
Proceedings of the 2005 Winter Simulation Conference 
M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, eds. 
  
 
 

OPERATOR-PACED ASSEMBLY LINE SIMULATION 
 
 

. Marvin S. Seppanen 
 

Productive Systems 
2225 Garvin Heights Road 
Winona, MN 55987, U.S.A 

 

   
   

  

ABSTRACT 

This paper describes an Arena-based operator-paced as-
sembly line simulation model. Besides the normal flow of 
assembly units between work cells, the model considers 
both the movement of operators between cells and inter-
mittent duties, such as equipment repair and material 
stocking. Simulation results are presented for a 4-cell test 
case. 

1 INTRODUCTION 

Discrete event simulation has been widely used to model 
assembly lines. In particular the automotive industry has 
long used simulation and more recently animation tools to 
assess the impact of various assembly line designs (Gujara-
thi et al. 2004) (Roser et al. 2003). For the most part, past 
models have concentrated on the mechanical aspects of as-
sembly line design and largely ignored the human or op-
erator component (Baines et al. 2003). The Arena model 
presented in this paper augments the standard assembly 
line model to include intermittent operator duties. These 
duties may consume a significant portion of the operator’s 
available time and restrict the operator’s ability to perform 
the primary assembly operations. 

The Arena model presented in this paper is specifically 
designed to incorporate the indirect or intermittent duties 
the assembly line operators are periodically required to 
perform. The model is a generalized version originally de-
veloped for a client using operator-paced assembly lines to 
produce a variety of building supply products. The model 
can be used to test strategies for reducing lost production 
caused by intermittent operator duties. 

2 PROBLEM 

Assembly lines are typically modeled as flow of assembly 
units or entities through a series of workstations or cells. 
This type of flow inherently fits the network modeling ap-
proach of simulation tools such as Arena. Figure 1 illus-
trates the assembly system modeled for this paper. 
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Cell 1

Cycle 40 sec.
Operators 1

Change SKU 2 min.
Get Materials 1 min.

Reject Materials .5 min
Uptime 98%

Cell 2
Cycle 30 sec.
Operators 1

Change SKU 2 min.
Get Materials 1 min.

Reject Materials .5 min
Uptime 98%

Cell 3
Cycle 58 sec.
Operators 0

Change SKU 2 min.

Uptime 95%

Cell 4
Cycle 30 sec.
Operators 2

Change SKU 2 min.
Get Materials 1 min.

Reject Materials .5 min
Uptime 98%

Buffer
Size 1

Buffer
Size 2

Buffer
Size 1

Figure 1: Assembly Line Flow Diagram 
 
The assembly line flow diagram illustrated in Figure 1 

is comprised of four cells sequentially linked with three 
buffers having capacities of 1, 2, and 1 units respectively. 
Cells 1 and 2 each require one operator to function, Cell 3 
is automatic and needs no operator, and Cell 4 requires two 
operators to function. This assembly line is designed to be 
operated with two to four operators. One goal of the simu-
lation is to determine the impact that the number of opera-
tors has on throughput. In addition to the basic tasks, the 
operators are periodically required to obtain material to 
support the assembly operations, repair failed equipment, 
inspect and reject defective material, and change the 
equipment setup when a new Stock Keeping Unit (SKU) or 
product type is being assembled. 

3 MODEL DESIGN 

The operator-paced assembly line simulation model is de-
veloped using the standard technique developed by the au-
thor (Seppanen 1995, Seppanen 2000, Seppanen et al. 
2005) for linking Arena to Excel using Visual Basic for 
Applications (VBA). All model data are contained in a sin-
gle Excel Parameters workbook. Separate worksheets con-
tain each type of model information. This method of simu-
lation model data transfer has becomes a more common 
method of simulation model design (Qiao et al. 2003). 

This paper does not include detailed description of the 
VBA code; however, both the Arena 8.01 model and asso-
ciated Parameters workbook are available at, 
<http://factory.engr.stthomas.edu/simul
ation/operator/>. Figure 2 illustrates the flow of in-
formation between Excel, Arena, and Arena 3-D Player. 
File Transfer.bat is generated by the VBA code to auto-
mate the saving of model results to a subfolder. The model 
can also generate file Model.pbf to be used as input to the 
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Arena 3D Player program for animating the simulation re-
sults in a 3D format. 
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Figure 2: Model Environment 

3.1 Entities 

The model uses Arena entities {Entity.Assembly.Unit} 
to simulate the flow of assembly units through the assem-
bly process. A second entity type {Entity.Failure} is used 
to control the cell operation and repair cycles. Each assem-
bly unit entity carries attributes used to store the current 
assembly cell, the assigned operators, and product informa-
tion. 

3.2 Cells 

Figure 3 illustrates the general Arena logic used to model 
assembly cell functions. Because Arena supports Sets, this 
logic can handle any number of cells by simply extending 
the set definitions, see Figure 5. 

 

 
Figure 3: Cell Model logic 

 
The first assembly unit entity enters the VBA block 

from an external source. The VBA block invokes VBA 
code that sets the assembly unit entity’s SKU, order num-
ber, and serial number attributes. These calculations are 
driven by the data in worksheet Orders which specifies a 
sequence of SKU’s to be produced and the batch size for 
each order, see Figure 4. The data set is automatically re-
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peated when the data in worksheet Orders has been ex-
hausted. The VBA code also sets the entity’s Cell attribute 
to an initial value of 1. 

 

Figure 4: Worksheet Orders 
 
Next the cell resource R.Cell.1 or R.Cell (1) is seized. 

The Station Cell module defines the set of stations {S.Cell 
= S.Cell.1, S.Cell.2, S.Cell.3, S.Cell.4}. The Assemble 
submodel, which will be discussed later, controls the op-
erator interactions and simulates the assembly process. 

The first branch block controls the downstream proc-
essing of the assembly unit entity. If the current Cell num-
ber is less than the total number of modeled cells {Cell < 
Cells} the next cell resource {R.Cell (Cell + 1)} is seized. 
Next the current cell resource {R.Cell (Cell)} is released. 

The second branch block determines if the current cell 
is the first {Cell == 1}. If so, a copy of the original entity is 
sent to the VBA block to start the processing of a new as-
sembly unit entity. This methodology assures a continuous 
flow of incoming assembly units without the excess queu-
ing of entities when the assembly process cannot keep pace 
with a predetermined arrival rate.  

If the current cell is less than the maximum {Cell < 
Cells}, the original assembly unit entity has its Cell attrib-
ute increased by one and is routed to the next assembly 
cell. If the current cell is equal to the maximum number of 
cells {Cell == Cells}, the original assembly unit entity is 
disposed or removed from the simulation model. 

The Arena modules illustrated in Figure 3 are typically 
augmented with additional modules to record production 
statistics and resource status. This modeling approach does 
not explicitly model a conveyor or other type of material 
transportation system. Rather it prevents the movement of 
assembly unit entities until the next assembly cell resource 
is available. If this is not possible, the cell resource status 
is recorded as blocked. The routing time to the next assem-

Orders Worksheet 25
Order 

Number
SKU Batch Size

1 1 40
2 2 50
3 3 10
4 4 20
5 5 40
6 6 10
7 7 20
4
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bly cell represents the transit time between the appropriate 
cells. 

Figure 5 illustrates the definition of resource set 
{R.Cell = R.Cell.1, R.Cell.2, R.Cell.3, R.Cell.4}. This set 
could be expanded to support a model with additional cells 
by increasing the number of resources: R.Cell.5, R.Cell.6, 
etc. Similar expansion of queue and station sets would also 
be required. 

 

Figure 5: Cell Resource Set Definition 

3.3 Buffers 

The Arena model illustrated in Figure 3 assumes a fixed 
succession of assembly cells. No buffer or float space is 
permitted between the assembly cells. The model devel-
oped for this paper has been made more general by option-
ally permitting buffer spaces between the assembly cells. 
Figure 6 illustrates the modules used to replace the three 
upper-right modules in Figure 3 to incorporate a buffer be-
tween successive assembly cells. 

 

 Figure 6: Buffer Model Logic 
 
The branch block tests for the presence of buffer fol-

lowing the cell assembly {MR (Buffer (Cell)) > 0}. If the 
expression is false, no buffer is present and the normal 
processing illustrated in Figure 3 is executed. If the expres-
sion is true, the assembly unit entity first seizes a unit of 
buffer resource {R.Buffer (Cell)}. When buffer space has 
been seized, the prior assembly cell resource {R.Cell 
(Cell)} is released. The assembly unit entity is then held or 
delayed for the minimum buffer transit time. After this de-
lay, the assembly unit entity seizes the next assembly cell 
resource {R.Cell (Cell + 1)}. When the next assembly cell 
resource has been seized, the buffer resource {R.Buffer 
(Cell)} is released. Figure 7 illustrates the buffer resource 
definition for The Arena model. 

The buffer sizes and minimum buffer transit times are 
specified on the CycleTimes worksheet of Parameters 
workbook rather than being hard coded into the model as 
illustrated in Figure 7. Note, Arena permits the definition 
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of resources with a capacity of zero. The logic illustrated in 
Figure 6 skips all null buffers {MR (Buffer (Cell)) == 0}. 

 

 
Figure 7: Buffer Resource Definitions 

 

3.4 Operators 

Assembly line operators are typically modeled as a re-
source such as R.Operator, with a capacity of possibly 2, 3, 
or 4 for the four-cell case study. Arena Sets permit a more 
detailed modeling construct by defining a set {R.Operator 
= R.Operator.1, R.Operator.2, R.Operator.3, 
R.Operator.4}. This set structure permits the tracking of 
individual operators. However, it does not provide an easy 
method to account for the movement of operators between 
assembly cells. Considerable operator movement between 
cells is to be expected if the four-cell assembly line were to 
be simulated with two or three operators. Omission of op-
erator movement might significantly impact the model’s 
validity. 

Arena’s transporter construct offers an alternative for 
modeling the mobility of assembly line operators. When a 
transporter is requested from a pool of identical transport-
ers, one of several options can be used to control the as-
signment. We elected to take the closest available trans-
porter. Arena then calculates the movement time from the 
transporter’s current location to the requesting assembly 
cell location. This calculation requires the model to contain 
distance information for the various possible transporter 
paths and the associated travel speeds. 

The transporter construct would be sufficient to model 
assembly line operators if detailed usage information and 
operator scheduling were not desired. Because detailed op-
erator usage statistics and operator break periods were de-
sired, operators were modeled using transporters and re-
sources in parallel.  

Figure 8 illustrates the logic detail for the Assemble 
submodel introduced in Figure 3. When an operator is re-
quired for an assembly process, the Operator transporter is 
first requested from the pool of available Operators 
{T.Operator}. The selected transporter number is recorded 
in attribute Temp. After the selected transporter has moved 
to the requesting assembly cell location, the corresponding 
operator resource {R.Operator (Temp)} is seized. A similar 
logic is used to release the operator after the completion of 
the assembly process. 
5
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Figure 8: Assemble Submodel Logic 
 
The logic presented in Figure 8 includes additional 

complexity because more than one operator may be re-
quired to perform the assembly operation, see Cell 4 in 
Figure 1. Therefore an additional attribute, Counter, is used 
to track the number of operators remaining to be seized or 
released. The branch blocks control the looping until the 
required number of operators have been seized or released. 
This same branch block automatically handles the situation 
when no operator is required; see Cell 3 in Figure 1. Some 
additional bookkeeping is required to track the specific op-
erators being used. 

3.5 Operator Breaks 

Unless assembly line operators use a “tag relief” system, 
the assembly line is halted to accommodate operator 
breaks. The length of the work and break periods are speci-
fied in the Schedule worksheet, see Figure 9. Fifty minutes 
of a 480-minute shift are break or off minutes. This leaves 
430 minutes available for work duties. The Arena model 
uses VBA code to remove operators from service for the 
duration of their scheduled breaks. 

 
Work Minutes Off Minutes Total Minutes

1 110 10 120
2 105 15 120
3 110 10 120
4 105 15 120

Total 430 50 480  
Figure 9: Worksheet Schedule 

 
Arena does not permit the number of transporters to be 

altered during the model execution. Rather the number of 
operator resources is reduced to zero for the duration of 
each break period. The logic illustrated in Figure 8 first re-
quests the transporter and then seizes the resource. During 
the break periods when the operator resource capacity has 
been reduced to zero, the assembly unit entity waits in the 
seize queue until the operator returns from break. This re-
cords the transporter as busy even though it is waiting for 
the operator resource to return from a break. 

3.6 Intermittent Operator Duties 

The logic described in the Operators section outlined the 
process used to model assembly operators. Similar logic is 
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also employed to model intermittent operator duties that 
might be required either immediately before the assembly 
operation or shortly after its completion. The Arena model 
incorporates four types of intermittent operator duties: 
Change.SKU, Get.Materials, Reject.Material, and Repair. 
These intermittent operator duties are defined in worksheet 
Duties. 

The specifics of the intermittent operator duties are in-
put to the model using the CycleTimes worksheet. Figure 
10 illustrates the intermittent duties associated with Cell 1. 
This worksheet also specifies the frequency and duration of 
the intermittent duties. Cell 1 has four intermittent operator 
duties: 

 
1. Change.SKU occurs before starting the assembly 

processing whenever the assembly unit entity’s 
SKU changes or on an average of every 25 units 
with duration of 2.0 minutes. 

2. Get.Materials occurs after completing the assem-
bly processing every 10 units with duration of 1.0 
minute. 

3. Reject.Material occurs before starting the assem-
bly processing at random about every 100 units or 
with a probability of 0.01 with duration of 0.5 
minutes. 

4. Repair occurs whenever an equipment failure 
takes place. This type of failure takes place 2% of 
the time based on information in the Failures 
worksheet, see Figure 11. 

 

Figure 10: Cell 1 Intermittent Operator Duties 
 
All simulated intermittent operator duty times are ran-

domly generated using the normal distribution and the 
specified coefficient of variation. 

Worksheet Duties also contains static analysis to esti-
mate the total time spent on intermittent operator duties. In 
the case of Cell 1 about 82.6 minutes per shift will be spent 
on intermittent operator duties assuming a planned produc-
tion rate of 400 assembly units per shift. This leaves 430 – 
82.6 = 347.4 minutes for assembly operations. Assuming 
an average assembly time of 40 seconds, Cell 1 should be 
able to produce, 347.4 * 60 / 40 = 521 units per shift.  

The logic for implementing the intermittent operator 
duties is very similar to that used for the assembly opera-
tions, see Figure 8. Submodels DutiesBefore and Dutie-
sAfter define the required Arena logic. VBA code is used 
to determine when intermittent operator duties are to be 
46
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performed and their durations. Note that the number of op-
erators required can vary for each intermittent operator 
duty. 

3.7 Equipment Failures and Repair 

Each assembly cell is assumed to contain equipment that is 
subject to random failure. The specific data for modeling 
these failures and their subsequent repairs are contained in 
worksheet Failures, see Figure 11. This model uses the 
gamma distribution shape parameters suggested by Law 
(1990 and 2000). Cells 1, 2, and 4 are expected to be avail-
able for operation 98% of the time. Their operating periods 
are generated from a gamma distribution with a mean of 
294 minutes and shape parameter of 0.7. Failed or repair 
periods are generated from a gamma distribution with a 
mean of six minutes and shape parameter of 1.3. The repair 
intermittent operator duty may be delayed while waiting 
for an operator. The repair of all four cells requires the use 
of one operator. 

 
Failures Worksheet Average Average Minutes

Gamma Distribution 
Shape Parameter

Cell Operators Operating 
Percent

Failures / 
Hour

Operating 
MTBF

Repair MTTR Operating Repair 

1 1 98.00% 0.200 294.0 6.0 0.7 1.3
2 1 98.00% 0.200 294.0 6.0 0.7 1.3
3 1 95.00% 0.200 285.0 15.0 0.7 1.3
4 1 98.00% 0.200 294.0 6.0 0.7 1.3  

Figure 11: Worksheet Failures 

4 SIMULATION RESULTS  

Figure 12 illustrates the Arena model execution with three 
operators. At the time of the screen capture, one operator is 
conducting a Change.SKU operation at Cell 1 and the other 
two operators are doing the assembly operation at Cell 4. A 
single assembly unit entity is present at Cell 2 and two 
units at Cell 3. Figure 13 illustrates the Arena 3D Player 
animation also with three operators. 

 

Figure 12: Arena Animation Display 
 
Arena permits the collection of detailed state statistics 

for resources. Figure 14 illustrates the state statistics for 
resource R.Cell.2 while Figure 15 illustrates the state sta-
tistics for resource R.Operator.1. 
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Figure 13: Arena 3D Player Animation Display 
 

Figure 14: R.Cell.2 State Statistics  
 

Figure 15: R.Operator.1 State Statistics 
 
Cell 2 spent about 31% of the shift in both the Assem-

ble and Blocked states. A total of 301 assembly units were 
processed. Of the remaining part of the shift the most sig-
nificant portion, 20% is spent waiting for an operator. In-
creasing the number of operators from three to four could 
reduce that statistic. The remainder of the shift is spent 
moving the assembly unit entity into the cell or from the 
cell into the buffer or on intermittent operator duties. 

The breakdown of time spent on intermittent operator 
duties can be seen in Figure 15. Operator 1 spent 54% of 
the 8-hour shift on assembly duties or 59% of the available 
430 minutes during the shift. It should be noted that Opera-
tor 1 is idle 17% of the shift, while from Figure 14 Cell 2 is 
waiting for an operator a similar fraction of shift. Unfortu-
nately these lost times do not overlap and therefore cannot 
be put to practical use.  

The Arena model does not provide a direct means to 
determine how much of the operator time is spent traveling 
to the next work location. Travel time would be included in 
the idle time statistics of Figure 15. The model did collect 
statistics for the number of times an operator moved to a 
new work location. That data is summarized for three dif-
ferent operator levels in Figure 16. The number of operator 
moves is highly dependent on the number of assigned op-
erators. Notice that even when four operators were as-
signed slightly more than one operator move is simulated 
for each assembly unit produced. This result seems coun-
terintuitive but could be explained as follows. Intermittent 
operator duties performed after the assembly operation 
7
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does not prevent the assembly cell from starting the proc-
essing of the next assembly unit entity. Therefore, Cell 1 
and Cell 2 may at times be simultaneously using two op-
erators while Cell 4 might at times be using three opera-
tors. Each use of an extra operator involves two operator 
moves. 

 

Figure 16: Simulation Results Summary 
 
Figure 16 also indicates the number of assembly units 

produced per shift in terms of mean and its 95% confi-
dence interval. These statistics were based on 10 replica-
tions of eight hours or one shift each. Notice that while the 
mean production per shift dynamically increased with the 
number of assigned operators, the production per operator 
slightly decreased as more operators were used. This pre-
sents an interesting optimization problem for further study. 
The mean effective cycle time is also calculated as func-
tion of the number of operators. 

5 CONCLUSION 

The model presented in this paper demonstrates the feasi-
bility of including intermittent operator duties in addition 
to the standard assembly line paced duties. Because all data 
required to drive this model are contained in a single Pa-
rameter workbook, it is very easy to test alternative operat-
ing scenarios. The model can be expanded without altering 
the logic changes to accommodate any number of cells 
and/or operators. Such change would involve expansion of 
the model sets, variable array sizes, and animation struc-
ture. 

The model described in this paper assumes that all op-
erators are located in a single pool. This assumption may 
not be valid for an assembly line with a large number of 
cells and/or operators. Further the assumption that all op-
erators are equally skilled and therefore are interchange-
able. While such as assumption might not be true in prac-
tice, it would require considerable effort and addition data 
to accurately incorporate into a simulation model. 
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