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ABSTRACT 

There has been significant recent interest in airborne re-
connaissance for target detection using high resolution air-
borne images collected from an Unmanned Aerial Vehicle 
(UAV). Even if Automatic Target Recognition (ATR) al-
gorithms are able to produce satisfactory results in terms of 
probability of detection for certain false alarm rate, there is 
a need for a Warfighter-in-the-Loop (WIL) to reduce false 
alarms further and verify and validate detections to attain 
the operational performance requirements. We develop a 
simulation model to assess effectiveness of the warfighter 
in decision loop for airborne minefield detection. The war-
fighter effectiveness is measured in terms of average wait-
ing-time, number of minefield segments in queue, and the 
expected false alarms, and missed detection. Various pa-
rameters which potentially affect the warfighter perform-
ance were identified with the help of prior studies with 
human operator in laboratory settings. Simulation trials 
were conducted to evaluate the dependence of these pa-
rameters on warfighter performance.  

1 INTRODUCTION 

1.1 Airborne Minefield Detection 

The process of determining the existence of mines in a par-
ticular region is typically a manual process involving 
handheld devices. Clearly, such an approach puts the hu-
man at elevated risk. The personnel are exposed to enemy 
forces and also to undetected mines. On the other hand, the 
human intelligence required to determine the presence or 
absence of mines in an area of interest, cannot be com-
pletely automated. In order to mitigate these risks, mine 
detection process is transforming into a semi-automated 
stand-off detection system such as airborne minefield de-
tection with warfighter in the loop.  
 Airborne detection has the advantage of being safer 

 

and potentially more efficient than traditional minefield de-
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tection methods. In airborne detection, manned, and un-
manned aircraft with a wide variety of sensors attempt to 
identify minefields. Airborne detection has many advan-
tages like it is safer than requiring soldiers to physically 
locate and identify minefields using techniques such as 
handheld mine detectors. Furthermore, the use of un-
manned drones can further reduce the risk by eliminating 
the need for pilots to fly over hostile territory. Sensors em-
ploying different modalities such as near infra-red (NIR) 
and mid-wave infra-red (MWIR) can be used to identify 
mines. Individual mine detectors are used to make decision 
on presence and extent of the minefields. Airborne detec-
tion can also provide battlefield commanders with enough 
advanced warning about minefield locations that they can 
use to make decision about how they want to handle the 
situation.  

1.2 Minefield Detection Algorithms 

Even though airborne detection seems to be a safer method 
for detecting minefields, its efficiency depends on different 
algorithms which will analyze the image data to detect  in-
dividual mines and minefields. There are several algo-
rithms which determine presence of mines and minefields 
using visual features of the airborne image obtained from 
the UAV (Reed and Yu 1990, Earp, Elkins, and Conrath 
1995). Factors such as the thermal signature of the mine, 
its shape, pattern, shadow are employed by algorithms to 
determine whether a given feature is a mine. Mine detec-
tion methods often use an anomaly detector such as RX de-
tector (Reed and Yu 1990, Homes, Schwartz, Seldin, 
Wright, and Witter 1995) to detect possible mine locations. 
Mine detection block may also use a false alarm mitigation 
process to reduce the false alarm rate (Sriram, Agarwal and 
Mitchell 2002). Even though algorithms are improving, 
fully automatic target recognition process still fails to sat-
isfy the operational requirements of minefield detection. 
This necessitates human interaction for verification and 
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1.3 Role of Warfighter in Minefield Detection 

The warfighter plays an extremely important role in air-
borne detection. He/she must make rapid decisions about 
the existence of minefields sometimes under highly stress-
ful conditions. However, we have relatively little under-
standing of how warfighters perform in minefield detec-
tion, what techniques they use to identify the presence or 
absence of a minefield, and what interface features best 
support their detection capabilities. Several tests were con-
ducted using a MATLAB-based graphical user interface 
for mine level as well as for minefield level detection 
(Reddy, Agarwal, Hall, Brown, and Woodard 2005 and 
Agarwal, Reddy, Hall, Brown, and Woodard 2005) to 
study some of these factors. 

The experiment used airborne data collected at two 
different test sites of the US Army. Both military and non-
military personnel were used in the experiments. The pur-
pose of these experiments was to analyze a warfighter's 
performance when a set of images are presented at a con-
stant rate. In real time situations, the warfighter might have 
to handle images from not just a single UAV, but from 
multiple streams of data from different fields, and may in 
fact be multi-tasking. Moreover, the mental stress of the 
warfighter should also be considered. This paper discusses 
some of the observations from the above mentioned ex-
periments and discusses a simulation model that is used to 
analyze the system performance (here, the system is de-
fined as the ATR and the human personnel combined) un-
der varying conditions such as arrival rates and processing 
times.  The results obtained from the simulation analysis 
can be used for specifying the performance metrics for the 
individual components in the minefield detection system. 

2 PROBLEM STATEMENT AND RESEARCH 
OBJECTIVES 

The overall objective of this paper is to identify perform-
ance drivers for a warfighter in a semi-automated minefield 
detection system, where the warfighter acts as the second 
decision maker to an automated minefield detection algo-
rithm(s).  

2.1 Objectives 

The motivating problem for this research is the need to 
characterize system performance in scenarios with data 
streams from multiple UAVs, fed to a single warfighter-in-
the-loop. In order to accomplish that task, it is critical to 
understand the system behavior when only a single stream 
is considered. This paper addresses this modeling need for 
the domain, and will enable developing analytical models 
for single data stream and multiple data stream scenarios. 
Such a modeling effort will help in specifying and charac-
terizing the system components appropriately.  
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2.2 Simulation Framework  

The factors such as the arrival rates, number of streams of 
data, modeling of processing time, and the false-positive, 
and false-negative rates associated with the ATR (auto-
mated algorithm), and the warfighter are discussed in the 
context of performance characterization. The simulation 
model will help identify the best operating conditions for 
the semi-automated system, with specific focus on the av-
erage waiting time for the data segments in the queues as-
sociated with the warfighter.   

3 PERFORMANCE MODELING 

The basic model with a single stream of data is given in 
Figure 1. The raw image data was collected from airborne 
sensor flying through a particular area.  In this simulation, 
the following data were used: flight speed is 70 knots and 
with a frame rate of approximately 8 Hz. The swath width 
for the sensor is about 15 meters. In this model, the raw 
imagery of registered minefield size segment typically rep-
resenting approximately 60m x 120m on ground is proc-
essed by ATR for mine level detections. ATR uses algo-
rithms such as RX (Reed and Yu 1990), and Radial 
Anomaly Detector (Menon, Agarwal, Ganju, and Swonger 
2004). Individual mine targets in the minefield size seg-
ment are further analyzed for patterns of potential mine-
field using minefield algorithms (Earp, Elkins, and Conrath 
1995). Both ATRs are considered as a single component in 
the current simulation. The required probability of detec-
tion of ATR at the minefield level is 95% with a false 
alarm rate of less than 0.5FA/km2 The minefield segments 
flagged by the ATR are passed to the warfighter for final 
verification and decision making. The probability of detec-
tion at the WIL level is expected to be 95% with a false 
alarm rate of less than 0.1 FA/km2. 

 

 
 

Figure 1: Mine Detection Model for Data from a Single 
UAV 
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 Time taken by the subjects to make decision was con-
sidered at the WIL stage. The false-positive (flagging a 
segment known to be mine-free as a minefield), and false-
negative rates of humans were also studied. In this study, 
mental stress and other physical conditions such as climate 
were not controlled or modeled.  

3.1 Automatic Target Recognition System 

The image segments are passed into the ATR in the order 
in which they are received from the UAV at a rate of ap-
proximately 1/3 Hz. For our analysis, we have a ground-
truth database which has the information whether the seg-
ment is a minefield or a non-minefield. Several algorithms 
have been developed to detect mines based on their image 
features. Different characteristics of the mines, such as cir-
cularity, and gray moments were used to detect anomalies. 
These anomalies detected by ATR do not necessarily have 
to be mines. It could be rocks or bushes having similar sig-
natures. These are mine-level false alarms. The ATR’s de-
cision, whether the analyzed segment is a minefield or not, 
depends on the concentration and distribution of anomalies 
in the segment. If the threshold level is reached, the ATR 
flags it as a minefield segment. Non-mine targets flagged 
as mines can sometimes form spatial distribution pattern 
that is minefield like. The non-minefield segments that are 
flagged by the ATR are called minefield false alarms. Only 
a certain small fraction of the total non-minefield segments 
are passed by ATR as false alarms. Only segments which 
are flagged as minefields by the ATR are passed on to the 
warfighter for further visual analysis.   

3.2 Warfighter Performance 

Some preliminary analysis was done to evaluate war-
fighter’s performance for minefield detection using air-
borne imagery. The experiments and results are described 
in greater detail in (Reddy, Agarwal, Hall, Brown, and 
Woodard 2005) and (Agarwal, Reddy, Hall, Brown, and 
Woodard 2005). A set of 26 runs of images were selected 
which covered a total area of 1.34 km2. ATR triggered 0.4 
km2 as having high probability of containing minefields. In 
order to facilitate the experiment, minefield segments were 
chosen to form an even distribution of data from mine/no-
mine, time of day, and two different backgrounds. The 
purpose of this evaluation was to characterize the human 
processing time in minefield detection.  The other factors 
which are considered in this paper are the probability of 
detection and false alarm rate of the warfighter. Some fac-
tors such as the mental and physical situation of the WIL in 
an actual war, the other duty constraints are quite signifi-
cant but are not considered here. 
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3.3 Warfighter’s Time Response Characteristic  

For the tests conducted on 10 subjects, the analysis was 
performed by splitting the data into minefield segments 
and non-minefield segments. The time taken to select the 
corresponding segment was recorded for each user. Distri-
bution of time taken by the users for segments with mines 
and segments without mines was evaluated. Figure 2 and 
Figure 3 shows the distribution for segments with mines 
and segment without mines respectively. These results 
show that users typically need more time to analyze seg-
ments which have actual mines in it than non-mine seg-
ments.  
 The scale, shape, and offset parameters of the Weibull 
distributions were used to model the processing time in the 
simulation model. A random variable X has a Weibull dis-
tribution if there are values of parameters such as, shape: c( 
>0), scale: α( >0), and time delay: ξ0 such that: 
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 The observed values and the fitted distributions are 
shown in Figure 2 (for segments with mines; scale = 
27.6378, shape = 1.3838, time delay = 5) and Figure 3 (for 
no mine segments; scale = 16.2908, shape = 0.9916, time 
delay = 3). These observed and modeled time distribution 
in Figure 2 and 3 suggest that a Weibull distribution can be 
used to model the time-response characteristic of the war-
fighter.  

4 SIMULATION EXPERIMENTS 

4.1 Simulation Framework and Controllable 
Parameters 

The problem can be well understood by the simulation 
framework given in Figure 4. Figure 5 shows the flagging 
of the frames which is explained later. The major compo-
nents: ATR processing block, WIL processing block, and 
the modeled factors associated with them are shown in the 
figure, and are discussed in the following subsections. 
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Figure 2: Processing Time for Segments With Mines 
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Figure 3:  Processing Time for Segments Without Mines 

4.1.1 Input Stage 

There are three controllable parameters in the input stage: 
the frame rate, proportion of minefield/no-minefield data, 
and number of streams of UAV data. Image segments of 
given size are acquired at some constant rate and is fed at  
11
the input stage. For the current simulation, a constant 
frame rate of 1 segment per 3 seconds is assumed. These 
image segments are flagged as follows: 

 
• Y : For minefield 
• N : For non-minefield 

 
The image segment data has associated tags (Y/N) in 

each frame which shows whether it is a minefield segment 
or a non-minefield segment. These flagged images are 
passed into the ATR for detection. The ATR does not have 
any prior information regarding the presence or absence of 
a minefield in any  given segment.  
 The proportion of minefield/non-minefield is also an 
important controllable factor that can be varied for analy-
sis. The percentage of non-minefield segments would typi-
cally be much greater than the minefield segments. The last 
controllable factor is the number of streams that can be 
given as input. The warfighter can only handle a certain 
number of segments since he/she takes time to evaluate 
each segment. So analysis can be done to determine the op-
timum number of streams a warfighter can handle. This is-
sue is considered beyond the scope of this paper, but will 
be studied in the future as a continuation of the work dis-
cussed here.  
 
4.1.2 ATR Stage  

There are three controllable parameters in the ATR stage.  
They are the ATR processing time, ATR false alarm rate, 
and the ATR probability of detection. The ATR takes a 
definite processing time to analyze the segments. We ex-
pect a near real time automatic target processing and thus 
the average time for ATR processing should be less than 
the frame arrival interval. The probability of detection and 
the false alarm rate of the ATR represents the efficiency of 
the algorithm implemented for correctly detecting mine-
fields and wrongly detecting non-minefields.  
 

 
 

Figure 4: Simulation Framework with Controllable Parameters 
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Figure 5: Frame Flagging at Each Stage 
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4.1.3 WIL Stage 

The three controllable factors are: the WIL processing 
time, WIL probability of detection, and the WIL false 
alarm rate. The warfighter is presented with those seg-
ments which were tagged as mined by the ATR. This in-
cludes minefield segments and false alarms (Figure 5).  

The time analysis which is covered in Section 2.2.3 
shows how much time the user takes to analyze segments 
with no mines and those with mines. This has been used to 
determine the distribution of the processing time, which is 
modeled as Weibull distributions as discussed in Section 
2.2.3. The other factors evaluated at the WIL stage, the 
probability of detection, and probability of false alarms, 
represents the effectiveness of individual warfighter in cor-
rectly detecting minefields or wrongly identifying non-
minefields as minefields. 

4.2 Frame Flagging at Each Stage  

The variables can be defined as shown in the Figure 6. 
 

 
Figure 6: Frame Definition for Flagging the Frames. 

 
 Ground truth is the a prior known correct information 
whether the segment is minefield or not. In real analysis, 
we do not have this information. But for our analysis, we 
have to assign different probabilities of selection for both 
minefield and non-minefield segments. So ‘a’ can be Y or 

                    Frame Definition(a, b, c) 
             a – Ground truth; binary(Y/N) 
       b – Decision by ATR; binary(Y/N) 
       c – Decision by warfighter; binary(Y/N) 

A “Y” indicates a minefield while “N” indicates a non-
minefield at corresponding stage.  

a  b c 
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N depending on whether the frame is minefield or non-
minefield respectively. These two are separately analyzed 
at the ATR stage.  
 The decision at the ATR is ‘b’ which can also be a Y or 
N depending on the accuracy of the ATR in selecting the 
segment as minefield or non minefield. If ATR flags a mine-
field segment as a non minefield segment (YN) it would not 
be passed into the next stage. This is an error, so this is one 
factor which has to be considered for analysis. If the mine-
field segment is correctly flagged it is marked (YY) and is 
passed to the WIL stage. If a non minefield segment is cor-
rectly flagged (NN), it is rejected because we do not need  
correctly detected non-minefield segments to be passed to 
the WIL. But if it is wrongly flagged as a minefield segment 
(NY), it is passed onto the warfighter for further analysis. 
This condition is a false alarm by the ATR, but since it is de-
tected as a minefield it has to be passed to the WIL stage.  
 The segments arriving at the warfighter are: correctly 
flagged minefields (YY), and wrongly flagged non-
minefields (NY). There are four different possibilities at 
this stage. The warfighter can correctly flag the minefield 
segments (YYY) or he/she can make an error by choosing 
a minefield to be a non minefield (YYN). Since the latter is 
an error it is recorded for analysis. Similarly, if the war-
fighter flags the non-minefield wrongly (NYY) this seg-
ment is recorded since it is an error. The correctly flagged 
non-minefield segments  are (NYN).  
 Therefore we have three error values that are recorded 
for analysis, the wrongly flagged ATR minefield segments 
(YN), wrongly flagged WIL minefield segments (YYN), 
and wrongly flagged WIL non minefield segments (NYY).  

5 DESIGN OF EXPERIMENTS 

A simulation model in Arena® of Rockwell Automation 
(Kelton, Sadowski, and Sturrock 2003) was created to 
study the performance of the modeled system. 
4
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5.1 Controllable Factors and Levels Considered 

Section 3.1 discusses several factors that are considered. 
The simulation parameters that were used in each section is 
explained in detail in the following subsections. 

5.1.1 Input Stage 

The frame arrival rate and also the proportion of the mine-
field/no-minefield segments are the two parameters which 
were considered for the actual simulation. Multiple streams 
were not considered since it was beyond the scope of this 
paper. Table 1. shows the factors chosen: 

 
Table 1: Parameters at Input Stage. 

Frame rate 1/3Hz 
Probability of Mine 
segments 0.005 0.010 0.020 0.050 

 
 Each segment from a single UAV was passed to an 
ATR at a constant rate of one segment per 3sec which is 
1200 segments/hr. For analysis, we are assuming that there 
is no overlapping of segments. A number of segments were 
passed for the total simulation with multiple replications.  
 The other parameter which is considered is the propor-
tion of the minefield/non-minefield segments passed into 
the ATR. We have no information of the actual percentage 
of minefield/non-minefield segments coming from a UAV. 
But we know that only very small percentage of segments 
will have mines in a large area covered by the UAV. Four 
levels were considered here, 5% of minefield segments 
which means 20 minefield segments per hour, 2% which is 
8 minefield segments/hr, 1% which is 4 minefield seg-
ments/hr and 0.5% which is 2 minefield segments/hr.  

5.1.2 ATR Stage 

Three parameters are considered in this stage. They are the 
processing time at the ATR, percentage of minefield seg-
ments passed, and percentage of non-minefield segments 
passed. The parameters and levels are shown in Table 2. In 
the simulation, ATR processing time is sub-divided into 3 
levels. A constant value of 3 sec processing time was used 
to analyze the actual wait time at the warfighter stage irre-
spective of the queue caused at the ATR stage. Since the 
frame is also arriving at a constant rate of 3 sec, no queue 
is formed at the ATR stage. The second distribution used 
was a uniform distribution with a maximum value of 4 and 
a minimum value of 2. This distribution would better ap-
proximate the behavior of the ATR as the processing time. 

 
Table 2: Parameters at the ATR Stage 

ATR process-
ing time 

Constant 
(3) 

Uniform 
(2,4) 

Poisson 
(3) 

PD @ ATR 0.95 
PFA @ ATR 0.005 0.015 0.025 
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 The third distribution used was a Poisson distribution 
with a mean value of 3. This was also done to study the 
queue formed at the WIL with the influence of the ATR. 
The second parameter considered was the percentage of 
minefield segments passed by the ATR. The objective re-
quirement for probability of detection at ATR is 0.95. The 
rest 5% minefield segments are rejected as missed detec-
tions. This factor is kept fixed with single level.  
 The third parameter is the percentage of non-minefield 
segments which are passed by the ATR. The objective re-
quirement calls for 0.5 false alarms per km2 which would 
correspond to a probability of false alarms at approxi-
mately 0.5%. For analysis we are considering 3 levels of 
selection rates. The probabilities chosen are 0.005, 0.015, 
and 0.025 of non-minefields being passed as minefield seg-
ments. These segments are actual false alarms detected by 
the ATR.  

5.1.3 WIL Stage 

At the WIL stage, three parameters are considered as in the 
case of ATR stage. They are: processing time at WIL, per-
centage of minefields passed, and percentage of non-
minefields passed. This is illustrated in Table 3.  
 As discussed in Section 2.3.4, minefields and non-
minefields are analyzed separately with two different 
Weibull distributions. The analysis done in Section 2.3.4 
considers only an area of 50x20m, but the actual area would 
be 120x60m. Hence it is assumed that the user takes more 
time in deciding on the actual area. In order to account for 
this mismatch between the prior experimental and the pro-
posed operational environment, the scale parameter, and de-
lay of the modeled Weibull distribution are magnified with a 
factor of 2 and 4 as shown in Table 3. These two levels of 
factors are called Fac 2 and Fac 4 levels. 

 
Table 3: Parameters at the WIL 

Minefield Non-
Minefield  

Fac 2 Fac 4 Fac 2 Fac 4 
Scale 55.28 110.55 32.58 65.16 
Shape 1.38 1.38 0.99 0.99 

Detection 
Time 

(Weibull 
Distribution) 

Delay 10.00 20.00 6.00 12.00 
PD@WIL 0.95 

FPA@WIL 0.20 
 

 The second parameter is the probability of detection of 
WIL. The objective requirement at WIL stage requires a 
probability of detection of 95%. Laboratory experiments 
with test images show a 100% probability of detection for 
minefield by human operator (Reddy, Agarwal, Hall, 
Brown, and Woodard 2005). For this reason only one level 
is considered here at a PD of 0.95. 

Similarly, for the third parameter, the objective re-
quirements for WIL is to reduce the false alarms by a fac-
5
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tor of 5, which means that only one in every five ATR 
false alarm segments is called a false alarm by WIL, which 
gives a probability of false alarm at WIL at 0.2. Here again 
we consider only one level for analysis. 

5.2 Trials 

As discussed above the number of parameters and levels 
that were used are summarized in Table 4.  

 
Table 4: Calculation of Number of Replications for Simu-
lation 

Parameter Levels DOF 
Frame rate 1  
Proportion of Minefield segments 4 3 
ATR processing time 3 2 
Probability of false detection at ATR 3 2 
Probability of detection at ATR 1  
Detection Time for WIL 2 1 
Probability of  false detection at WIL 1  
Probability of detection at WIL 1  

 

Total Trials & Replications 72 12 

 
 The number of replications is determined by the de-
gree of freedom (DOF) from the levels of each parameter 
as shown in Table 4.  The factorial of the degrees of free-
dom of the parameters gives the total number of replica-
tions. So 72 trials were run with 12 replications to obtain 
reasonable results. The replication length was chosen to be 
28800 which represents 8 hours worth of data.  

6 OBSERVATIONS 

A chi-square test indicated that that using different distri-
butions (Constant, Uniform, and Poisson) for modeling the 
processing time at ATR stage did not have any significant 
influence on the waiting time for segments in the queue at 
the human stage. This is expected since the average ATR 
processing time in each of the three levels considered is 3 
seconds which is same as the segment arrival time. For this 
reason this factor is not discussed further in the paper.. 

The error count for segments at three different stages 
is calculated. The wrongly detected minefield segments at 
the ATR stage, wrongly detected minefield segments at the 
WIL stage, and wrongly detected no-minefield segments at 
the WIL stage. The count values were noted for each of 72 
runs. Some of the runs are listed in the Table 5. Value of 
different levels, average waiting time, and average frame 
waiting at WIL stage are also shown. Table 5 also shows 
the parameters and the corresponding error counts at the 
ATR and WIL stage. The expected value of the error count 
can be calculated using the corresponding equations. The 
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expected number of minefield segments which was 
wrongly detected by the ATR is represented by :  
 
 )1( MDATRPMFPXATRYN −⋅⋅=  (3) 

where,  
• YNATR is the expected number of wrongly de-

tected ATR segments.  
• X is the number of segments passed. 
• PMF is the probability of minefield segments 
• PMDATR is the probability of detection of minefield 

segments at ATR. 
 
 The expected value of minefield segments rejected by 
WIL can be represented by: 
 
 )1( MDWILPMDATRPMFPXWILYYN −⋅⋅⋅=  (4) 

where, 
 

• YYNWIL is the expected number wrongly detected 
minefield segments.   

• PMDWIL is the probability of detection of minefield 
segments at WIL 

 
 And finally the expected value of the non minefield 
segments which are wrongly selected by the human can be 
represented by:  
 

)1()1()1( NMDWILPNMDATRPMFPXWILNYY −⋅−⋅−⋅=

  (5) 
where, 
 

• NYYWIL is the expected number of wrongly de-
tected non-minefield segments(false alarms). 

• PNMDATR is the probability of detection of non-
minefield segments at ATR.  

• PNMDWIL is the probability of correct detection of 
non-minefield segments at WIL. 

 
 From the above equations and the trials, the expected 
values of the counter was calculated and is shown in Table 
6. X is taken to be 9200 segments for every replication. 
PNMDWIL is taken as 0.80, PMDATR is taken as 0.95, and 
PMDWIL is taken as 0.95 in every case as discussed in Sec-
tion 4.1.3. The expected and observed counter numbers 
were determined for each treatment. This was plotted 
against the runs in Figures 7-9. Figure 7 shows the counter 
value variation at the ATR stage where minefields are re-
jected by the ATR. The blue line shows the expected 
counter values at each runs and the red line shows the ob-
served counter values. Deviations from the expected value 
were calculated statistically and the mean value of the de-
viation of the total number of counters was found to be 
only 0.13, which is an acceptable range. Figures 7-9 also 
6
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Table 5: Error Counts at Certain Runs in the Simulation; Poisson Distribution was Chosen as ATR 
Processing Time 

Prop 
of 

MF 

PD 
NM 
ATR 

Time 
Factor 
WIL 

Counter 
YNATR 

Counter 
YYNWIL 

Counter 
NYYWIL 

Counter 
total 

Wait 
Time 
WIL 

Number 
Waiting 

WIL 

0.05 0.995 2 21.17 22.08 9.33 52.58 827.94 14.40 
0.05 0.995 4 23.00 9.83 4.33 37.17 7561.38 128.99 
0.05 0.975 2 22.17 17.83 33.75 73.75 3064.52 73.10 
0.05 0.975 4 24.57 9.42 16.92 50.83 9087.52 212.56 
0.01 0.995 2 4.42 4.33 10.25 19.00 13.20 0.06 
0.01 0.995 4 5.00 3.17 9.58 17.75 66.86 0.33 
0.01 0.985 2 3.75 4.25 47.58 55.58 39.22 0.46 
0.01 0.985 4 5.25 4.08 43.67 53.00 1426.04 16.46 
0.005 0.995 2 2.33 2.42 8.92 13.67 8.15 0.03 
0.005 0.995 4 1.42 1.92 10.25 13.58 32.17 0.10 
0.005 0.985 2 2.25 2.92 47.50 52.67 25.19 0.25 
0.005 0.985 4 2.33 2.67 46.08 51.08 234.11 2.32 
A 
b-
R 
h 
e 

 

 

Table 6: Expected Error(Counter) Values at Different 
Stages 

PMF PNMDATR YNATR YYNWIL NYYWIL 
0.05 0.995 8.74 
0.05 0.975 23.00 21.85 43.70 
0.01 0.995 9.11 
0.01 0.975 4.60 4.37 45.54 
0.005 0.995 9.15 
0.005 0.975 2.30 2.19 45.77 

 
shows us that the deviations are in the acceptable range. 
higher difference is observed in the case of the high pro
abilities of minefields, and high false alarm rate by AT
since there is a significant waiting time at WIL stage whic
reduces the throughput. Hence deviation is higher for th
case of WIL processing time corresponding to factor 4. 
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Figure 7: YNATR Counter Value Deviations 
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Figure 8: YYNWIL Counter Value Deviations 
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Figure 9: NNYWIL Counter Value Deviations 

 Since the WIL waiting time was statistically inde-
pendent of the ATR processing time, a better estimate of 
the parameters at the WIL stage can be obtained by averag-
ing the time values of all the three distributions. Figures 
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10-13 shows the average waiting time and number of seg-
ments in the queue in a color scale, blue color being the 
minimum waiting time and the red color being the maxi-
mum waiting time. The value of average waiting time and 
number of frame waiting is plotted in logarithmic scale and 
is represented using the color bar by the side of the plot. 
The Figures 10-11 shows the value of average time when 
there is x% of minefields in ground-truth and there is y% 
of false alarm for non-minefield segments at ATR. In Fig-
ure 10-11, WIL decision time corresponds to factor 2 and 
factor 4 respectively. Similarly Figure 12-13 shows the re-
sults for number of segments waiting at WIL stage. Here 
also, Figure 12-13 show waiting times corresponding to 
time factor 2 and factor 4 respectively. 
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Figure 10: Color Map of Average Waiting Time at War-
fighter with a Time Factor of 2. 
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Figure 11: Color Map of Average Waiting Time at War-
fighter with a Time Factor of 4. 
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Figure 12: Color Map of Average Number of Segments 
Waiting at Warfighter with a Time Factor of 2. 
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Figure 13: Color Map of Average Number of Segments 
Waiting at Warfighter with a Time Factor of 4. 

 Based on Figures 10-13 several inferences can be made 
on the selection of appropriate parameters at different stages 
of the model. The best case can be identified as the lower 
left corner in the plot where the waiting time and number of 
segments in queue is small (<100seconds and <1 frame).  
 In this case, we have only 0.5% of minefield segments 
in the whole set of ground truth which corresponds to 
about 6 minefield segments/hr of which 95% are passed to 
the warfighter. Also only 0.5% of non-minefields are 
passed to WIL representing 6 segments per hour. Thus the 
user needs to process only 12 segments per hour and thus 
has sufficient time to process. This total is the least number 
of segments that could come to the warfighter in a run. 
Similarly the worst case scenario would be when we have 
5% of minefield segments which is 60 minefield seg-
ments/hr and 2.5% of the non-minefield segments which is 
approximately 30 non-minefield segments/hr. This is too 
8



Rajagopal, Agarwal, and Ramakrishnan 

 
many for the warfighter to keep up with the frame rate. So 
the effective load on him increases and number of seg-
ments waiting at the queue at WIL will be larger(>200) as 
observed in Figure 13. Since there are more minefield 
segments in this case, there will be more detections at the 
ATR and the human will have to analyze more minefield 
segments which is more time consuming than non-
minefield segments. Based on these results, in the case of 
single UAV, we can observe that acceptable waiting times 
are observed when the percentage of minefield segments in 
ground-truth is less than 1% and also when the false alarm 
rate for non-minefield segments is less than 1.5%. We can 
also see from Figure 12 and Figure 13 that the warfighter 
will be unable to handle the number of segments arriving 
when values are beyond the above mentioned limits result-
ing in a long queue and long waiting time.  

7 CONCLUSION 

Airborne minefield detection model was studied using a 
simulation model to evaluate the performance of a war-
fighter in the loop. Weibull distribution was considered 
with appropriate scale, shape, and offset values for mine-
field segments and non minefield segments was deter-
mined for this model. After the parameters were deter-
mined, a simulation study was performed. From the results, 
the effects of other blocks over the WIL were analyzed, 
and shown. It was observed that with the model, time char-
acteristics of the warfighter could be effectively studied. It 
was found that the warfighters would not be able to handle 
the number of segments to process effectively when the 
percentage of minefield segments in ground truth is more 
than 1% and when the false alarm rate for non-minefield 
segments is more than 1.5%. This has significant implica-
tions on how to specify these systems for implementation.  
Future studies will focus on the presence of multiple 
streams of data from different sources. 
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