
Proceedings of the 2005 Winter Simulation Conference
M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, eds.

OPERATOR-PACED ASSEMBLY LINE SIMULATION

. Marvin S. Seppanen

Productive Systems
2225 Garvin Heights Road
Winona, MN 55987, U.S.A

ABSTRACT

This paper describes an Arena-based operator-paced as-
sembly line simulation model. Besides the normal flow of
assembly units between work cells, the model considers
both the movement of operators between cells and inter-
mittent duties, such as equipment repair and material
stocking. Simulation results are presented for a 4-cell test
case.

1 INTRODUCTION

Discrete event simulation has been widely used to model
assembly lines. In particular the automotive industry has
long used simulation and more recently animation tools to
assess the impact of various assembly line designs (Gujara-
thi et al. 2004) (Roser et al. 2003). For the most part, past
models have concentrated on the mechanical aspects of as-
sembly line design and largely ignored the human or op-
erator component (Baines et al. 2003). The Arena model
presented in this paper augments the standard assembly
line model to include intermittent operator duties. These
duties may consume a significant portion of the operator’s
available time and restrict the operator’s ability to perform
the primary assembly operations.

The Arena model presented in this paper is specifically
designed to incorporate the indirect or intermittent duties
the assembly line operators are periodically required to
perform. The model is a generalized version originally de-
veloped for a client using operator-paced assembly lines to
produce a variety of building supply products. The model
can be used to test strategies for reducing lost production
caused by intermittent operator duties.

2 PROBLEM

Assembly lines are typically modeled as flow of assembly
units or entities through a series of workstations or cells.
This type of flow inherently fits the network modeling ap-
proach of simulation tools such as Arena. Figure 1 illus-
trates the assembly system modeled for this paper.

134

Cell 1

Cycle 40 sec.
Operators 1

Change SKU 2 min.
Get Materials 1 min.

Reject Materials .5 min
Uptime 98%

Cell 2
Cycle 30 sec.
Operators 1

Change SKU 2 min.
Get Materials 1 min.

Reject Materials .5 min
Uptime 98%

Cell 3
Cycle 58 sec.
Operators 0

Change SKU 2 min.

Uptime 95%

Cell 4
Cycle 30 sec.
Operators 2

Change SKU 2 min.
Get Materials 1 min.

Reject Materials .5 min
Uptime 98%

Buffer
Size 1

Buffer
Size 2

Buffer
Size 1

Figure 1: Assembly Line Flow Diagram

The assembly line flow diagram illustrated in Figure 1

is comprised of four cells sequentially linked with three
buffers having capacities of 1, 2, and 1 units respectively.
Cells 1 and 2 each require one operator to function, Cell 3
is automatic and needs no operator, and Cell 4 requires two
operators to function. This assembly line is designed to be
operated with two to four operators. One goal of the simu-
lation is to determine the impact that the number of opera-
tors has on throughput. In addition to the basic tasks, the
operators are periodically required to obtain material to
support the assembly operations, repair failed equipment,
inspect and reject defective material, and change the
equipment setup when a new Stock Keeping Unit (SKU) or
product type is being assembled.

3 MODEL DESIGN

The operator-paced assembly line simulation model is de-
veloped using the standard technique developed by the au-
thor (Seppanen 1995, Seppanen 2000, Seppanen et al.
2005) for linking Arena to Excel using Visual Basic for
Applications (VBA). All model data are contained in a sin-
gle Excel Parameters workbook. Separate worksheets con-
tain each type of model information. This method of simu-
lation model data transfer has becomes a more common
method of simulation model design (Qiao et al. 2003).

This paper does not include detailed description of the
VBA code; however, both the Arena 8.01 model and asso-
ciated Parameters workbook are available at,
<http://factory.engr.stthomas.edu/simul
ation/operator/>. Figure 2 illustrates the flow of in-
formation between Excel, Arena, and Arena 3-D Player.
File Transfer.bat is generated by the VBA code to auto-
mate the saving of model results to a subfolder. The model
can also generate file Model.pbf to be used as input to the
3

http://factory.engr.stthomas.edu/simulation/operator
http://factory.engr.stthomas.edu/simulation/operator

Seppanen

Arena 3D Player program for animating the simulation re-
sults in a 3D format.

Excel

Animation
Display

Simulation Report Files
Model.txt

Operator.txt
Model.out

VBA_output.txt

Parameters
Workbook

Parameters.xls

Transfer
.bat

Arena

Model.doe

Model.mdb Model.
pbf

Arena
3-D

Animation
Display

Model.
a3d

Figure 2: Model Environment

3.1 Entities

The model uses Arena entities {Entity.Assembly.Unit}
to simulate the flow of assembly units through the assem-
bly process. A second entity type {Entity.Failure} is used
to control the cell operation and repair cycles. Each assem-
bly unit entity carries attributes used to store the current
assembly cell, the assigned operators, and product informa-
tion.

3.2 Cells

Figure 3 illustrates the general Arena logic used to model
assembly cell functions. Because Arena supports Sets, this
logic can handle any number of cells by simply extending
the set definitions, see Figure 5.

Figure 3: Cell Model logic

The first assembly unit entity enters the VBA block

from an external source. The VBA block invokes VBA
code that sets the assembly unit entity’s SKU, order num-
ber, and serial number attributes. These calculations are
driven by the data in worksheet Orders which specifies a
sequence of SKU’s to be produced and the batch size for
each order, see Figure 4. The data set is automatically re-
134
peated when the data in worksheet Orders has been ex-
hausted. The VBA code also sets the entity’s Cell attribute
to an initial value of 1.

Figure 4: Worksheet Orders

Next the cell resource R.Cell.1 or R.Cell (1) is seized.

The Station Cell module defines the set of stations {S.Cell
= S.Cell.1, S.Cell.2, S.Cell.3, S.Cell.4}. The Assemble
submodel, which will be discussed later, controls the op-
erator interactions and simulates the assembly process.

The first branch block controls the downstream proc-
essing of the assembly unit entity. If the current Cell num-
ber is less than the total number of modeled cells {Cell <
Cells} the next cell resource {R.Cell (Cell + 1)} is seized.
Next the current cell resource {R.Cell (Cell)} is released.

The second branch block determines if the current cell
is the first {Cell == 1}. If so, a copy of the original entity is
sent to the VBA block to start the processing of a new as-
sembly unit entity. This methodology assures a continuous
flow of incoming assembly units without the excess queu-
ing of entities when the assembly process cannot keep pace
with a predetermined arrival rate.

If the current cell is less than the maximum {Cell <
Cells}, the original assembly unit entity has its Cell attrib-
ute increased by one and is routed to the next assembly
cell. If the current cell is equal to the maximum number of
cells {Cell == Cells}, the original assembly unit entity is
disposed or removed from the simulation model.

The Arena modules illustrated in Figure 3 are typically
augmented with additional modules to record production
statistics and resource status. This modeling approach does
not explicitly model a conveyor or other type of material
transportation system. Rather it prevents the movement of
assembly unit entities until the next assembly cell resource
is available. If this is not possible, the cell resource status
is recorded as blocked. The routing time to the next assem-

Orders Worksheet 25
Order

Number
SKU Batch Size

1 1 40
2 2 50
3 3 10
4 4 20
5 5 40
6 6 10
7 7 20
4

Seppanen

bly cell represents the transit time between the appropriate
cells.

Figure 5 illustrates the definition of resource set
{R.Cell = R.Cell.1, R.Cell.2, R.Cell.3, R.Cell.4}. This set
could be expanded to support a model with additional cells
by increasing the number of resources: R.Cell.5, R.Cell.6,
etc. Similar expansion of queue and station sets would also
be required.

Figure 5: Cell Resource Set Definition

3.3 Buffers

The Arena model illustrated in Figure 3 assumes a fixed
succession of assembly cells. No buffer or float space is
permitted between the assembly cells. The model devel-
oped for this paper has been made more general by option-
ally permitting buffer spaces between the assembly cells.
Figure 6 illustrates the modules used to replace the three
upper-right modules in Figure 3 to incorporate a buffer be-
tween successive assembly cells.

 Figure 6: Buffer Model Logic

The branch block tests for the presence of buffer fol-

lowing the cell assembly {MR (Buffer (Cell)) > 0}. If the
expression is false, no buffer is present and the normal
processing illustrated in Figure 3 is executed. If the expres-
sion is true, the assembly unit entity first seizes a unit of
buffer resource {R.Buffer (Cell)}. When buffer space has
been seized, the prior assembly cell resource {R.Cell
(Cell)} is released. The assembly unit entity is then held or
delayed for the minimum buffer transit time. After this de-
lay, the assembly unit entity seizes the next assembly cell
resource {R.Cell (Cell + 1)}. When the next assembly cell
resource has been seized, the buffer resource {R.Buffer
(Cell)} is released. Figure 7 illustrates the buffer resource
definition for The Arena model.

The buffer sizes and minimum buffer transit times are
specified on the CycleTimes worksheet of Parameters
workbook rather than being hard coded into the model as
illustrated in Figure 7. Note, Arena permits the definition
134
of resources with a capacity of zero. The logic illustrated in
Figure 6 skips all null buffers {MR (Buffer (Cell)) == 0}.

Figure 7: Buffer Resource Definitions

3.4 Operators

Assembly line operators are typically modeled as a re-
source such as R.Operator, with a capacity of possibly 2, 3,
or 4 for the four-cell case study. Arena Sets permit a more
detailed modeling construct by defining a set {R.Operator
= R.Operator.1, R.Operator.2, R.Operator.3,
R.Operator.4}. This set structure permits the tracking of
individual operators. However, it does not provide an easy
method to account for the movement of operators between
assembly cells. Considerable operator movement between
cells is to be expected if the four-cell assembly line were to
be simulated with two or three operators. Omission of op-
erator movement might significantly impact the model’s
validity.

Arena’s transporter construct offers an alternative for
modeling the mobility of assembly line operators. When a
transporter is requested from a pool of identical transport-
ers, one of several options can be used to control the as-
signment. We elected to take the closest available trans-
porter. Arena then calculates the movement time from the
transporter’s current location to the requesting assembly
cell location. This calculation requires the model to contain
distance information for the various possible transporter
paths and the associated travel speeds.

The transporter construct would be sufficient to model
assembly line operators if detailed usage information and
operator scheduling were not desired. Because detailed op-
erator usage statistics and operator break periods were de-
sired, operators were modeled using transporters and re-
sources in parallel.

Figure 8 illustrates the logic detail for the Assemble
submodel introduced in Figure 3. When an operator is re-
quired for an assembly process, the Operator transporter is
first requested from the pool of available Operators
{T.Operator}. The selected transporter number is recorded
in attribute Temp. After the selected transporter has moved
to the requesting assembly cell location, the corresponding
operator resource {R.Operator (Temp)} is seized. A similar
logic is used to release the operator after the completion of
the assembly process.
5

Seppanen

Figure 8: Assemble Submodel Logic

The logic presented in Figure 8 includes additional

complexity because more than one operator may be re-
quired to perform the assembly operation, see Cell 4 in
Figure 1. Therefore an additional attribute, Counter, is used
to track the number of operators remaining to be seized or
released. The branch blocks control the looping until the
required number of operators have been seized or released.
This same branch block automatically handles the situation
when no operator is required; see Cell 3 in Figure 1. Some
additional bookkeeping is required to track the specific op-
erators being used.

3.5 Operator Breaks

Unless assembly line operators use a “tag relief” system,
the assembly line is halted to accommodate operator
breaks. The length of the work and break periods are speci-
fied in the Schedule worksheet, see Figure 9. Fifty minutes
of a 480-minute shift are break or off minutes. This leaves
430 minutes available for work duties. The Arena model
uses VBA code to remove operators from service for the
duration of their scheduled breaks.

Work Minutes Off Minutes Total Minutes

1 110 10 120
2 105 15 120
3 110 10 120
4 105 15 120

Total 430 50 480
Figure 9: Worksheet Schedule

Arena does not permit the number of transporters to be

altered during the model execution. Rather the number of
operator resources is reduced to zero for the duration of
each break period. The logic illustrated in Figure 8 first re-
quests the transporter and then seizes the resource. During
the break periods when the operator resource capacity has
been reduced to zero, the assembly unit entity waits in the
seize queue until the operator returns from break. This re-
cords the transporter as busy even though it is waiting for
the operator resource to return from a break.

3.6 Intermittent Operator Duties

The logic described in the Operators section outlined the
process used to model assembly operators. Similar logic is
13
also employed to model intermittent operator duties that
might be required either immediately before the assembly
operation or shortly after its completion. The Arena model
incorporates four types of intermittent operator duties:
Change.SKU, Get.Materials, Reject.Material, and Repair.
These intermittent operator duties are defined in worksheet
Duties.

The specifics of the intermittent operator duties are in-
put to the model using the CycleTimes worksheet. Figure
10 illustrates the intermittent duties associated with Cell 1.
This worksheet also specifies the frequency and duration of
the intermittent duties. Cell 1 has four intermittent operator
duties:

1. Change.SKU occurs before starting the assembly

processing whenever the assembly unit entity’s
SKU changes or on an average of every 25 units
with duration of 2.0 minutes.

2. Get.Materials occurs after completing the assem-
bly processing every 10 units with duration of 1.0
minute.

3. Reject.Material occurs before starting the assem-
bly processing at random about every 100 units or
with a probability of 0.01 with duration of 0.5
minutes.

4. Repair occurs whenever an equipment failure
takes place. This type of failure takes place 2% of
the time based on information in the Failures
worksheet, see Figure 11.

Figure 10: Cell 1 Intermittent Operator Duties

All simulated intermittent operator duty times are ran-

domly generated using the normal distribution and the
specified coefficient of variation.

Worksheet Duties also contains static analysis to esti-
mate the total time spent on intermittent operator duties. In
the case of Cell 1 about 82.6 minutes per shift will be spent
on intermittent operator duties assuming a planned produc-
tion rate of 400 assembly units per shift. This leaves 430 –
82.6 = 347.4 minutes for assembly operations. Assuming
an average assembly time of 40 seconds, Cell 1 should be
able to produce, 347.4 * 60 / 40 = 521 units per shift.

The logic for implementing the intermittent operator
duties is very similar to that used for the assembly opera-
tions, see Figure 8. Submodels DutiesBefore and Dutie-
sAfter define the required Arena logic. VBA code is used
to determine when intermittent operator duties are to be
46

Seppanen

performed and their durations. Note that the number of op-
erators required can vary for each intermittent operator
duty.

3.7 Equipment Failures and Repair

Each assembly cell is assumed to contain equipment that is
subject to random failure. The specific data for modeling
these failures and their subsequent repairs are contained in
worksheet Failures, see Figure 11. This model uses the
gamma distribution shape parameters suggested by Law
(1990 and 2000). Cells 1, 2, and 4 are expected to be avail-
able for operation 98% of the time. Their operating periods
are generated from a gamma distribution with a mean of
294 minutes and shape parameter of 0.7. Failed or repair
periods are generated from a gamma distribution with a
mean of six minutes and shape parameter of 1.3. The repair
intermittent operator duty may be delayed while waiting
for an operator. The repair of all four cells requires the use
of one operator.

Failures Worksheet Average Average Minutes

Gamma Distribution
Shape Parameter

Cell Operators Operating
Percent

Failures /
Hour

Operating
MTBF

Repair MTTR Operating Repair

1 1 98.00% 0.200 294.0 6.0 0.7 1.3
2 1 98.00% 0.200 294.0 6.0 0.7 1.3
3 1 95.00% 0.200 285.0 15.0 0.7 1.3
4 1 98.00% 0.200 294.0 6.0 0.7 1.3

Figure 11: Worksheet Failures

4 SIMULATION RESULTS

Figure 12 illustrates the Arena model execution with three
operators. At the time of the screen capture, one operator is
conducting a Change.SKU operation at Cell 1 and the other
two operators are doing the assembly operation at Cell 4. A
single assembly unit entity is present at Cell 2 and two
units at Cell 3. Figure 13 illustrates the Arena 3D Player
animation also with three operators.

Figure 12: Arena Animation Display

Arena permits the collection of detailed state statistics

for resources. Figure 14 illustrates the state statistics for
resource R.Cell.2 while Figure 15 illustrates the state sta-
tistics for resource R.Operator.1.

134
Figure 13: Arena 3D Player Animation Display

Figure 14: R.Cell.2 State Statistics

Figure 15: R.Operator.1 State Statistics

Cell 2 spent about 31% of the shift in both the Assem-

ble and Blocked states. A total of 301 assembly units were
processed. Of the remaining part of the shift the most sig-
nificant portion, 20% is spent waiting for an operator. In-
creasing the number of operators from three to four could
reduce that statistic. The remainder of the shift is spent
moving the assembly unit entity into the cell or from the
cell into the buffer or on intermittent operator duties.

The breakdown of time spent on intermittent operator
duties can be seen in Figure 15. Operator 1 spent 54% of
the 8-hour shift on assembly duties or 59% of the available
430 minutes during the shift. It should be noted that Opera-
tor 1 is idle 17% of the shift, while from Figure 14 Cell 2 is
waiting for an operator a similar fraction of shift. Unfortu-
nately these lost times do not overlap and therefore cannot
be put to practical use.

The Arena model does not provide a direct means to
determine how much of the operator time is spent traveling
to the next work location. Travel time would be included in
the idle time statistics of Figure 15. The model did collect
statistics for the number of times an operator moved to a
new work location. That data is summarized for three dif-
ferent operator levels in Figure 16. The number of operator
moves is highly dependent on the number of assigned op-
erators. Notice that even when four operators were as-
signed slightly more than one operator move is simulated
for each assembly unit produced. This result seems coun-
terintuitive but could be explained as follows. Intermittent
operator duties performed after the assembly operation
7

Seppanen

does not prevent the assembly cell from starting the proc-
essing of the next assembly unit entity. Therefore, Cell 1
and Cell 2 may at times be simultaneously using two op-
erators while Cell 4 might at times be using three opera-
tors. Each use of an extra operator involves two operator
moves.

Figure 16: Simulation Results Summary

Figure 16 also indicates the number of assembly units

produced per shift in terms of mean and its 95% confi-
dence interval. These statistics were based on 10 replica-
tions of eight hours or one shift each. Notice that while the
mean production per shift dynamically increased with the
number of assigned operators, the production per operator
slightly decreased as more operators were used. This pre-
sents an interesting optimization problem for further study.
The mean effective cycle time is also calculated as func-
tion of the number of operators.

5 CONCLUSION

The model presented in this paper demonstrates the feasi-
bility of including intermittent operator duties in addition
to the standard assembly line paced duties. Because all data
required to drive this model are contained in a single Pa-
rameter workbook, it is very easy to test alternative operat-
ing scenarios. The model can be expanded without altering
the logic changes to accommodate any number of cells
and/or operators. Such change would involve expansion of
the model sets, variable array sizes, and animation struc-
ture.

The model described in this paper assumes that all op-
erators are located in a single pool. This assumption may
not be valid for an assembly line with a large number of
cells and/or operators. Further the assumption that all op-
erators are equally skilled and therefore are interchange-
able. While such as assumption might not be true in prac-
tice, it would require considerable effort and addition data
to accurately incorporate into a simulation model.

REFERENCES

Baines, T., L. Hadfield, S. Mason, and J. Ladbrook. 2003.
Using empirical evidence of variations in worker per-
formance to extend the capabilities of discrete event
simulations in manufacturing. In Proceedings of the
134
2003 Winter Simulation Conference, ed. S. Chick, P. J.
Sánchez, D. Ferrin, and D. J. Morrice. 1210-1216. Pis-
cataway, New Jersey: IEEE.

Gujarathi, N. S., R. M. Ogale, and T. Gupta. 2004. Produc-
tion capacity analysis of a shock absorber assembly
line using simulation. In Proceedings of the 2004 Win-
ter Simulation Conference, ed. R. G. Ingalls, M. D.
Rossetti, J. S. Smith, and B. A. Peters, 1213-1217.
Piscataway, New Jersey: IEEE.

Law, A. M. 1990-1. Models of random machine down-
times for simulation, Industrial Engineering, 22 No. 8,
August, 58-59.

Law, A. M. 1990-2. Models of random machine down-
times for simulation, Industrial Engineering, 22 No. 9,
September, 22-23.

Law, A. M., and W. D. Kelton. 2000. Simulation modeling
and analysis, 3rd Edition, McGraw Hill.

Kelton, W. D., D. T. Sturrock, and R. P. Sadowski. 2003.
Simulation with Arena, 3rd Edition, McGraw Hill.

Roser, C., M. Nakano, and M. Tanaka. 2003. Buffer allo-
cation model based on a single simulation. In Proceed-
ings of the 2003 Winter Simulation Conference. ed. .
S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice.
123-1246. Piscataway, New Jersey: IEEE.

Seppanen, M. S., 1995. Developing industrial strength
simulation models. In Proceedings of the 1995 Winter
Simulation Conference. ed. C. Alexopoulos, K. Kang,
W. R. Lilegdon, and D. Goldsman. 936-939. Piscata-
way, New Jersey: IEEE.

Seppanen, M, S., 2000. Developing industrial strength
simulation models using Visual Basic for Applications
(VBA). In Proceedings of the 2000 Winter Simulation
Conference, ed J.A. Joines, R. R. Baron, K. Kang and
P. A. Fishwick. 77-82. Piscataway, New Jersey: IEEE.

Seppanen, M. S., S. Kumar, and C. Chandra. 2005. Process
analysis and improvement: tools and techniques, 1st
Edition, McGraw Hill.

Qiao, G., F. Riddick, and C. McLean. 2003. Data drive de-
sign and simulation system based on XML. In Pro-
ceedings of the 2003 Winter Simulation Conference.
ed. . S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Mor-
rice. 1143-1148. Piscataway, New Jersey: IEEE.

AUTHOR BIOGRAPHY

MARVIN S. SEPPANEN, Ph.D., P.E. His company, Pro-
ductive Systems, an independent Industrial Engineering
consulting firm specializing in simulation modeling and
capacity analysis of manufacturing systems. Marvin holds
BME, MSIE, and Ph.D. (Operations Research) degrees
from the University of Minnesota. Before starting Produc-
tive Systems he was an Associate Professor of Industrial
Engineering at General Motors Institute and The Univer-
sity of Alabama. He is a Registered Professional Engineer;
Senior Member and chapter officer, Institute of Industrial
8

Seppanen

Engineers; Member, The Society for Computer Simulation;
Member, Society of Manufacturing Engineers; and has
been certified at the Fellow Level by the American Produc-
tion and Inventory Control Society. He teaches simulation
using Arena to Manufacturing Engineering students at the
University of St. Thomas in St. Paul, Minnesota. His e-
mail address is <seppanen@hbci.com> and his Web
address is
<www.stthomas.edu/engineering/faculty/s
eppanen.asp>.
1349

mailto:seppanen@hbci.com
http://www.stthomas.edu/engineering/faculty/seppanen.asp
http://www.stthomas.edu/engineering/faculty/seppanen.asp

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

