
Proceedings of the 2005 Winter Simulation Conference
M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, eds.

AN SDS MODELING APPROACH FOR SIMULATION-BASED CONTROL

Sreeram Ramakrishnan

Engineering Management and Systems Engineering
1870 Miner Circle

University of Missouri–Rolla
Rolla, MO 65409, U.S.A.

Mayur Thakur

Department of Computer Science
1870 Miner Circle

University of Missouri–Rolla
Rolla, MO 65409, U.S.A.
ABSTRACT

We initiate a study of mathematical models for specifying
(discrete) simulation-based control systems. It is desirable
to specify simulation-based control systems using a model
that is intuitive, succinct, expressive, and whose state space
properties are relatively easy computationally. We compare
automata-based models for specifying control systems and
find that all systems that are currently used (such as finite state
machines, communicating hierarchical finite state machines
(FSM), communicating finite state machines, and Turing
machines) lack at least one of the abovementioned features.
We propose using sequential dynamical systems (SDS)—a
formalism for representing discrete simulations—to specify
simulation-based control systems. We show how to adapt
the standard SDS model to specify cell-level controllers
for a generic cell. For reasonable flexible manufacturing
cells, the SDS-based specification has size polynomial in
the size of the cell, while in the worst case the FSM-based
specification has size exponential in the size of the cell.

1 INTRODUCTION

Simulation-based control is an approach for building con-
trollers in which the controller makes decisions based both
on the current state of the system as well as the result of
“likely future scenarios.” These likely future scenarios are
determined by carrying out simulations. (Thus, the name
“simulation-based control.”) It is not difficult to imagine
scenarios in which simulation-based control leads to a more
efficient system, and thus to higher industrial productiv-
ity. Even though simulation-based control is an attractive
paradigm conceptually, there are technical issues that need
to be addressed if we want simulation-based control to be
more efficient than traditional control. The chief technical
issue is efficiently computing the “likely future scenarios.”
That is, it is desirable that simulations that are carried out are
themselves efficient. This motivates the following question:
1473
How can distributed control systems be formally mod-
eled so that (a) the representation is succinct, (b) the
representation is expressive (that is, it can be used to
represent a large class of distributed control systems)
and, (c) the model state space is somewhat easy to
(computationally) analyze?

In this paper we take first steps toward answering this
question. We argue that in the wide spectrum of automata-
based models available to us between the two extremes—
finite-state machines and Turing machines (or programs)—
models that have been used to date lack at least one of
the properties mentioned above. For example, finite state
machines are not succinct and almost any interesting question
regarding programs is undecidable. Thus, the issue of finding
a suitable formal model is itself interesting.

We consider three models—communicating finite
state machines (CFSM) (Brand and Zafiropulo 1983),
communicating hierarchical finite state machines
(CHM) (Alur et al. 1999), and sequential dynamical
systems (SDS) (Barrett et al. 2000). A CFSM is a
collection of finite state machines (representing processes)
with each communicating pair of processes connected by a
duplex first-in-first-out channel. A CHM is a generalization
of finite state machines in which a state is either a simple
state or is itself a CHM. An SDS consists of a graph with
each node having a local transition function whose inputs
are the states of neighbors of the node (and its own state).
At each time step, the states are updated sequentially in
prescribed order.

These models have been used for modeling protocols,
theoretically analyzing simulations, and formalizing design
specification. We argue, however, that though both CFSM
and CHM are succinct, neither meets all the criteria men-
tioned above. CFSM can simulate Turing machines, and
so its state space is impossible to analyze computationally.
The expressiveness of of CHMs is equivalent to that of
FSMs. However, reachability in CHMs is intractable.

Ramakrishnan and Thakur
We propose a modification of the standard SDS model
that is intuitive, succinct, and expressive. We call this
model the Input/Output SDS model or IO-SDS for short.
We conjecture that for some restricted cases state space
reachability in IO-SDS is tractable (even though for other
cases state space reachability in SDS is intractable.) To
show the applicability of our models, we show how to
specify a flexible manufacturing cell (FMC) using SDS.

Note that all the automata-based models are relatively
simple and it can be argued that we are trying to force-fit
distributed control systems into these automata-based models
that were not designed with distributed control systems
in mind. One might wonder whether this force-fitting is
warranted. Instead of this approach, would finding a formal
model that is representative of the distributed control systems
not be more reasonable? The reason we want to consider
automata-based models is two-fold. First, the automata-
based models are well understood and if we use automata-
based models for distributed control systems, we can use
known (theoretical) results on these automata-based models
to, for example, increase the efficacy of simulation-based
control. Second, the simplicity (and thus, the universality)
of the automata-based model is an advantage because a
complex model is hard to analyze mathematically. Thus, a
model that is formal, yet mimics distributed control systems
would likely be much harder to analyze than the automata-
based models.

2 FORMAL MODELS FOR SIMULATION-BASED
CONTROL

Traditionally, simulation models have been used extensively
for the purpose of long-term design and analysis of flexible
manufacturing systems. The successful use of simulation
as a design tool has encouraged researchers to investigate
into possible ways and methods of using these models
for short-term planning, scheduling, and control (Stecke,
1988). Although the basic manufacturing modeling
requirements are the same in both design and control
applications, some basic differences in their requirements
exist (Davis et al. 1991). The area of real-time control
of manufacturing cells using simulation models has
been the subject of a number of research projects, such
as those described in Manivannan and Banks (1991),
McConnell and Medeiros (1992), Smith et al. (1994),
Drake et al. (1995), and Son et al. (1999).
Smith et al. (1994) examined the application of dis-
crete event simulation to shop floor control of a flexible
manufacturing system. Here, simulation is used as a
task generator to control the physical equipment on the
shop floor. Wu and Wysk (1988) created a “multi-pass
framework” for simulation-based control by combining a
learning system with simulation. Wu and Wysk (1989)
later presented a multi-pass scheduling algorithm using a
147
mechanism controller and a flexible simulator. Multi-pass
scheduling algorithms are defined as the scheduling algo-
rithms that deal with the scheduling problem of selecting
the best dispatching rule among rules in an alternative
space. Son et al. (1999) documented the implementation
of a multi-pass simulation-based, real-time scheduling and
shop floor control system (using a single model).

In general, four types of control architectures have
been developed and researched (Dilts et al. 1991): (i)
centralized control; (ii) hierarchical control, (iii) het-
erarchical/distributed control, and (iv) hybrid control. For
each of the above architectures, implementation specifics
for simulation-based control need to be developed asso-
ciatively. The implementation of simulation-based con-
trol architecture for shop floor control has been parti-
tioned into planning, scheduling, and execution functions
(Jones and Saleh 1990). For each of the three functions,
wide research has been conducted, and the complexities of
each individual function are also well known.

Smith and Joshi (1995) developed a formal model of
the execution portion of shop floor control. It is to be
noted that the execution activities were completely sepa-
rated from the decision-making activities, enabling differ-
ent decision-making strategies to be implemented depend-
ing on the situations. Execution has been defined as a
function governing what (tasks), where (equipment), and
how (methods, e.g. messaging) in shop floors. Simi-
larly, Smith et al. (1994) define execution as verifying the
physical preconditions and communicating with the subor-
dinate systems to facilitate the tasks. Smith et al. (1994)
state that since the execution module causes physical ac-
tion, there must be a mechanism for physically verifying
certain preconditions to prevent catastrophic errors in the
system. Techniques that have been used to implement the
execution model include Petri-nets (Kasturia et al. 1988),
push-down automata (Mettala 1989), finite state automata
(Smith and Joshi 1995), object oriented methods, graphi-
cal representation (Cho and Wysk 1995) and programmable
logic control. Common information embedded in these tech-
niques is composed of two sets: specifications for each state
(condition), and a set of variables and associated actions
that change the state.

In fact, models that mimic control systems have been
proposed, for example, by Joshi et al. (1995). However, we
reemphasize that our approach is not to propose a new model
that mimics control systems, but to use existing models (with
as little modification as possible) so that results on these
existing models can be carried over to our work.

3 RESEARCH OBJECTIVES

The main objective of this research is to develop SDS for-
mal models that will allow further investigation into the use
of communicating hierarchical state machines in formally
4

Ramakrishnan and Thakur
modeling distributed and hierarchical control systems. The
focal domain of this paper is discrete-part manufacturing, a
domain where simulation-based control has been success-
fully implemented by previous researchers.

The paper presents an SDS formal modeling approach
for developing control architectures for discrete-part manu-
facturing systems. The modeling methodology is discussed
with an example manufacturing cell. In addition to the
modeling constructs, the paper discusses issues related to
reachability analysis, state space generation, and complexity
analysis, specifically comparing it with finite state automata
models.

As discussed earlier, finite state representations have
been extensively used to formally model discrete control
systems. In addition, such formalisms have been the basis
for generating simulation-based control architectures. More
recently, formalisms such as finite state automata were also
the basis for developing methodologies to automatically
generate DES models that can be used for real time control
and for traditional “fast” analysis.

A modeling method that focuses on generating simula-
tion constructs for real time control need to focus on three
specific sub-models: object model, interaction model, and
logic. This paper discusses the control logic component
that need to be incorporated in methods to generate DES
models for control. A detailed discussion on the sub-models
using eXtensible Markup Language (XML) is available in
Srinon and Ramakrishnan (2005).

The model discussed in this paper will be extended
to include distributed systems and/or hierarchy. Such a
method will be based on “communicating hierarchical state
machines”. The discussed model and the extensions will
enable generating DES models for distributed/hierarchical
control.

4 MODELING FOR SIMULATION-BASED
CONTROL

A traditional controller (for, say, a flexible manufacturing
cell) can be thought of as a decision-making algorithm that
makes real-time decisions (such as which route through the
cell a given part should take at a given moment) taking into
account only the current state of the system. However, a
decision that is optimal for the current state might not be
optimal in the “long run.” For example, if certain events
happen in the future the decision made now might turn out
to be a bad decision. A simulation-based controller can
be thought of as a decision-making algorithm that makes
real-time decision based on the current state of the system
and the state (or states) the system is likely going to be
in the future. Thus, roughly speaking, simulation-based
controllers make decisions by looking ahead in the future.
Given that the system is in state s0 at time t = 0, the number
of possible states that the system could be in at time t = α
1475
is, in general, exponential in α. This is because at each time
step some events can take place. In general, these events
take place independently of each other and so the number
of possible states that the system could be in at time t = α

is exponential in α. This means that a simulation-based
controller cannot hope to both provide real-time control and
look too far ahead in the future because, roughly speaking,
there are too many possible scenarios to consider. Note that
the “look ahead” to time t = α corresponds to finding which
states are reachable from state s0. If state space reachability,
which is provably hard for many interesting systems, can be
solved efficiently, then the look ahead in simulation-based
controllers can be speeded leading to better simulation-
based controllers. The hardness that we refer to here can
be given a technical meaning depending on the system.
For example, for Turing machines state space reachability
is undecidable. For Sequential Dynamical Systems (SDS),
which are described in Section 5, even if the functions
used in the nodes of the SDS are all simple threshold
functions, the state space reachability is PSPACE-complete
(Barrett et al. 2003).

Our approach in this work is based on the following
observations: First, state space reachability is a hard problem
in general. However, in practice many systems might be
simple enough that state-space reachability can be solved
relatively easily. Second, in real-world systems there could
be initial states such that it is easy to compute which states
are reachable from these initial states. Third, optimization
versions of state space reachability problems might have fast
approximation algorithms which might suffice in practice.

It appears then that complexity of state space reachabil-
ity for a particular model should be a key factor in deciding
whether that model is suitable for simulation-based control.
But should state space reachability be the only factor? Or
do we need to take into account other factors as well? It is
not difficult to see that other factors need to be taken into
account as well, most crucially, perhaps, the following two:

1. Is the model succinct (that is, the representation
of any system in the model is relatively small)?

2. Is the model expressive (that is, the model can be
used to represent a wide variety of systems)?

To see why succinctness is relevant, consider two models
A and B such that state space reachability for A is NP-
hard, while state space reachability for B is in P. Can we
conclude that B is a better model than A? The answer is
“no.” To see this, consider the following scenario: For any
system X, if the representation of X as a model of type
A has size n, while the representation of X as a model
of type B has size 22n

. Now the time that the state space
reachability algorithm takes is O(2p(n)) when the system
is represented as a model of type A and is �(22n

) when

Ramakrishnan and Thakur
the system is represented as a model of type B. Thus, A

is in fact a better model than B.
The reason expressiveness is important is that we want

the techniques we develop to hold for a large class of
systems. What sort of control systems should we be able to
handle? In this paper, we say that the “universe” of systems
that we want to model is the (cell-level) control for FMCs.
(In Section 4.1, we precisely define our universe.)

One might ask why we need a new model of controllers
when several such models have already been proposed in the
literature? The answer is rather simple: The models for con-
trollers proposed in the literature have not been designed
to make analyzing state space reachability easy. These
models have been designed for different puroposes. For
example, Joshi et al. (1995) proposed a model (for FMC
control) that makes automatic generation of control software
possible. The DEVS formalism of Zeigler et al. (2000)
(see also Concepcion and Zeigler 1988) for discrete event
systems allows specification in a hierarchical manner.
Radiya and Sargent (1987) take a programming language
approach and define a formalism for discrete event spec-
ification that includes a rigorous specification of the se-
mantics of the model in addition to syntactic constructs of
the specification language used to specify the simulation.
Radiya and Sargent (1994) present a modal logic based for-
malism to specify and implement discrete event simulations.

The SDS-based model that we descibe below is designed
keeping in mind the ultimate application of this model. In
particular, we want to be able to solve the reachability
problem quickly in some restricted cases. Thus, identifying
which cases are easy and which are hard is important. In this
paper, we describe a formal model that is succinct and based
on SDS. Considerable work has been done in separating
the easy and hard cases of reachability problems in SDS.
We want to adapt these known results in our case with the
goal of designing better simulation-based controllers.

In Section 4.2, we look at automata-based systems—
finite state machines, communicating finite state machines,
and communicating hierarchical machines—that have been
proposed as formal models for real-time controllers, com-
muncations protocols, and flow of control in software con-
trol. We will argue that each of these systems lacks some
feature that is desirable in a model for an effective simulation-
based controller. Before we discuss these shortcomings, we
introduce in Section 4.1 an example system that we will
use to discuss these shortcomings.

4.1 Example FMC

A flexible manufacturing cell (FMC) is a manufacturing
system that can produce multiple types of parts, where a
routing sequence (or a set of sequences) is associated with
each part. A routing sequence through a system is just a
sequence of subparts of the system.

For the purposes of this paper, the “universe” is the set
of FMCs, formally defined as:
147
Definition 1 For integers n1 > 0, n2 > 0, n3 > 0,
k > 0, and � > 1, a (n1, n2, n3, k, �)-FMC is a flexible
manufacturing cell consisting of the following parts:

1. n1 ports,
2. n2 material processors, and
3. n3 material handlers (or robots).

The system handles k types of parts. Each part has exactly
one prescribed route through the cell of length �. The route
of a part type is a sequence of ports and material processors
that begins and ends with a some port.

When the parameters of an (n1, n2, n3, k, �)-FMC are
not important or they are clear from the context, we will
denote simply as “FMC.”

It should be noted that the classification of equipment
types in the FMCs has been adopted from resource models
discussed in Steele et al. (2001). The different components of
a shop floor modeled as a resource can be represented using
equipment (E), instruction sets (I), and a connectivity graph
(CG), which are defined as follows: R = E ∪I ∪CG∪
In the above definition, the ". . ." denotes that the scope of
R varies depending on the nature of the application. For
example, in the case of a shop floor, the above definition
can be expanded to include tools (T), fixtures (F), locations
(L), ports (P), and facilitators (FA) as R = E ∪ T ∪ F ∪
I ∪ CG ∪ L ∪ P ∪ FA ∪ These resource models are
not dependent on implementation and serve as a starting
point for designing control systems. DES models provide
one method of utilizing these models for control system
design. The methodology of generating a single DES from
resource models was demonstrated in Son (2000).

In Section 5.3, we describe how to model a controller
for FMC using an IO-SDS. We explain the modeling using
an example (1, 2, 1, 2, 4)-FMC depicted in Figure 1. The
example FMC consists of the following equipments: a port
(equipment 0), a robot (equipment 1), and two material
processors (equipments 2 and 3). There are two types of
parts: type 0 and type 1. The prescribed route for parts of
type 0 is (0, 2, 3, 0). (That is, parts of type 0 arrive at the
port, then they are processed by the first material processor,
followed by the second material handler, and finally they
are kept back at the port.) The prescribed route for parts
of type 1 is (0, 3, 2, 0).

4.2 Modeling Systems Using Automata

Let us briefly look at the key automata-based models that
could potentially be used in simulation-based control. The
models that we consider are: finite state machines (FSM),
communicating finite state machines (CFSM), communi-
cating hierarchical state machines (CHM), and Turing ma-
chines. Below we informally describe each of these models
6

Ramakrishnan and Thakur
Figure 1: A (1, 2, 1, 2, 4)-FMC

and discuss the advantages/disadvantages of using these
models as controllers in simulation-based control.

The use of finite state machines (FSMs) as controllers
is not new. In fact, several formalisms (such as DEVS
(Zeigler et al. 2000)) that have been proposed for specifi-
cation of discrete event simulation use FSMs. The reason
FSM is an attractive model is (a) it is simple (b) it captures the
essence of finite-state systems such as a discrete event simu-
lation and (c) it can be implemented in hardware. However,
of the three desirable properties (succinctness, epressive-
ness, and easiness of state space reachability), FSM lacks
one, namely, it is not succinct. In particular, the number of
states in an FSM controller for an FMC can be exponential
in the number of ports/equipments/robots. It is easy to see
this: In general, an FSM controller for an (n1, n2, n3, k, �)-
FMC must carry at least the following information in each
state:

1. Which of the ports/equipments/robots contain
parts? This requires n1 + n2 + n3 bits of in-
formation.

2. For each part in the cell, what is its part type? This
requires (n1 + n2 + n3) log k bits of information.

3. For each part in the cell, how many equipments
has the part already been through? This requires
(n1 + n2 + n3) log � bits of information.

Since, in general each configuration of the FMC is reachable,
there are a total of 2(n1+n2+n3)(1+log k+log �) states in an FSM
controller for an (n1, n2, n3, k, �)-FMC.

A communicating finite state machine (CFSM)
(Brand and Zafiropulo 1983) is a model used to describe
distributed protocols. It has multiple finite state machines
M1, M2, . . ., Mk communicating with each other via chan-
nels. The state of a machine Mi can change due to one of
two reasons: it receives a message from another machine
or it transmits a message to another machine. Brand and
Zafiropulo argue that it is natural to consider the channels
to be of infinite capacity because even though in practice
the channels have finite capacities, the bounds on the ca-
pacities are way too large to be practical. If we consider
infinite capacity channels, then a CFSM can essentially
147
simulate a Turing machine and thus reachability in CFSM
is undecidable. If we

Informally, in a communicating hierarchical state ma-
chine (CHM) (Alur et al. 1999), a (super)state can itself be
a machine. Thus the machine is hierarchical. In additional,
there may be several sub-machines within a CHM that run in
parallel. These machines communicate (synchronize) using
symbols that are common alphabet symbols. The expres-
siveness of CHMs is equivalent to that of FSMs. CHMs
offer succinctness in some cases. However, reachability
in CHMs is EXPSPACE-complete (Alur et al. 1999), and
thus intractable.

A Turing machine provides great expressiveness: There
are controllers that can be represented as a Turing machine
but not as finite-state machines. However, the reachability
problem for Turing machines is undecidable. Thus, Turing
machines are unsuitable for our purposes.

5 SDS-BASED MODEL FOR SIMULATION-BASED
CONTROL

As we have seen above, automata-based models that have
been used to specify and analyze industrial control systems
lack either succinctness or expressiveness. In this section,
we show how we can alleviate these problems by using
a modification of sequential dynamical systems to model
industrial control systems. We first introduce the standard
SDS model and then introduce a modification (IO-SDS)
of the SDS model that we use to model control systems.
We show how the example cell controller discussed in
Section 5.3 can be modeled using an IO-SDS.

5.1 Standard SDS Model

Sequential Dynamical Systems (SDS) is a theoretical frame-
work for analyzing discrete simulations. The standard SDS
model consists of the following three components: an un-
derlying graph G = (V , E), a set of local update functions
F , and an update order π . (We formalize the SDS model
in Definition 2.) Each node in V denotes an “element” in
the simulation. For our purposes, it is helpful to think of
each node as representing a “variable” of the system we
are simulating. The edges in E denote the dependencies
between variables. Thus, an edge between variables x and
y denotes that “x and y are interdependent.” Each node
(variable) x has an update rule (function) associated with it.
The function f associated with x captures how x depends
on other variables. The inputs to f are the current values
of x and the values of its neighbors (in G). The set of all
these functions forms F . π is a permutation on the nodes
and it denotes that order in which the nodes are updated at
any time step.
7

Ramakrishnan and Thakur
Definition 2 (Barrett et al. 2000) A sequential dy-
namical system (abbreviated as SDS) over domain D is a
tuple S = (G, F, π) such that the following hold:

1. G = (V , E) is an undirected graph with n nodes
labeled 1, 2, . . . , n. G is called the underlying
graph of S.

2. F = (f1, f2, . . . , fn) is an ordered set of boolean
functions such that, for each i = 1, 2, . . . , n, the
following holds: If the degree of node i is k, then
fi is a function of type Dk+1 → D. For each
i = 1, 2, . . . , n, fi is the called the local transition
function for node i.

3. π is a permutation on {1, 2, . . . , n} known as the
update order of S.

Let S = (G, F, π) be a SDS over domain D. Let
G = ({1, 2 . . . , n}, E). A configuration of S is an element
of Dn. Let C = (s1, s2, . . . , sn) be a configuration. Let
i ∈ {1, 2, . . . , n}. We say that node i is in state si in
configuration C. We now describe how configurations of
SDS evolve over time. Starting in an initial configuration
(set of values to assigned to the nodes of an SDS), an SDS
S = (G, F, π) evolves as follows. Each time step consists
of n mini-steps. In the ith mini-step, the state of node i is
updated to fi(·, ·, . . . , ·), where the inputs to fi are the the
current state of node i and the current states of neighbors
of i. (Note that if a neighbor of i, say j , was updated
in a mini-step before i, then the input to fi would be the
updated state of j .)

More formally, let C be the configuration of S at time
step t . Then the configuration of S at time step t + 1 is
denoted by nextS(C), and it is defined as follows. We first
define a series of configurations C0, C1, C2, . . . , Cn. Let
C0 = C. Ck represents the configuration after mini-step
k. Ck is obtained from Ck−1 in the following manner.
For each i ∈ {1, 2, . . . , n}, let si be the state of node i in
configuration Ck−1. Let � = π(k). Let X be the neighbors
of node � in G. Let x1, x2, . . . , xm be the elements of
X ∪ {�} in increasing order. Let s′ = f�(sx1 , sx2 , . . . , sxm).
Then, Ck = (s1, s2, . . . , s�−1, s

′, s�+1, s�+1, . . . , sn). Now,
nextS(C) = Cn.

The sequentiality of updates is a crucial difference
between SDS and models such as neural networks, cellular
automata, and communicating finite state machines, all of
which use synchronous (i.e., parallel) updates. Note that
for the same underlying graph and the same local transition
functions, different update orders may produce different
dynamic behavior. onfiguration at the next step depends
on the current configuration, the structure of the underlying
graph, the local transition functions, and the update order.

Example 1 Consider an SDS S1 defined over the
boolean domain as follows. S1 = (G, F, π), where
G is the 4-node graph shown in Figure 2(a), F =
147
[NOR, AND, AND, NOR], and π = [1, 2, 3, 4]. Fig-
ure 2(b) shows the configuration, C0, of S1, say, at step t .
Note that in C0, nodes 1, 3, and 4 are in state 0, while node 2
is in state 1. Figures 2(c) and 2(d) show the configurations
(C1 and C2) of S1 at steps t + 1 and t + 2, respectively.

SDS has been used to design simulations for a
plethora of real-world systems. Examples of such
systems include TRANSIMS (urban traffic simula-
tion) (Barrett et al. 2001), EpiSims (simulation of the
spread of epidemics) (Eubank et al. 2004), AdHopNET
(simulation of packet-switched communication systems)
(Barrett et al. 2004), and Marketecture (simulation of
deregulated electrical power markets) (Atkins et al. 2004).

Reachability in SDS has been studied. In particular,
Barrett et al. (2003) show that the reachability problem in
SDS that use symmetric threshold functions as their tran-
sition functions is polynomial-time computable (and thus,
easy). On the other hand, SDS for asymmetric threshold
functions is PSPACE-hard.

5.2 Input/Output SDS

SDS model dynamical systems in which the there are no
external inputs and there are no explicit outputs. In order for
us to be able to use SDS to specify control systems (such as
a cell-level controller), we need to adapt the standard SDS
model so that inputs and outputs are explicitly modeled.
We define Input/Output Sequential Dynamical Systems (ab-
breviated as IO-SDS) as a natural extension to the standard
SDS model. The underlying graph in an IO-SDS contains
two types of special nodes: input nodes and output nodes.
The input nodes are not updated during the update process,
though their values can be set externally. The values of
output nodes can be read externally.

Definition 3 An input/output sequential dynamical
system (abbreviated as IO-SDS) over domain D is a tuple
S = (G = (V ∪ I ∪ O, E), F, π) such that the following
hold:

1. V (internal nodes), I (input nodes), and O (output
nodes) are mutually disjoint sets such that ||V || =
nV , ||I || = nI , and ||O|| = nO .

2. G = (V ∪ I ∪ O, E) is an undirected graph with
nI + nV + nO nodes. Let n = nV + nO . The set
of nodes in V ∪ O are labeled 1, 2, . . . , n. G is
called the underlying graph of S.

3. E contains no edge from {(x, y) | x, y ∈ I } ∪
{(x, y) | x, y ∈ O}.

4. F = (f1, f2, . . . , fn) is an ordered set of boolean
functions such that, for each i = 1, 2, . . . , n, the
following holds: If the degree of node i is k, then
fi is a function of type Dk+1 → D. For each
i = 1, 2, . . . , n, fi is the called the local transition
function for node i.
8

Ramakrishnan and Thakur
3

1 2

4

(a)

00

0 1

(b)

0

0 0

1

(c)

00

1 0

(d)

Figure 2: (a) The Underlying Graph for SDS S1 (b) Configuration, C0, of S1 at Step t (c) Configuration, C1,
of S1 at Step t + 1 (d) Configuration, C2, of S1 at Step t + 2
5. π is a permutation on {1, 2, . . . , n} known as the
update order of S.

Each step of an IO-SDS works exactly like in an SDS
except only the internal and output nodes are updated (ac-
cording to the update order); the input nodes are not updated
at all. The values of the input nodes are set externally.

5.3 Using IO-SDS for Control

We now show how a controller can be specified using an IO-
SDS. First, we specify an IO-SDS for the example shown
in Figure 1. Later, we will show that a large class of
controllers can be represented as IO-SDS.

We now describe the IO-SDS S = (G = (I ∪ V ∪
O, E), F, π) by describing sets I , V , O, E, F , and π . In
the labels of nodes, 0 stands for the port, 1 for the robot,
and 2 and 3 stand for the two material processors. Thus,
the node labeled robotDest2 in the IO-SDS denotes whether
the equipment 2 (that is, the first material processor) is the
destination for a part movement by the robot.
Input nodes I : The input nodes of the IO-SDS correspond
to the input signals from the 4 equipment-level controllers.

• Equipment 0 (port): The inputs from the port are:

– empty0: denotes whether the port is empty
(empty0 = 1) or nonempty (empty0 = 0).

– receptive0: denotes whether the port is re-
ceptive (objects can be put on the port) or
not.

– partT ype0: denotes the type of part (type
0 or type 1) on the port. We assume, for
this example, that there are only two types
of parts. However, extending the model to
handle the case when there are more than 2
part types is fairly straightforward. Note that
the signal partT ype0 is “valid” only if the
port is nonempty (empty0 = 0).
1479
• Equipment 1 (robot): The inputs from the robot
are:

– idle1: denotes whether the robot is idle.

– inP rog1: denotes whether the robot is in
motion.

– done1: denotes whether the robot has just
finished moving an object from one location
to another.

• Equipments 2 and 3 (material processors): The
inputs from the material handlers are:

– idle2, idle3: denotes whether the material
processor is idle.

– inP rog2, inP rog3: denotes whether the ma-
terial processor is processing a part.

– done2, done3: denotes whether the material
processor has finished processing a part.

Internal nodes V :

• For each i = 0, 2, 3, partT ypei denotes the type
of part in equipment i. partT ypei depends on
done1, robDesti , robSrc0, robSrc2, robSrc3,
and for each j ∈ {0, 2, 3}, partT ypej . (These
variables are defined below.) If done1 = 1 and
robDesti = 1, then partT ypei = partT ypej ,
where j is the smallest integer in {0, 2, 3} such that
robSrcj = 1. If done1 = 0 or if robDesti = 0,
then partT ypei remains unchanged.

• For each i = 0, 2, 3, hopi the number of times the
part in equipment i has been processed by some
equipment in the current cell. Thus, when a part of
type 0 (route: 0, 2, 3, 0) is on equipment 3, hop3 =
2. hopi depends on done1, robDesti , robSrc0,
robSrc2, robSrc3, hop0, hop2, and hop3. If
done1 = 1 and robDesti = 1, then hopi = hopj +
1, where j is the smallest integer in {0, 2, 3} such
that robSrcj = 1. Otherwise (that is, if done1 = 0
or robDesti �= 1), hopi remains unchanged.

Ramakrishnan and Thakur
• For each i = 0, 2, 3, nexti is the equipment
number that the part currently in equipment i

needs to be processed in next. Clearly, nexti
depends on partT ypei and hopi . nexti =
next (partT ypei, hopi), where next is the func-
tion the maps a part type t and an integer r to the
rth equipment in the route that parts of type t need
to take in the cell.

• For each i = 0, 2, 3, nextEmptyi denotes
the status (empty/nonempty) of the equipment
that the part currently in equipment i needs
to be processed in next. Clearly, nextEmptyi

depends on nexti and input nodes empty0,
receptive0, idle2, and idle3. If nexti =
0, nextEmptyi = empty0 ∧ receptive0. If
nexti = 2, nextEmptyi = idle2. If nexti = 3,
nextEmptyi = idle3.

Output nodes O:

• For each i = 0, 2, 3, robSrci denotes whether the
robot is to be instructed to move the part currently
in equipment i. robSrci depends on nextEmptyi ,
donei , and robSrcj , for each j ∈ {0, 2, 3} such
that j < i. The robSrcj ’s are required because if
there are multiple parts that are ready to be moved,
we need to prioritize them. (We are assuming that
parts in 0 get priority over parts in 2, which in turn
get priority over parts in 3.) robSrci = 1 if and
only if donei = 1 and nextEmptyi = 1 and, for
each j ∈ {0, 2, 3} such that j < i, robSrcj = 0.

• For each i = 0, 2, 3, robDesti denotes whether
the robot is to be instructed to move some part
to equipment i. robDesti depends on robSrc0,
next0, robSrc2, next2, robSrc3, and next3. If
robSrc0 = 1 and next0 = i, then robDesti = 1.
If robSrc2 = 1 and next2 = i, then robDesti = 1.
If robSrc3 = 1 and next3 = i, then robDesti = 1.

Note that in addition to the sets I , V , and O, we have
also defined above the set E of edges between these nodes.
In particular, when we say above that “x depends on y” we
mean that there is an edge (x, y) in E.

The update order π is:

1. for i = 0, 2, 3, partT ypei ,
2. for i = 0, 2, 3, hopi ,
3. for i = 0, 2, 3, nexti ,
4. for i = 0, 2, 3, nextEmptyi ,
5. for i = 0, 2, 3, robSrci , and
6. for i = 0, 2, 3, robDesti .

What is the size of our IO-SDS-based specification of
FMC controllers? Note that the size of the underlying graph
and update order is polynomial O((n1 +n2 +n3)(1+log k+
148
log �)). However, we also need to include the size of F ,
the internal functions. The representation of functions in
F can indeed be exponential in the number of its input.
To see this, consider a function with n binary inputs such
that the concatenation of the output bits is a string of high
Kolmogorov complexity (see Li and Vitányi 1997). Thus,
any description of such a function will be exponential in n.
Thus, there are controllers for which the size of any IO-SDS
that represents the controller is �(n1 +n2 +n3). However,
note that controllers in the real world tend to be simple
and lightweight. Thus, it is reasonable to assume that the
local transition functions in F have descriptions that are
polynomial in the size of the number of inputs. We call
such functions reasonable functions. An FMC controller
which can be represented as an IO-SDS with reasonable
transition functions a reasonable FMC controller. Thus,
we have that all reasonable FMC controllers have IO-SDS
representation that is polynomial in n1, n2, n3, k, and �. In
contrast, there are reasonable FMC controllers whose FSM
representation is exponential in n1 + n2 + n3.

6 CONCLUSION: TOWARD HIERARCHY
IN SIMULATION-BASED CONTROL

In this paper, we presented preliminary work toward formal-
ism that will facilitate efficient simulation-based control. In
particular, we introduced Input-Output Sequential Dynami-
cal Systems as one such formalism. We note, however, that
IO-SDS are far from being perfect representations. First,
we do not know the reachability properties of IO-SDS.
Characterizing the easy and hard cases for reachability in
IO-SDS is both interesting theoretically and from a practi-
cal standpoint. Second, in the current definition of IO-SDS
one needs to specify all the components of separately. With
the present definition, we cannot exploit the regularity of
structure of FMCs that occur in the real world. In particular,
we would want to incorporate hierarchy in the definition of
IO-SDS. The definition and specification is itself an inter-
esting area of research not the least because the ultimate
goal in this line of research is efficient simulations. In
particular, we would want the reachability problem in our
hierarchical IO-SDS to be somewhat tractable (at least in
meaningful restricted cases). Given that the general reacha-
bility problem is PSPACE-hard for SDS, we are interested in
approximation algorithms for appropriate optimization ver-
sions of the reachability problem. In this context, the work
of Marathe et al. (1998) on approximation algorithms for
hierarchically specified graph problems seems interesting.

REFERENCES

Alur, R., S. Kannan, and M.Yannakakis. 1999. Communicat-
ing hierarchical state machines. In Automata, Languages
and Programming 26th ICALP’99, ed. J. Wiedermann,
0

Ramakrishnan and Thakur
P. van Emde Boas, and M. Nielsen, Volume 1644 of
LNCS, 169–178.

Atkins, K., C. Barrett, C. Homan, A. Marathe, M. Marathe,
and S. Thite. 2004. Marketecture: A simulation-based
framework for studying experimental deregulated power
markets. In Proceedings of the 6th IAEE European
Energy Conference. To appear.

Barrett, C., R. Beckman, K. Berkbigler, K. Bisset, B. Bush,
K. Campbell, S. Eubank, K. Henson, J. Hurford, D. Ku-
bicek, M. Marathe, P. Romero, J. Smith, L. Smith,
P. Speckman, P. Stretz, G. Thayer, E. Eeckhout, and
M. Williams. 2001. Transims: Transportation analysis
and simulation system. Technical Report LA-UR-00-
1725, Los Alamos National Laboratory.

Barrett, C., S. Eubank, V. Kumar, and M. Marathe. 2004,
May. Understanding large-scale social and infrastruc-
ture networks. SIAM News 37 (4).

Barrett, C., H. Hunt, M. Marathe, S. Ravi, D. Rosenkrantz,
and R. Stearns. 2003, February. Reachability problems
for sequential dynamical systems with threshold func-
tions. Theoretical Computer Science 295 (1–3): 41–64.

Barrett, C., H. Mortveit, and C. Reidys. 2000. Elements of a
theory of simulation II: Sequential dynamical systems.
Applied Mathematics and Computation 107:121–136.

Brand, D., and P. Zafiropulo. 1983. On communicating
finite-state machines. Journal of the ACM 30 (2): 323–
342.

Cho, H., and R. Wysk. 1995. Intelligent workstation con-
troller for computer-integrated manufacturing: Prob-
lems and models. Journal of Manufacturing Systems 14
(4): 252–263.

Concepcion, A., and B. Zeigler. 1988. DEVS formalism: A
framework for hierarchical model development. IEEE
Transactions on Software Engineering 14 (2): 228–241.

Davis, W., C. Pegden, K. Musselman, R. Ingalis, and W. Try-
bula. 1991. Simulation and scheduling. In Proceedings
of the 1991 Winter Simulation Conference, 382–391.

Dilts, D., N. Boyd, and H. Whorms. 1991. The evolution
of control architectures for automated manufacturing
systems. Journal of Manufacturing Systems 10 (1): 79–
93.

Drake, G., J. Smith, and B. Peters. 1995. Simulation as a
planning and scheduling tool for flexible manufacturing
systems. In Proceedings of the 1995 Winter Simulation
Conference, 805–812.

Eubank, S., H. Guclu, V. Kumar, M. Marathe, A. Srini-
vasan, Z. Toroczkai, and N. Wang. 2004. Modeling
disease outbreaks in realistic urban social networks.
Nature 429:180–184.

Jones, A., and A. Saleh. 1990. A multi-level/multi-layer
architecture for intelligent shop floor control. Interna-
tional Journal of Computer Integrated Manufacturing 3
(1): 60–70.
1481
Joshi, S., E. Mettala, J. Smith, and R. Wysk. 1995.
Formal models for control of flexible manufacturing
cells: Physical and system model. IEEE Transaction
on Robotics and Automation 11 (4): 558–570.

Kasturia, E., F. DiCesare, and A. Desrochers. 1988. Real-
time control of multilevel manufacturing systems using
colored petri-nets. In Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation, 1114–
1119.

Li, M., and P. Vitányi. 1997. An introduction to Kolmogorov
complexity and its applications. 2nd ed. Springer-
Verlag.

Manivannan, S., and J. Banks. 1991. Real-time control of
a manufacturing cell using knowledge-based simula-
tion. In Proceedings of the 1991 Winter Simulation
Conference, 251–260.

Marathe, M., H. Hunt, R. Stearns, and V. Radhakrishnan.
1998. Approximation algorithms for PSPACE-hard hi-
erarchically and periodically specified problems. SIAM
Journal on Computing 27 (5): 1237–1261.

McConnell, P., and D. Medeiros. 1992. Real-time simulation
for decision support in continuous flow manufacturing
systems. In Proceedings of the 1992 Winter Simulation
Conference, 936–944.

Mettala, E. 1989. Automatic generation of control software
in computer integrated manufacturing. Ph. D. thesis,
University Park, Pennsylvania.

Radiya, A., and R. Sargent. 1987. A new formalism for
discrete event simulation. In Proceedings of the 1987
Winter Simulation Conference, 554–558.

Radiya, A., and R. Sargent. 1994. A logic-based foundation
of discrete event modeling and simulation. ACM Trans-
action on Modeling and Computer Simulations:3–51.

Smith, J., and S. Joshi. 1995. A shop floor controller class
for computer-integrated manufacturing. International
Journal of Computer Integrated Manufacturing 8 (5):
327–339.

Smith, J., R. Wysk, D. Sturrok, S. Ramaswamy, G. Smith,
and S. Joshi. 1994. Discrete event simulation for shop
floor control. In Proceedings of the 1994 Winter Sim-
ulation Conference, 962–969.

Son, Y., H. Rodríguez-Rivera, and R. Wysk. 1999. A multi-
pass simulation-based, real-time scheduling and shop
floor control system. The quarterly Journal of the Society
for Computer Simulation International 16 (4): 159–
172.

Srinon, R., and S. Ramakrishnan. 2005. Simulation modeling
using neutral xml constructs. In Proceedings of the
International Conference on Systems Engineering.

Wu, S., and R. Wysk. 1988. Multi-pass expert control sys-
tem: A control/scheduling structure for flexible man-
ufacturing cells. Journal of Manufacturing Systems 7
(2).

Ramakrishnan and Thakur
Wu, S., and R. Wysk. 1989. An application of discrete-event
simulation to on-line control and scheduling in flexi-
ble manufacturing. International Journal of Production
Research 27 (9): 1603–1623.

Zeigler, B., H. Praehofer, and T. Kim. 2000. Theory of
modeling and simulation.

AUTHOR BIOGRAPHIES

SREERAM RAMAKRISHNAN is an assistant professor
of Engineering Management and Systems Engineering in
the University of Missouri–Rolla. His research interests
include simulation modeling of distributed systems,
simulation-based control, and hierarchical modeling for
control systems. He is a member of IIE and ASEE. His
e-mail address is <sreeram@umr.edu> and his web
address is <http://www.umr.edu/∼sreeram>.

MAYUR THAKUR is an assistant professor of computer
science at the University of Missouri–Rolla. His research
interests include network and graph algorithms, computa-
tional complexity theory, theory of discrete simulations,
and quantum computing. He is an associate editor for the
Journal of Universal Computer Science. His e-mail ad-
dress is <thakurk@umr.edu> and his web address is
<http://www.umr.edu/∼thakurk>.
1482

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

