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ABSTRACT 

Combat, unlike many real-world processes, tends to be 
singular in nature.  That is, there are not multiple occur-
rences from which to hypothesize a probability distribution 
model of the real-world system.  Mission-level models 
may offer more flexibility on some measures due to their 
extended time frame.  Additionally, the parameters in-
volved in the mission-level model may be unchanged for 
significant stretches of the total simulation time.  In these 
cases, time periods may be devised so that the periods hold 
sufficiently similar traits such that the incremental results 
may be assumed to come from a common distribution.  
This paper details a new statistical methodology for use in 
validating an agent-based mission-level model.  The test is 
developed within the context of the Bay of Biscay agent-
based simulation and uses the monthly data from the ex-
tended campaign as a basis of comparison to the simulation 
output. 

1 INTRODUCTION 

In recent years, there has been an increased number of 
agent-based simulations studying various aspects of com-
bat.  For example, Tighe, in (Tighe 1999), developed an 
agent-based simulation based ultimately on the boids 
flocking algorithm (Levy 1992) and ISAAC (Ilachinski 
1998) as an attempt to find a method of quantifying strate-
gic effects, purported to be one of the main strengths of air 
power in combat.  Bullock, in (Bullock 2000), continued 
the research into modeling strategic effects with the intro-
duction of the Hierarchical Interactive Theater Model 
(HITM).  This model was intended to provide a sufficiently 
complex tool able to show strategic effects of air power, 
while retaining enough simplicity to allow identification of 
interactions between important factors.  Other agent-based 
combat simulation research includes modeling riot tactics 
for small military units (Woodaman 2000), small unit 
peacekeeping tactics in an urban environment (Brown 
113
2000), and a German training scenario involving small 
units over a relatively short time period (Erlenbruch 2002). 

Though each of the above provides significant results 
toward advancing the field of agent-based combat simula-
tion, no attempt was made to relate simulation outcome to 
real-world data.  This paper outlines the development of a 
statistical validation technique applied to an agent-based 
combat simulation based on the Allied offensive against 
the German U-Boats in the Bay of Biscay during WW II.  
Model results are compared to the historical data.   

1.1 Historical Scenario  

German U-Boats operated against Allied shipping in the 
North Atlantic from 1941 through the end of the war in an 
effort to reduce the shipments of war-time supplies to 
Great Britain.  Following the fall of France, many of these 
submarines operated from ports in occupied France, cross-
ing the Bay of Biscay into the North Atlantic, where they 
hunted for Allied transport ships.  Once they left the Bay of 
Biscay, the U-Boats could, for all practical purposes, oper-
ate outside the reach of Allied aircraft support.  For a time 
in 1942 and 1943, this offensive was so successful, that 
Great Britain’s war effort was put in great peril.   

While the Allied forces had little hope of finding and 
destroying U-Boats once they reached the Atlantic, the Bay 
of Biscay was well within the reach of Allied aircraft.  Ad-
ditionally, the amount of U-Boat traffic to and from the 
French ports, necessitated by maintenance and resup-
ply/refuel demands, ultimately meant that there was suffi-
cient density of targets within the Bay of Biscay to warrant 
committing resources to conduct anti-U-Boat efforts there.  
As a result, the Allied forces, beginning in 1941, hunted 
for the U-Boats in the Bay of Biscay. 

Additional historical background on the offensive 
search in the Bay of Biscay can be found in (McCue 1990), 
and an extensive record of the corresponding operational 
analysis may be found in (Waddington 1973) and (Morse 
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1.2 Bay Of Biscay Model 

Though the Bay of Biscay simulation was built to repro-
duce the results of the historical operation in both qualita-
tive and quantitative measures, one of the development 
goals was to keep the simulation relatively simple by in-
cluding only the most significant factors.  As a result, it 
was necessary to make assumptions about the environment, 
the aircraft agents, and the U-Boat agents.  Detailed de-
scriptions of the Bay of Biscay modeling assumptions may 
be found in (Champagne 2003a, Champagne 2003b, 
Champagne and Hill 2003).   

1.3 Simulation Scenarios 
Two scenarios were chosen for the initial model validation.  
The first was the six month period from October 1942 – 
March 1943 (Scenario 1), and the second was April 1943 – 
September 1943 (Scenario 2).  These time periods were 
chosen because the technologies used by both Allied air-
craft and German U-Boats remained relatively constant 
over the months within each scenario, although they did 
vary significantly between scenarios.   

The U-Boat fleet initially consists of 70 agents distrib-
uted randomly and uniformly throughout the Bay of Bis-
cay.  A simulation warm up period of 12 months is used to 
position the fleet through normal movement through the 
bay and time spent in operational zones and ports. This 
yields a more natural U-Boat fleet configuration as might 
have been the real-world case.  U-Boat fleet reinforcements 
begin arriving from Germany according to their historical 
numbers (McCue 1990) in month 11 of the warm up period 
and continue throughout the remainder of the simulation. 

The aircraft fleet consists of 15 aircraft agents in Sce-
nario 1 and 35 aircraft agents in Scenario 2, collocated at a 
single airbase in Great Britain.  These aircraft numbers 
were derived through experimentation on the two scenarios 
until the average monthly flying hours compared favorably 
with the historical values for flying hours.  The number of 
aircraft agents remains constant throughout each scenario .   

Aircraft offensive search is assigned to a fixed area of 
the bay 200 x 350 NM2 (E-W x N-S).  The search area is 
subdivided into 50 x 50 NM2 non-overlapping search grids. 
Aircraft search each grid using a modified barrier search 
pattern constructed from the tactics discussed in (Wadding-
ton 1973).   

2 SIMULATION RESULTS 
Each simulation scenario was replicated 20 times, and sta-
tistics were kept for the 6-month total and on a per-month 
basis.  The historical values for each scenario are found in 
Tables 1 and 2, respectively. The simulation results for 
Scenario 1 MOEs are found in Tables 3 and 4, respec-
tively, for all 20 replications. 
11
Table 1:  Historical MOE Values for Scenario 1 (McCue, 
1990) 

MOE 10/42 11/42 12/42 1/43 2/43 3/43 
Sightings 18 19 14 10 32 42 
Kills 1 1 0 0 0 1 

 

Table 2:  Historical MOE Values for Scenario 2 (McCue, 
1990) 
MOE 4/43 5/43 6/43 7/43 8/43 9/43 
Sightings 52 98 60 81 7 21 
Kills 1 7 4 13 5 2 

 

Table 3:  Simulated U-Boat Sightings for Scenario 1 
Rep. 10/42 11/42 12/42 1/43 2/43 3/43 

1 9 17 21 17 11 33 
2 19 14 25 24 24 23 
3 16 23 15 22 25 28 
4 20 17 21 33 26 33 
5 15 16 18 25 28 26 
6 18 21 20 29 23 32 
7 11 20 24 30 34 28 
8 20 17 17 25 28 23 
9 27 25 34 40 28 30 

10 17 17 26 30 33 45 
11 9 9 23 13 21 27 
12 15 17 27 34 27 39 
13 12 14 18 21 17 25 
14 12 15 15 26 21 27 
15 13 17 16 24 25 36 
16 22 14 16 16 27 25 
17 21 15 23 17 21 23 
18 22 21 22 21 27 36 
19 21 28 32 30 24 21 
20 13 15 22 27 27 26 

2.1 Analysis Of The Simulations MOEs 

Joint confidence intervals around the simulation means can 
be constructed using a t-statistic, as shown in (3). 
 

Bound = x ± s
n

⋅ t α
2⋅k ,n−1 (3) 

where 
• x  is the sample mean 
• s is the sample standard deviation 
• n is the sample size 
• k is the number of joint confidence intervals 
• (1 – α) is the desired level of joint confidence. 
39
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Table 4:  Simulated U-Boat Kills for Scenario 1 
Rep. 10/42 11/42 12/42 1/43 2/43 3/43 

1 0 0 0 1 0 1 
2 0 0 1 1 2 1 
3 0 0 1 1 0 1 
4 0 0 1 0 1 1 
5 0 0 1 1 2 0 
6 0 0 0 1 1 0 
7 0 0 1 2 1 1 
8 0 1 0 0 1 1 
9 1 0 2 1 1 0 

10 1 1 2 1 1 0 
11 1 1 0 1 1 0 
12 1 0 1 0 1 0 
13 1 0 1 0 0 0 
14 0 0 0 0 1 1 
15 0 0 1 1 1 1 
16 2 1 0 0 1 0 
17 0 0 1 1 1 0 
18 0 0 2 1 0 2 
19 0 1 1 2 0 1 
20 0 1 1 0 1 1 

 

Table 5:  Simulated U-Boat Sightings for Scenario 2 
Rep. 4/43 5/43 6/43 7/43 8/43 9/43 

1 38 50 44 46 45 64 
2 48 46 49 57 62 70 
3 46 43 46 43 57 69 
4 46 48 51 56 69 48 
5 40 49 48 69 70 69 
6 60 46 67 70 58 57 
7 50 46 66 57 59 63 
8 42 52 46 54 74 79 
9 43 60 47 62 70 75 

10 46 53 54 72 75 73 
11 40 44 49 68 56 55 
12 36 59 51 67 63 58 
13 44 29 47 52 55 55 
14 35 40 49 45 71 48 
15 44 44 57 73 58 58 
16 42 58 54 61 60 68 
17 42 47 62 69 71 66 
18 43 59 56 79 74 65 
19 48 53 47 64 72 60 
20 41 45 57 61 59 75 
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Table 6:  Simulated U-Boat Kills for Scenario 2 
Rep. 4/43 5/43 6/43 7/43 8/43 9/43 

1 0 6 7 3 6 6 
2 1 3 4 8 5 5 
3 6 5 5 5 4 3 
4 2 9 4 3 9 3 
5 2 2 5 4 6 9 
6 4 5 8 8 8 5 
7 6 2 12 9 4 6 
8 3 2 8 8 9 13 
9 4 5 1 5 6 7 

10 5 4 4 6 13 5 
11 7 7 3 9 6 2 
12 6 3 2 12 9 5 
13 5 4 3 5 4 4 
14 2 4 7 2 8 4 
15 5 7 3 7 6 3 
16 6 6 6 3 5 11 
17 3 3 8 6 5 4 
18 2 6 5 6 5 6 
19 5 3 6 4 9 7 
20 3 7 4 6 5 7 

 

Using a (1 – a) = 0.8, consistent with simulation vali-
dation literature (Balci and Sargent 1984, Balci 1994, Klei-
jnen 1995), confidence intervals were constructed around 
the simulation means for each scenario assuming a 
t-distribution with 19 degrees of freedom.  The 80% joint 
confidence is maintained for each scenario.  That is, if 80% 
confidence were desired over both scenarios considered 
together, then the confidence intervals would need to be 
extended. 

Figure 1 shows the results from scenario 1, and the re-
sults from scenario 2 are shown in Figure 2.  In each case, 
the confidence intervals either cover or nearly cover the 
MOE’s historical value. 

Supposing that the actual number of sightings and kills 
represent the mean of the true distribution for each sce-
nario, then the joint confidence intervals shown in Figure 1 
and Figure 2 would indicate that the simulation does a rea-
sonable job of emulating the scenarios and statistically cap-
tures (or nearly captures) the actual values observed during 
WW II.   

Though the results appear to indicate the simulation is 
a good statistical representation of the historical scenario, 
two points bear consideration.  First, the joint confidence 
level encompassing both scenarios guarantees a (1 – a) 
significantly less than 0.8.  Second, this conclusion is de-
rived from the assumption that the historical record is rep-
resentative of the mean of all possible outcomes from the 
real-world scenario and not a statistical outlier – a decid-
edly risky assumption.  Since there is no way of knowing 
whether or not this assumption is valid given a “sample 
0
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Figure 1: October 1942 – March 1943 MOEs 
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Figure 2: April 1943 – September 1943 MOEs 

 
size of one,” conclusions as to the validity of the model 
should still be considered suspect.  However, as a prelimi-
nary assessment, the model appears to represent the his-
torical record satisfactorily, and the statistical tests do not 
contradict this. 

3 MOTIVATION FOR NEW TEST 
While the previous suggests that the simulation is a good 
representation of the historical scenarios, the fact remains 
that the historical outcome is itself a single sample from a 
stochastic process (i.e. combat).  The statistical compari-
sons made in the validation process were based on the as-
sumption that the historic results actually represent the 
mean value of all possible outcomes.  A favorable com-
parison of the simulation with the underlying stochastic 
process that produced the single historic sample would 
provide greater confidence that the model is a valid repre-
sentation of the real-world system. 

Examining Bay of Biscay historic outcomes by month, 
instead of aggregated, provides a convenient method for 
examining the variability of the real-world system.  Mean 
1141
monthly values for each MOE of interest, both real-world 
and simulated, can be calculated and compared.  The re-
sulting analysis provides additional insight not available 
through the previous techniques, although it still lacks 
quantifiable confidence to conclusions about the validity of 
the simulation.  The data generated from the Bay of Biscay 
agent-based simulation are used to demonstrate the 
strengths and weaknesses of this approach.   

Figures 3 through 6 depict the historic versus simu-
lated mean monthly MOE values via joint confidence in-
tervals each MOE, U-Boat sightings and kills, in both sce-
narios, respectively.  Each figure shows 21 individual 
confidence intervals –  the left-most being the historic 
value with the remaining 20 coming from each of 20 simu-
lation iterations.  Joint confidence intervals were con-
structed to allow an overall 80% joint confidence level (k = 
2) for each comparison.   
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Figure 3: Comparisons of Mean Monthly U-Boat Sight-
ings, Historic vs. Simulated Scenario 1 
 

Even with no further analysis, a major shortcoming of 
this validation approach becomes evident.  In preparing for 
the comparisons, an analyst must choose two unattractive 
options when constructing joint confidence intervals.  The 
first option is to compare each simulation iteration to the 
historic data at some known confidence level (e.g. 80% 
with k = 2, as presented in Figures 3 through 6).  The sec-
ond option is to construct the intervals such that all simula-
tion iterations versus historic outcome comparisons taken 
together have a known joint confidence level (i.e. k = 21).  
If the former option is chosen, the resulting joint confi-
dence level for all 20 comparisons is near zero.  If the latter 
is chosen, the overall confidence level is known, but the 
individual confidence intervals are so large they cease to 
be discriminating.  
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Figure 4: Comparisons of Mean Monthly U-Boat Kills, 
Historic vs. Simulated Scenario 1 
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Figure 5: Comparisons of Mean Monthly U-Boat Sight-
ings, Historic vs. Simulated Scenario 2 
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Figure 6: Comparisons of Mean Monthly U-Boat Kills, 
Historic vs. Simulated Scenario 2 
 

Figures 3-6 indicate 100% confidence level overlap in 
comparing individual simulation iteration means to the 
real-world data for each MOE.  These figures provide face-
level support for this conclusion. 
114
However, because of the analytic dilemma surround-
ing the joint confidence level, this method of analysis pro-
vides little more than face-level confidence.  The statistical 
confidence remains near zero.  However, the approach is 
tempting in that it offers insight into the stochastic nature 
underlying a real-world system with a single occurrence 
(sample size of 1).  we next present and demonstrate a 
methodology that allows for statistically significant com-
parisons, despite having a single real-world sample. 

3.1 Methodology For Comparison Of Historic Versus 
Simulated Data 

Any test allowing a meaningful comparison between the 
historic outcome and the simulated data, while still provid-
ing insight into the underlying stochastic real-world sys-
tem, requires two characteristics.  First, the method must 
provide a means of deriving multiple samples from the sto-
chastic process underlying the real-world system.  Second, 
the method must provide a meaningful, quantifiable level 
of confidence in the result.  Figure 7 illustrates an approach 
that meets both requirements. 

Once the simulation results from n iterations are gen-
erated, the historic data is used to generate n bootstrap 
samples.  A sign test is used to test the hypothesis that the 
two samples are statistically identical.  The bootstrap and 
sign test is then replicated for multiple experiments. 

The basic approach above is based on well-accepted 
nonparametric statistical techniques.  Once the simulation 
data has been collected, the approach has the added benefit 
of being simple to execute and can be quickly performed 
within a spreadsheet. 

3.1.1 Bootstrap 

Several statistical resampling techniques have been devel-
oped to provide estimators of population parameters that 
are difficult or impossible to treat theoretically (Conover 
1999) or when obtaining multiple samples from a system is 
prohibitively expensive (Cheng 2001).  Resampling is 
based on the idea that when one random sample is avail-
able and obtaining another sample is not feasible, then the 
best estimate for the distribution under study is the random 
sample in-hand. 

Efron (1979) first proposed the bootstrap method of 
resampling.  Since it was first proposed, the method has 
found wide acceptance and applicability.  Efron and Tib-
shirani (1986) review the bootstrap method and its applica-
tions. 
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Figure 7: Methodology for Comparisons of a Single-
Sampled Real-World Process to Simulated Results 

 
The Method. Consider the statistic q calculated from the 
random sample X = {X1, X2, …, Xn}.  A bootstrap sample 
X* = { *

1X , *
2X , …, *

nX } is generated by taking a ran-
dom sample from X, where 

n
niXnjXP ij

1)),...,2,1(),...,2,1(( * ==== , for which 

q*, an estimator for q, is computed from the bootstrap sam-
ple.  If some number, B, Monte Carlo replications are 
taken, then the distribution of q can be estimated by the 
sample mean and standard deviation of q*. 

 
Sample Size, B. The number of bootstrap samples needed 
to accurately estimate the properties of the sample statistic 
vary.  Efron and Tibshirani (1986) note that for most situa-
tions, B = 50 to 200 is “quite adequate,” though 250 or 
more are often needed for accurate computation of confi-
dence intervals.  Conover (1999) adds that “as few as 25 
replications can be very informative”.    

 
Proposed Use. The bootstrap used differs slightly for the 
proposed methodology.  Instead of a single collection of 
bootstrap samples of the historic data, m groups of b boot-
strap samples were generated for comparison with the 
simulation, where b = the number of simulation iterations 
and m = number of sign test trials desired.   
 
Assumptions and Remedial Methods.  Bootstrap resam-
pling assumes the original sample is independent and iden-
tically distributed (i.i.d.).  Since the historic data from the 
Bay of Biscay operations consists of calendar data (i.e. 
time-series data), it is likely that the MOE data is autocor-
1

related to some degree.  Table 7 shows the calculated auto-
correlation (1 time lag) for the data from each Scenario.   

 
Table 7:  Autocorrelation of Historic MOE Values 

 Scenario 1 Scenario 2 
U-Boat Sightings 0.5345 0.1192 
U-Boat Kills 0.1667 -0.3189 

 

From Table 7, it appears that autocorrelation is an is-
sue with Scenario 1 U-Boat Sightings and Scenario 2 
U-Boat kills.  Statistically, however, the extremely small 
sample size (n = 6) for both Scenarios does not provide any 
conclusive evidence that the samples are autocorrelated. 
This small sample size also prevents the practical applica-
tion of remedial data measures that could treat the correla-
tion within the samples.  There are methods of treating 
autocorrelated samples so that the bootstrap assumptions 
can be met.  The moving blocks bootstrap is one method 
that extends the bootstrap to time series data (Dixon, 
2001). 

In the moving blocks bootstrap, the time series data is 
partitioned into b non-overlapping blocks consisting of l 
sequential observations.  Values of b and l are chosen so 
that the correlation within each of the blocks is strong, but 
weak between blocks.  With l correctly chosen, the b 
blocks are considered independent.  The bootstrap method 
randomly samples with replacement from the b blocks to 
obtain a series of b·l observations. 

The moving blocks bootstrap is not a feasible solution 
to the specific problem posed by the Bay of Biscay sce-
nario validation data.  The small number of observations in 
each validation set prevents effective blocking schemes.  
The fidelity of the available data also represents an obsta-
cle.  Data for the Bay of Biscay operations are available in 
monthly increments (observations).  If the data were avail-
able in smaller time increments (more observations), then 
perhaps a viable blocking scheme could be contrived. 

Combat operations will perpetually pose sample size 
problems since real-world operations seldom maintain sta-
tionary/static strategies, tactics, or technologies long 
enough to produce data of a significant sample size. 

3.1.2 Sign Test 

The sign test is used to test whether one random variable in 
a pair (X, Y) tends to be larger than the other random vari-
able in the pair.  It is a variant of the binomial test in which 
the probability of outcome is assumed to be equally likely, 
p = 1 – p = 0.5 (Conover 1999). 

Data for the sign test consists of n’ pairs of observa-
tions (X1, Y1), (X2, Y2), …, (Xn’, Yn’), each observation be-
ing a bivariate random sample.  Within each (Xi, Yi) ob-
servation, a comparison is made, and the pair is classified 
as “+” if Xi < Yi, “–” if Xi > Yi, or “0” if Xi = Yi.  The test 
statistic, T, is the number of “+” pairs.  The null distribu-
143
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tion of T is the binomial distribution with p = ½ and n = 
number of non-tied pairs (tied pairs are disregarded). 

The sign test assumes that the bivariate pairs are mu-
tually independent, and the probability of outcome is con-
stant for all trials.  It further assumes that the measurement 
scale within each pair is at least ordinal, that is each (Xi, 
Yi) pair may be determined to be “+”, “–”, or “0”.  Finally, 
the sign test assumes there is internal consistency between 
the observed pairs. 

For model validation purposes, the two-tailed test is 
desired.  That is, 

 
H0: P(+) = P(–) 
H1: P(+) ≠  P(–). 

 
The critical a-values are determined for each test once 

n has been determined.  Because the binomial distribution 
is discrete, the critical a-values cannot be arbitrarily set.  
Instead, the critical a-level is selected such that the total (1 
– a) level is as close to 0.9 as possible, without being less 
than 0.9, given a particular n.  That is, H0 is rejected if the 
p-value for the test is less than 0.05. 

3.2 Bay Of Biscay Agent-Based Simulation Results 

The presentation of results follows the same order as in the 
previous analyses.  That is, the comparisons of sortie hours 
for both scenarios are presented first, followed by the re-
maining MOEs from each scenario, respectively.   

Each MOE was subjected to identical experiments.  
Each experiment consists of twenty sign tests (m = 20), 
with each sign test incorporating twenty (one per simula-
tion iteration) bootstrap samples (b = 20).  For each MOE, 
one sign test is presented in detail, and the remaining tests 
are summarized prior to validation discussions. 

3.2.1 Scenario 1 MOEs 

Previous analyses of Scenario 1 MOEs provided a some-
what mixed picture of the simulation’s fidelity with respect 
to the historic data.  The historic U-Boat kills total was 
slightly outside the simulation confidence interval, though 
the practical difference was negligible.  Comparisons be-
tween the confidence interval generated by the historic 
monthly data and those generated from each iteration’s 
monthly data, however, demonstrated 100% overlap, and 
hence, no statistical difference between the results from 
any individual iteration and the historic data.  This ap-
proach also lacked any meaningful confidence when all 
such comparisons were taken together.  The historic U-
Boat sightings total was well within the confidence interval 
derived from the simulation data.  The subsequent analysis 
with respect to the monthly means showed similar results 
to the U-Boat kills with the identical problem of providing 
no joint confidence. 
11
Table 8 shows the bootstrap samples for Scenario 1 U-
Boat sightings generated for comparison with the simula-
tion results. 

Table 9 summarizes the sign test classifications for the 
paired data (Xi, Yi) for Scenario 1 U-Boat sightings, where 
Xi is the ith bootstrap U-Boat sightings total and Yi is the 
U-Boat sightings total from the ith simulation iteration.  
The sign test statistic T and number of non-tied pairs n are 
displayed as well. 

Table 8:  Bootstrap U-Boat Sightings – Scenario 1 
Trial 10/42 11/42 12/42 1/43 2/43 3/43 

1 14 18 10 42 42 42
2 18 14 42 18 19 18
3 18 18 19 18 19 14
4 10 14 14 14 42 14
5 14 19 42 32 42 19
6 42 18 32 32 42 14
7 19 32 14 32 18 19
8 18 14 14 10 14 42
9 18 19 18 42 18 19

10 32 32 32 32 18 18
11 32 10 19 14 10 32
12 10 19 42 32 10 32
13 32 19 19 42 18 18
14 32 32 42 42 42 10
15 10 32 14 18 18 32
16 32 32 10 18 42 14
17 19 19 14 19 19 32
18 32 19 42 18 32 14
19 10 19 19 32 32 32
20 32 42 10 32 42 14

 
Table 9:  Sign Test Calculations – U-Boat Sightings, Sce-
nario 1 
Ob-
ser-
va-
tion 

1 2 3 4 5 6 7 8 9 10 

Sign – 0 + + – – + + + + 
Ob-
ser-
va-
tion 

11 12 13 14 15 16 17 18 19 20 

Sign – + – – + – – – + – 
T 9          
n 19          

 
For n = 19, P(t ≤ 5) = 0.0358 and P(t ≥ 13) = 0.0358 

defining an overall (1 – a) = 0.9284.  Since 5 < T = 9 < 13, 
there is insufficient evidence to reject H0.  There is no 
compelling evidence to suggest the simulation does not 
44



Champagne and Hill 

 
faithfully represent the real-world system with respect to 
Scenario 1 U-Boat sightings.  

Table 10 shows the bootstrap samples of Scenario 1 
U-Boat kills generated for a single replication of the boot-
strap/sign test experiment. Of the 20 sign test trials, the p-
values ranged in value from 0.011 to 0.5.  Under the rejec-
tion criteria, the null hypothesis was rejected in 5 of the 20 
trials. 

Both sign test experiments tend to indicate that the 
simulation is representative of historical combat operations 
for Scenario 1.  In the case of Scenario 1 U-Boat sightings, 
the bootstrap/sign test rejected the null hypothesis in 15% 
of the trials.  With respect to Scenario 1 U-Boat kills, the 
bootstrap/sign test method rejected the null hypothesis in 
25% of the trials.  Rather than make a validation conclu-
sion based on a single statistical pass/fail, as in the first 
analysis method, the bootstrap/sign test methodology pro-
vides a broader context to the simulation results. These 
conclusions provide stronger rationale than either of the 
previous tests for accepting the model as valid with respect 
to the MOEs. 

3.2.2 Scenario 2 MOEs 

Previous analyses of Scenario 2 MOEs provided a some-
what mixed picture of the simulation’s fidelity with respect 
to the historic data.  The historic U-Boat sightings total 
was slightly outside the simulation confidence interval, 
though the practical difference was negligible.  Compari-
sons between the confidence interval generated by the his-
toric monthly data and those generated from each itera-
tion’s monthly data, however, demonstrated 100% overlap, 
and hence, no statistical difference between the results 
from any individual iteration and the historic data.  This 
approach, however, also lacked any meaningful confidence 
when all such comparisons were taken together.  The his-
toric U-Boat kills total was well within the confidence in-
terval derived from the simulation data.  The subsequent 
analysis with respect to the monthly means showed similar 
results to the sightings with the identical joint confidence 
problem.  

Table 11 shows the bootstrap samples for Scenario 2 
U-Boat sightings generated for a single replication of the 
bootstrap/sign test experiment.   

Of the 20 sign test trials, the p-values ranged in value 
from 0.058 to 0.412.  Under the rejection criteria, the null 
hypothesis was not rejected in any of the 20 trials. 

Table 12 shows the bootstrap samples of Scenario 2 
U-Boat kills.  Of the 20 sign test trials, the p-values ranged 
in value from 0.058 to 0.5.  Under the rejection criteria, the 
null hypothesis was not rejected in any of the 20 trials. 
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Table 10: Bootstrap U-Boat Kills – Scenario 1 
Trial 10/42 11/42 12/42 1/43 2/43 3/43 
1 0 0 1 0 1 1 
2 1 1 1 1 0 1 
3 1 0 0 1 0 0 
4 1 0 1 1 0 1 
5 0 1 1 1 0 0 
6 0 0 1 1 0 1 
7 0 1 1 1 0 1 
8 0 1 1 0 1 1 
9 1 1 1 1 1 1 
10 0 1 0 1 0 0 
11 0 0 1 1 1 1 
12 1 0 1 1 1 1 
13 0 0 0 1 1 1 
14 0 1 0 1 1 1 
15 1 0 1 1 0 0 
16 0 0 1 0 0 1 
17 1 1 0 1 1 1 
18 0 1 1 1 0 0 
19 1 0 1 0 0 1 
20 0 0 1 1 0 1 

 

Table 11:  Bootstrap U-Boat Sightings – Scenario 2 
Trial 4/43 5/43 6/43 7/43 8/43 9/43 
1 81 7 52 60 98 52 
2 98 98 21 98 81 98 
3 98 81 81 21 60 7 
4 98 7 52 52 60 52 
5 81 52 52 52 60 60 
6 81 81 98 52 7 52 
7 60 98 98 21 7 21 
8 7 52 98 81 21 98 
9 52 52 52 52 21 98 
10 60 98 60 52 81 60 
11 81 81 21 21 52 98 
12 98 60 21 52 52 21 
13 60 7 81 52 21 52 
14 7 52 60 52 21 52 
15 52 81 98 21 81 81 
16 7 81 21 60 81 52 
17 98 52 7 21 21 21 
18 60 98 98 21 7 60 
19 52 60 21 81 81 98 
20 7 81 98 21 81 21 

 Both sign test experiments indicate the simulation is 
representative of historical combat operations for Scenario 
2; null hypothesis was not rejected in 20 trials for either 
MOE.  Though the original validation test showed a statis-
tical difference in the number of U-Boat sightings, the re-
sults of the sign test indicate the simulation was a better 
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model than the original test indicated.  The monthly mean 
test demonstrated 100% overlap between the historic and 
simulation confidence intervals.  The conclusions drawn 
from the bootstrap/sign test methodology provide stronger 
indication than either of the previous tests for accepting the 
model as valid with respect to the MOEs. 

 
Table 12:  Bootstrap U-Boat Kills – Scenario 2 
Trial 4/43 5/43 6/43 7/43 8/43 9/43 

1 4 4 1 2 1 13 
2 4 13 1 13 5 2 
3 4 4 1 5 7 2 
4 1 2 7 5 2 13 
5 2 7 1 1 4 1 
6 7 1 5 1 2 5 
7 2 4 1 5 1 13 
8 1 5 1 5 7 4 
9 13 5 5 7 5 7 

10 13 13 5 1 5 5 
11 4 1 1 2 1 2 
12 1 7 1 1 1 2 
13 13 5 13 1 2 1 
14 13 4 2 5 2 1 
15 2 7 13 4 13 13 
16 4 1 5 13 13 1 
17 13 2 13 13 1 1 
18 4 7 13 5 1 7 
19 4 4 5 7 2 7 
20 5 7 7 7 7 13 

4 VALIDATION CONCLUSIONS 

In the first validation analysis, the traditional t-test showed 
half of the six tests with statistical difference between the 
simulation and historic data, although the practical differ-
ences were essentially negligible.  These tests assumed the 
historic outcome represented the mean of all such out-
comes – a possibly risky assumption. 

In the second validation analysis, the simulation ap-
peared to perform exceedingly well against the real-world 
data.  However, due to the joint confidence dilemma dis-
cussed previously, little insight could be made with practi-
cal statistical confidence.   

The proposed bootstrap/sign test validation methodol-
ogy provides more information either traditional method.  
The sortie hour tests produced null hypothesis rejection 
rate of 15% for Scenario 1 and 5% for Scenario 2.  The 
remaining MOEs for Scenario 1 produced a null hypothesis 
rejection rate of 15% for U-Boat sightings and 25% for U-
Boat kills.  Scenario 2 produced a null hypothesis rejection 
rate of 0% for both MOEs.   

Ultimately, the validation determination rests with the 
decision maker, who takes risk, practical differences, and 
114
other associated costs into account.  Our experiences and 
test suggest the BoB model is sufficiently valid, and its 
success as an experimental platform has been demonstrated 
and well documented in (Champagne, Carl, and Hill 
2003a), (Champagne, Carl, and Hill 2003b), (Champagne 
and Hill 2003), (Carl 2003), and (Hill, Price, and Cham-
pagne 2003). 
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