment and experience of operators) appear not 
to impact the estimation results significantly. Based on the 
14
results comparisons, the interruption by surveying for re-
staking or checking stakes during operations influenced 
productivity significantly.  

 
Table 10: Comparison of Productivity between Simulation 
Models and Multiple Regression Models 

Data I II III 
sets 

Sim. 
Reg. Comp. Reg. Comp. Reg. Comp. 

 Prod Prod Rate 
(%) Prod Rate 

(%) Prod Rate 
(%) 

1 19.10 18.60 97.38 13.71 71.78 13.52 70.79 

2 14.22 13.84 97.33 13.71 96.41 13.52 95.08 

3 26.00 22.32 85.85 13.71 52.73 13.52 52.00 

4 16.13 15.84 98.20 13.71 85.00 13.52 83.82 

5 19.81 17.85 90.11 13.71 69.21 13.52 68.25 

6 5.08 4.63 91.14 3.85 75.79 3.81 75.00 

7 2.62 2.51 95.80 3.85 146.95 3.81 145.42 

8 3.40 3.18 93.53 3.85 113.24 3.81 112.06 

9 4.17 3.62 86.81 3.27 78.42 3.22 77.22 

10 3.74 3.63 97.06 3.27 87.43 3.22 86.10 

11 17.48 16.63 95.14 12.72 72.77 12.83 73.40 

12 8.38 9.46 112.89 12.72 151.79 12.83 153.10 

13 15.52 15.01 96.71 12.72 81.96 12.83 82.67 

14 18.56 17.50 94.29 12.72 68.53 12.83 69.13 

15 16.12 14.55 90.26 12.72 78.91 12.83 79.59 

16 4.57 4.59 100.44 3.91 85.56 3.93 86.00 

17 3.37 3.23 95.85 3.91 116.02 3.93 116.62 

18 3.88 3.62 93.30 3.91 100.77 3.93 101.29 

19 16.14 15.77 97.71 11.84 73.36 11.79 73.05 

20 15.94 15.45 96.93 11.84 74.28 11.79 73.96 

21 16.78 16.25 96.84 11.84 70.56 11.79 70.26 

22 12.75 11.82 92.71 11.84 92.86 11.79 92.47 
23 15.48 14.52 93.80 11.84 76.49 11.79 76.16 

Avg.   95.22  87.86  87.54 
Std.   5.30  24.22  24.32 

 

7 CONCLUSIONS 

This study provides a methodology to establish a produc-
tivity estimation model combining actual data collection, 
input data generation using experimental designs and mul-
tiple regression analysis.  

The first issue in a productivity estimation model is 
how to design the model with configurations of input data 
and output data. The model enables the user to estimate 
productivity prior to site works. Thus, the input of applica-
tion models must be designed to record all available infor-
mation, such as the number of resources, working condi-
tions, soil conditions, and etc. The precision and accuracy 
of how well input data reflect actual situation in construc-
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tion sites determine the reliability of the model enabling to 
estimate productivity.  

The second issue is how to collect data and establish a 
database based on the actual data collected from various 
jobsites. This issue is related to the difficulties in obtaining 
constant results from the actual earthmoving operation. As 
described in previous sections, input data were collected 
through the videotape recording in conjunction with the 
stopwatch study and interviews. However, the productivity 
resulting from each actual data has several limitations: (1) 
the low number of input data, (2) the large variance, and 
(3) the difficulties of acquiring of actual data. This sug-
gests the use of a simulation methodology as an alternative 
to resolve the limitations of actual data. This research 
demonstrates the use of WebCYCLONE as one of simula-
tion programs in order to generate datasets. A large number 
of datasets was generated by WebCYCLONE using sensi-
tivity analysis, and the datasets was used as constant, pre-
cise, and abundant resources that provide input datasets to 
a multiple regression model. 

The proposed productivity estimation model eventu-
ally provides the mathematical relations between condi-
tions denoted as variables and productivity denoted as a 
predictor. It contributes in industry that planners or site 
personnel who are struggling with the limitations of deter-
ministic and simulation methods enable to estimate pro-
ductivity with simply entering input data reflecting actual 
site conditions. In addition, the represented model pre-
sented in this research is currently confined to earthmoving 
operations; however, it presents a framework available for 
application to other operations if the target operations pro-
vide reliable input data. The research methodology utilized 
in this research would be beneficial for the user to establish 
other application models for estimating or evaluating the 
performances of new technologies that are being newly ap-
plied in construction.  
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