
Proceedings of the 2005 Winter Simulation Conference
M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, eds.

ON USING SPEEDES AS A PLATFORM FOR A PARALLEL SWARM SIMULATION

Matthew A. Russell
Gary B. Lamont

Kenneth Melendez

Department of Electrical and Computer Engineering
Graduate School of Engineering & Management

Air Force Institute of Technology
WPAFB (Dayton), OH 45433-7765, U.S.A.
ABSTRACT

Unmanned Aerial Vehicle (UAV) research is an increasingly
important pillar of national security and military interest.
A high fidelity discrete event simulation is prerequisite to
any systems implementation. The Synchronous Parallel
Environment for Emulation and Discrete Event Simulation
(SPEEDES) is a versatile and powerful tool that can be
used for realization of this objective. A suite of five exper-
iments measures the efficiency a parallel UAV swarming
SPEEDES application. Results indicate that the conserva-
tive time management produces more than twice the speedup
as optimistic time management.

1 INTRODUCTION

Militaries around the world are becoming increasingly in-
terested in using Unmanned Aerial Vehicles (UAVs) to ac-
complish objectives that are more dangerous and expensive
to do with conventional aircraft. As developments in UAVs
unfold, the capability of building smaller and smaller UAVs
is becoming a reality. Miniaturization of UAVs opens a
wide variety of possible applications. The ability to deploy
large numbers (swarms) of inexpensive UAVs for classical
military missions of target detection and destruction will
soon arrive. The desirability of UAV swarms achieving their
mission in a hostile environment with the loss of potentially
many of the individual UAVs requires an investigtion of the
nature of swarm behavior. A broad goal of this research is
to develop models of UAV swarm behavior that ultimately
promote mission accomplishment by a UAV swarm. An
initial approach to meeting this goal is simulation. Simu-
lating such applications with as much fidelity as possible
is prerequisite to physical implementation.
112
2 BACKGROUND

Tools and techniques used in this investigation are discussed
is this section.

2.1 Parallel Discrete Event Simulation

Parallel algorithm design and data decomposition strategies
can be applied to increase efficiency and provide effec-
tiveness that could not otherwise be achieved. Dividing a
computational task into smaller pieces that can be scheduled
to run concurrently on multiple processors is the key when
designing parallel algorithms and simulations.

Two of the central lynchpins in realistic simulation in-
clude a realistic simulation model and an efficient simulation
implementation. A realistic simulation model accounts for
the necessary constraints in the problem application, and
the efficient simulation implementation provides a way to
analyze and improve the interactions with the simulation.
Also For many high fidelity simulations such as UAV rout-
ing, it is desirable for the simulation to be efficient enough
for real-time visualization.

The Synchronous Parallel Environment for Emulation
and Discrete Event Simulation (SPEEDES) (Metron 2003)
is a versatile and powerful tool that can be used to fill both
the need for a realistic simulation and a efficient simulation.
SPEEDES object-oriented modeling capability permits the
encapsulation of UAVs as objects which models optimistic
and conservative techniques.

2.2 Time Management

Central to Parallel Discrete Event Simulation (PDES) is the
local causality constraint (LCS), which requires that simu-
lation events may only be processed in non-decreasing time
stamp order. Enforcing the LCS can be accomplished using
9



Russell, Lamont, and Melendez
either conservative time management (CTM) or optimistic
time management (OTM) techniques.

CTM fulfills the LCS by processing events only when
there is no chance of a synchronization violation. In other
words, events containing a time stamp marked t are handled
by a process p only when it is certain that p cannot receive
any other event with time stamp less than t . The prevalent
shortcoming of CTM is its inability to fully exploit the con-
currency available in the simulation application. Common
techniques for CTM include First-In-First-Out Queues, the
Chandy/Misra/Bryand Algorithm, and the Demand Driven
Approach.

OTM processes events in the order they are received,
but ensures fulfillment of the LCS by “rolling back” any
events that turn out to violate the LCS. For example, when
a simulation object receives a message with a time stamp
t1 marked as less than one already processed t2, a rollback
restores the simulation object’s state to the time stamp t1.
Simply rolling back the process to a state at a previous time
does nothing to nullify cascaded messages, so techniques
such as Jefferson’s Time Warp elegantly handles the situ-
ation by having each object that was “rolled back” send
anti-messages. Anti-messages cascade if necessary. Other
common OTM techniques include Breathing Time Buckets
and Breathing Time Warp (Metron 2003).

2.3 Parallel Computing Metrics

At the core of parallel computing is speedup. Speedup can
be described as the ratio of the serial time S of the best
sequential algorithm for solving a problem to the time P
taken by a parallel algorithm to solve the same problem
on p > 1 processors and is given in Equation 1. Amdahl,
Gustafson-Barsis, and Sun-Ni give different conjectures but
related insights into speedup.

Speedup = S

P
(1)

Amdahl makes the case for fixed size speedup (Grama et
al. 2003). This conjecture states that speedup saturates and
efficiency drops as a consequence of holding the problem
size constant and increasing the number of processors. In
other words, it implies that diminishing returns occur for
speedup because of increasing communication cost. The
equation for Amdahl’s conjecture is given by Equation 2,
where P represents the parallel processing time, and S

represents the best possible serial processing time.

Speedup = 1

1 − P + P
S

(2)

Gustafson-Barsis’ conjucture (Grama et al. 2003) cir-
cumvents Amdahl’s by increasing the problem size as the
113
number of processors increase. It exploits the ratio between
the portion of serial code in the problem and the problem
size. For Gustafson’s conjucure to hold, it requires the
serial portion of the workload stay constant and only the
parallel portion of the workload to increase as we scale up
the problem and add machines. In this formulation, the
number of processors is defined by N , and Rs represents
the portion of code that is serial.

Speedup = N − (N − 1)Rs (3)

Sun-Ni’s conjucture is a generalization of the two previ-
ous ones and makes the case for memory bounded speedup.
It states that making all data accessible by all processors,
using all available memory space, and increasing memory
space as needed results in nearly ideal speedup (Sun and
Ni 1993). Without a shared memory system this metric is
not possible to exploit.

3 MODELING

This section outlines the architecture of the parallel swarm
model of UAVs and discusses its application to routing
swarms of UAVs.

3.1 Simulation Architecture

To design something is to conceive or systematically fashion
it in the mind. Design is a creative and non-algorithmic
process, and a good one produces a precise model. A model
is an encapsulation of some slice of the real world within
the confines of the relationships constituting a formal math-
ematical system (Casti 1997). Because any given element
of reality cannot ever be precisely modeled, various con-
straints are an essential part of the formal system because
they define the boundaries for which the model holds. A
"good" model characterizes a system with a desired degree
of accuracy, and thus, enables accurate predictions of the
natural system in consideration to be made. The hardware
and software platforms as well as the mathematical swarm
model selected have a strong influence on the design of the
simulation. The selection of SPEEDES as the software plat-
form enables an object oriented approach and provides the
ability to build a parallel simulation. The target hardware
platform, a homogeneous Linux based cluster of processors,
influences the approach to distributing the processing tasks.

The existing AFIT Swarm Simulator is the logical
fruition of Kadrovach’s (Kadrovach 2003) swarm model
with parallel extensions by Corner (Corner 2004)(Corner
and Lamont 2004). Kadrovach’s work produced an imple-
mentation of an unscalable swarm model that uses a global
data structure and is designed for a serial processor. A
benefit of this model is that it does accurately simulate the
0



Russell, Lamont, and Melendez
flocking behavior of a swarm and can be used in applications
that require analysis of sensor coverage within the swarm.

3.2 Parallel Swarm of UAVs Simulation

The simulation model is based on an object-oriented design.
In the model a swarm consists of a collection of UAVs where
each UAV is represented as a SPEEDES object. During a
simulation run, the UAV objects are distributed uniformly
across the processing nodes in the assigned cluster. Con-
ceptually, each UAV should have minimal communication
and visibility to the state of the other UAVs in the cluster,
but yet it must have sufficient interaction with fellow swarm
UAVs in order to maintain proper separation, alignment,
and cohesion. In a single processor simulation global data
structures can be use to provide total visibility to state vari-
ables among the UAV, however, in a cluster environment
exchanging state information among all UAVs yield a high
network communication cost. Thus, minimizing interpro-
cessor communication has be a significant challenge in the
design of the simulation software. Once a UAV object is
assigned to a processor in the cluster it continues to be resi-
dent on that processor throughout the simulation. Dynamic
load balancing (Jiang et al. 1994) (Gan et al. 2000) can
reduce interprocessor communication, howerver, a redesign
of the simulation model is required.

3.3 Routing Swarms of UAVs

Originally the swarm model as developed by Kadrovach
(Kadrovach 2003) and parallelized by Corner (Corner 2004)
provided a concept of targets that repelled or attracted the
swarm, however, the swarm basically wandered in a pseudo-
random fashion and was not routable. In the current AFIT
Swarm Simulator, a route is modeled as an object and each
UAV object is issued a copy of the route. A route consists
of a sequence of waypoints (coordinate locations), which
the swarm must visit. Based on the next waypoint the
swarm must visit, a vector component is added to each
UAV’s movement vector, which moves the swarm in the
direction of the waypoint. This vector is added after swarm
movement behavior has been applied to each UAV.

The route of waypoints is input to the swarm model.
In his research Russell addresses the problem of routing
and simulating swarms of UAVs (Russell 2005). Sorties
are modeled as instantiations of the NP-Complete Vehicle
Routing problem. His work uses genetic algorithms to
provide a fast and robust algorithm for a priori and dynamic
routing applications of the UAV swarm.

4 EXPERIMENTATION

Five experiments form a suite designed for analyzing the
performance of a parallel swarm simulation employing
1131
Kadrovach’s swarm model (Kadrovach 2003), parallelized
by Corner (Corner and Lamont 2004). The primary objective
of these experiments is to measure and improve the parallel
simulation’s current performance, to better understand the
anomaly from Corner’s results showing no speedup (Corner
2004), and to improve the simulation’s performance for this
particular application.

The simulation is implemented using a Beowulf cluster
of 32 nodes running Red Hat Linux (Shrike) with 2.2GHz
AMD Opteron processors with 4GB of memory and a fast
ethernet backplane. SPEEDES is the discrete-event simu-
lation platform.

4.1 Experiment 0

Objective: To visualize the 3-dimensional response surface
for runtimes and speedup by varying UAV sizes and CPU
nodes. The number of data points required to obtain a
relatively smooth surface and the corresponding runtimes
constrained the number of replications of the experiment,
hence, three replications of 100 simulation time units were
used per data point.

4.2 Experiment 1

Objective: To measure runtimes and calculate speedup
and efficiency metrics for small swarms, |SWARM| ∈
{32, 64, 128, 256, 512}, on varying numbers of processors,
P ∈ {1, 2, 4, 8, 16, 32} using optimistic event processing
for 12 simulation time units.

This experiment is designed to reproduce data from
Corner’s research (Corner 2004) showing a lack of speedup
for even small swarm sizes on various CPU configurations
using OTM with SPEEDES, and provides a basis and di-
rection for all other experiments. By analyzing results for
small swarm sizes using the standard parallel computing
metrics, some insight may be gleaned for how larger swarms
perform using OTM.

4.3 Experiment 2

Objective: To compare runtimes between conservative and
optimistic techniques using SPEEDES for various swarm
sizes, |SWARM| ∈ {20, 40, 60, ..., 160, 180, 200}, on a
single processor.

Previous research (Corner 2004) implicity hypothesized
that the Breathing Time Warp Algorithm results in a more
efficient simulation. Research results, however, did not
confirm this hypothesis. In fact, results show that there are
more than 1.6 million rollbacks and the ratio of simulation
time units to wall clock time varied between ratios of 1:1000
and 1:2000 for a simulation involving only 500 swarm
members for 12 simulation time units. This experiment is
designed to validate that there are no significant efficiency



Russell, Lamont, and Melendez
differences between OTM and CTM for runs on a single
processor, and thus, measure the overhead of OTM in
SPEEDES for this application. Theoretically, there should
not be a significant difference because no rollbacks should
occur for the OTM.

4.4 Experiment 3

Objective: To compare runtimes for CTM using vary-
ing lookahead window values W ∈ {0, 3, 4, 5, 6, 7}
with SPEEDES for various swarm sizes, |SWARM| ∈
{50, 55, 60, ..., 95, 100} on 5 processors.

This experiment follows a procedure similar to Experi-
ment 2, except that the runs are accomplished for a parallel
configuration and for various lookahead windows. Results
from this experiment are expected to provide insight into
the sensitivity of the lookahead value for this particular
application and show any gain in speedup realized by using
a lookahead window.

4.5 Experiment 4

Objective: To compare the difference in CTM and OTM
with SPEEDES using variable CPUs and swarm sizes.

This experiment is the capstone of the suite. It provides
data necessary to calculate the standard metrics for CTM
with SPEEDES and compares it with the OTM results from
Experiment 2. A specific comparison is made between
results from CTM using a particular lookahead window
value and results from OTM using BTB.

5 EXPERIMENTAL RESULTS ANALYSIS

Data from the experimental suite is analyzed using statistics
and visualized using tables and graphs.

5.1 Experiment 0

All simulations in this experiment were performed using
OTM. This experiment used UAV swarm sizes ranging from
32 to 200 and CPU sizes ranging in number from 2 to 30.
The objective of this experiment was to understand the
overall parallel behavior and scalability, so the experiment
begins with two CPUs as the baseline. Figure 1 shows
the response surface for runtimes. Note that for a fixed
number of UAVs the runtime first increases as more CPUs
are added. When a sufficient number of CPU have been
added, the runtimes begin to decrease and continue until
the minimum is reached at which point their is a gradual
increase in runtime. Observe the valley that is formed by the
minimums. With the exception of the curvature associated
with CPU size of 2, curvature evident at the other edges of
the graphs are false artifacts due to smoothing. Figure 2
depicts speedup. The graphs show that in the range of 32
1132
to 150 speedup increases sharply only for CPU sizes in the
range of 5 to 20. Outside of that range speedup is minimal.

Figure 1: Response Surface for Simulation Run Times Using
OTM

Figure 2: Response Surface for Simulation Speedup Using
OTM

Minimum simulation execution time can be achieved
by selecting the number of CPUs corresponding to the
UAV swarm size by selecting points in the valley shown
in the graph in Figure 1. Given a fixed UAV size for the
swarm simulation, good parallel speedup can be achieved
by selecting the CPU numbers using Figure 2. Scalability
is an issue with the AFIT parallel swarm simulator. The
two response surface graphs do not show runs with a UAV
size greater than 200. Scaling the UAV sizes greater than
200 especially with a small number of CPU causes the
simulation to terminate. No evidence is apparent indicating
a scalability issue with respect to CPU sizes. However,
the speedup graphs does indicate that there is a knee in



Russell, Lamont, and Melendez
the surface at which increasing the number of CPU in the
simulation yields diminishing returns.

5.2 Experiment 1

This experiment used UAV swarm sizes |SWARM| ∈
{32, 64, 128, 256} and CPU sizes that are powers of 2 (so
that the UAVs per CPU could divide evenly) to measure
performance of the BTB algorithm. Given previous results
from Corner (Corner 2004), OTM for UAV sizes much larger
than these is not possible because of the sheer number of
rollbacks and long run times that occur via OTM for this
application with SPEEDES.

Experimentation in this suite confirmed that the simu-
lation chokes for swarm sizes of 512 or larger using OTM.
This is likely because of the excessive memory required by
SPEEDES for OTM due to the large number of rollbacks.
Manually inspecting memory usage using standard system
commands for CPUs running ratios of more than 32 swarm
members per CPU reveals that eventually the entire node’s
memory is used up by the parallel swarm and its proxy
processes, resulting in an eventual node crash. Results can
probably be obtained by running much smaller simulation
durations, but it is unlikely that reliable steady state results
can be obtained for much less than 12 simulation time
units (Corner 2004). Even if results could be obtained for
less than this steady state threshold, it would provide al-
most no benefit for simulation purposes; any realistic UAV
simulation contains thousands of time increments.

Speedup and efficiency calculations for this experiment
define the best serial runtimes as the ones using SPEEDES
with a single CPU. It is crucial to note that Corner’s speedup
calculations used serial run times from the original Linux
port of Kadrovach’s swarm model. Corner was not able to
produce any speedup using the best serial runtimes as the
ones shown in Table 5.2. This conundrum can be explained
by recalling that the Kadrovach’s swarm model is designed
using a global data structure in which all swarm members
communicated with one another, yielding O(|SWARM|2)
communications at each step. Although there may be hope
for gaining speedup using a shared memory model with
Kadrovach’s algorithm, empirical results show no indication
that a parallelization of the serial model as SPEEDES appli-
cation running on a Beowulf cluster can produce speedup.

When making speedup comparisons for a SPEEDES
application, it is most appropriate to use results from the
SPEEDES application running on a single CPU as the ba-
sis of calculation in order to achieve an ‘apples to apples’
comparison. Any SPEEDES application is subject to more
overhead than a streamlined serial algorithm. As Corner’s
results show for this particular application, the speedup cal-
culations are paradoxical without this understanding. Com-
paring streamlined serial runtimes to parallel SPEEDES
1133
Table 1: Results From Page 94 of Cor-
ner’s Research (Corner 2004), Citing
the Best Serial Runtimes for Swarm
Simulation. Parallel Runtimes Using
the SPEEDES Library Do Not Even
Begin to Approach These Runtimes
Even in the Best Cases.
UAV Count Execution Time (sec)

100 4
500 198

1000 1478

runs is not a fair comparison for measuring speedup and
cannot be considered an ‘apples to apples’ comparison.

Results from this experiment indicate that for the given
swarm configurations and for 12 simulation time units, the
wall clock time can be decreased and speedup can be gained
using BTB. Figure 3(c) shows the runtimes from a matrix
of runs on various processors. Figures 3(b) and 3(a) show
the speedup and efficiency trends.

Somewhat unexpected is the increase in the run times
when transitioning from 1 to 2 CPUs. This is likely explained
by the communication inefficiencies introduced because
of the proxies (external modules) used by a SPEEDES
application and is consistent with the trends found in Corner’s
research (Corner 2004). Transitioning from 2 to 4 CPUS
appears to relieve some of the administrative overhead,
thereby decreasing some of the communication inefficiencies
introduced and facilitating speedup.

5.3 Experiment 2

This experiment measures the difference between using CTM
and OTM differences for identical runs of a SPEEDES ap-
plication on a single CPU. As could be expected, results
show that there is some additional overhead for using OTM,
but this overhead is small enough to be considered negligi-
ble. For the smallest swarm sizes |SWARM| ∈ 20, 40, the
percent difference is quite large, but only because of a con-
stant overhead imposed by starting up and configuring the
SPEEDES server in comparison to the very short runtime
for such a small swarm size. Results from this experiment
validate that there is not a significant overhead imposed by
SPEEDES for OTM. Given OTM’s small overhead, it is
likely that performance issues alluded to by Corner are pri-
marily the result of excessive rollbacks. From “Experiment
P2” in Corner’s research (Corner 2004):

“Obvious eyesores are the millions of
rollbacks that are occurring on a regular
basis. This is probably due to the op-
timistic processing of future events that
need rolled back because each UAV de-
pends on the data that has already been



Russell, Lamont, and Melendez
(a) Efficiency

(b) Speedup

(c) Run Times

Figure 3: Parallel Results: For a Small Swarm of UAVs,
There is Eventually Only Negligible Gain for Parallelizing
the Swarm Algorithm Using SPEEDES. For a Larger Swarm
Size, However, There is Significant Gain, but Efficiency
Quickly Becomes a Concern.

modified at a future simulation time, so
that n UAVs are causing rollbacks on all
other UAVs."

The final experiments in this suite explicitly measure
and compare performance between OTM and CTM with
SPEEDES.

5.4 Experiment 3

This experiment compares the results for various lookahead
window values for CTM with SPEEDES to determine the
general sensitivity to the lookahead value. Overall results
are given in Figure 4 and indicate that using even small
values for a lookahead window significantly decreases the
11
Table 2: Comparison of Wall Clock Times for
Simulating Various Swarm Sizes on a Single CPU
Using CTM and OTM with SPEEDES

SWARM conservative optimistic % diff
20 3.77 5.23 27.91
40 13.35 15.67 14.81
60 39.17 40.58 3.47
80 86.73 88.84 2.37

100 170.79 176.37 3.16
120 312.03 326.49 4.42
140 534.98 551.74 3.03
160 860.05 886.45 2.98
180 1326.09 1382.55 4.08
200 1963.76 2053.95 4.39

Table 3: Explicit Runtimes from Various Swarm
Sizes on 5 CPUs with Various Lookahead Values

SWARM 0.0 3.0 4.0 5.0 6.0 7.0
55 28.26 6.57 6.05 4.92 5.14 4.78
60 33.21 7.97 7.54 5.99 7.28 5.66
65 43.66 9.65 9.08 9.11 8.6 8.03
70 46.59 10.5 12.01 11.59 9.65 10.22
75 54.13 12.99 12.98 12.57 12.54 12.07
80 67.97 16.68 16.48 15.14 15.83 14.15
85 67.98 20.29 19.16 18.89 17.39 17.73
90 94.59 24.83 23 22.17 22.8 21.29
95 103.69 27.21 27.06 27.05 25.55 25.38

100 117.25 33.57 33.19 31.92 30.52 30.66

runtime for CTM compared to not using a lookahead value.
Differences in lookahead values can be explicitly compared
using the values from Table 3.

5.5 Experiment 4

Given that OTM does not impose a significant overhead
when compared to CTM, and that results from OTM for
a UAV swarming application with SPEEDES are less than
impressive, an objective comparison is made between CTM
and OTM for this particular SPEEDES application.

The runtimes, speedup, and efficiency graphs from a
series of conservative runs comparable to the optimistic runs
using BTB from Experiment 2 are given in Figure 7.

The metrics from the conservative runs as shown in
this experiment exemplify the ‘regular’ behavior expected
by adding additional processors. In particular, the runtimes
decrease in all cases by the addition of more CPUs as
show in Figure 7(c); there is observable speedup from the
additional CPUs, and for these particular runs, the number
of additional CPUs did not become great enough to begin
leveling out the speedup curve shown in Figure 7(b); and
the efficiency decreased within an acceptable tolerance that
could have been expected.

In fact, the only abnormalities with the data collected
using CTM are ‘good’ abnormalities–a slight superlinear
speedup that can be observed for the largest swarm size of
512 UAVs. The superlinear speedup in this case is most
34



Russell, Lamont, and Melendez
(a) All Conservative Runs on a Logarithmic Scale

(b) The Tightly Grouped Series of Runs on a Standard Linear Scale

Figure 4: Results From a Series of Runs Using 5 CPUs
with Various Lookahead Window Values

likely explained by hardware features that put the serial
implementation at a disadvantage (Grama et al. 2003).
In this case, the limiting hardware feature is probably the
memory limitations from processing 512 UAVs on a single
CPU. Not given enough memory, the CPU would have had
to write and read data from disk periodically, an operation
that can take hundreds of times the duration from accessing
memory in the worst case. Dividing the swarm size between
16 CPUs, however, eliminates this ‘problem’, thus resulting
an perceived superlinear speedup.

Regardless of philosophical arguments for OTM in
PDES, the results from Experiments 1 and 4 demonstrate
that that CTM produces superior results for this particular
application. Consider the comparison of runtimes given in
Figure 5.

6 CONCLUSION

Results from experiments suggest that a transition from
OTM to CTM for this particular SPEEDES application
11
Figure 5: CTM Outperforms the OTM by Approximately a
Factor of 2 for this Parallel Swarming Application

improves simulation runtimes in the general case by more
than factor of 2 in addition to providing much more ‘regular’
behavior with regard to parallel computing analysis. Such
improvement is a necessary step toward simulating swarms
of UAVs in realtime.

Once the simulation is extended to provide a swarm
model that can be routed, the routing algorithm can provide
an initial way point sequence for simulating sorties, and
the simulation can then be extended to include threats,
dynamic changes to the way point schedule, etc. One very
high level architecture for a more unified simulation is shown
in Figure 6.

Figure 6: High Level Swarm Simulation Architecture: Ca-
pable a Priori and Dynamic Routing in Addition to Threat
Detection and Other Constraints

Analysis from various CPU and swarm configurations
simulated as a SPEEDES application shows that SPEEDES
applications exhibit ‘regular’ parallel behavior with regard
to standard parallel metrics when run with CTM. Using
OTM, on the other hand, produces some abnormalities with
the introduction of additional CPUs. The results for a UAV
swarming application suggest that CTM outperforms OTM
by approximately a factor of 2.
35



Russell, Lamont, and Melendez
(a) Efficiency

(b) Speedup

(c) Run Times

Figure 7: Parallel Results: For a Small Swarm of UAVs,
There is Only Negligible Gain for Parallelizing the Swarm
Algorithm. For a Larger Swarm Size, However, There
is Significant Gain, but Efficiency Quickly Becomes of
Predominant Concern.

7 FUTURE WORK

The scalability issues associated with swarm sizes larger
than 200 need to be addressed. Data storage requirements
for dynamic simulation state data and the communications
between UAV objects need to be reduced. Building a
simulation model that more closely follows the actual in-
dependence and low communication traffic between UAVs
113
is expected to reduce global dynamic data structures and
communication traffic. UAV objects that are independent
can run on separate CPUs and require a minimum amount
of coordination, allowing the simulation model to execute
using a CTM methodology as though it were using OTM.
The swarm behavior implemented in the swarm model re-
quires periodic synchronization between UAVs. Currently
synchronization occurs at one simulation second intervals
which yields a scalability and run time choke point. By
adding dynamic load balancing (Jiang et al. 1994) (Gan
et al. 2000) by hosting a neighborhood of UAVs on the
same processing node the internode communications can be
greatly reduced. Only UAVs on the neighborhood bound-
aries need communicate outside of their host node.

The initial focus has been on swarm behavior and swarm
routing. These two areas present a significant challenge, and
work will continue in theses areas. The initial model is a
2-dimensional swarm behavior model with a 3-dimensional
model planned.

Swarm routing is static and fixed for the entire mission.
A dynamic and possibly interactive routing needs to be
developed.

Other areas of future work include: deployment, com-
munication, search, performance, and mission accomplish-
ment. Aerial platform, missile, ground based, etc. are some
of the deployment methods that need investigation. What
forms of communications and communication capabilities
are needed by the individual UAV swarm members? What
are good search strategies for UAV swarms? The perfor-
mance characteristic of climb, speed, and payload capability
affects the swarm behaviors. All of the above considerations
are relevant only with respect to mission accomplishment.
The swarm need to accomplish its mission of sensing or
neutralizing the target.

ACKNOWLEDGMENTS

The authors would like to acknowledge the contribu-
tions of Mike R. Foster, Air Force Wright Laboratory
(AFRL/SNZW), Virtual Combat Laboratory for his sup-
port to this project. We also acknowledge Captain Joshua
J. Corner, USAF, for his contributions to the development
of the parallel UAV swarm simulation model.

REFERENCES

Casti, J. L. 1997. Reality Rules I: Picturing the World in
Mathematics. John Wiley and Sons.

Corner, J. J., and G. B. Lamont. 2004. Parallel simulation of
uav swarm scenarios. In Proceedings of the 2004 Winter
Simulation Conference, ed. M. Rossetti, J. Smith, and
B. Peters, Volume 1, 347–355.
6



Russell, Lamont, and Melendez
Corner, J. 2004. Swarming reconnaissance using unmanned
aerial vehicles in a parallel discrete event simulation.
Master’s thesis, Air Force Institute of Technology.

Gan, B. P., Y. H. Low, S. Jain, S. Turner, W. Cai, W. J. Hsu,
and S. Y. Huang. 2000. Load balancing for conservative
simulation on shared memory mutiprocessor systems. In
Proceedings of Workshop on Parallel and Distributed
Simulation, PADS, ed. L. Donatiello, S. Turner, and
D. Bruce, 139–146.

Grama, A., A. Gupta, G. Karypis, and V. Kumar. 2003.
Introduction to Parallel Computing. Second Edition
ed. Addison Wesley.

Jiang, M.-R., S.-P. Shieh, and C.-L. Liu. 1994. Dynamic
load balancing in parallel simulation using time warp
mechanism. In Proceedings of International Conference
on Parallel and Distributed Systems, 222–227.

Kadrovach, T. 2003. Communications Modeling System For
Swarm-Based Sensors. Ph. D. thesis, Air Force Institute
of Technology.

Metron 2003. SPEEDES User’s Guide.
<http://www.speedes.com>.

Russell, M. A. 2005. A genetic algorithm for uav routing
integrated with a parallel swarm simulation. Master’s
thesis, Air Force Institute of Technology.

Sun, X.-H. H., and L. M. Ni. 1993. Scalable Problems and
Memory-Bounded Speedup. Journal of Parallel and
Distributed Computing 19 (1): 27–37.

AUTHOR BIOGRAPHIES

MATTHEW A. RUSSELL is a distinguished graduate of
both the United States Air Force Academy the Air Force
Institute of Technology. BSCS 2003 United States Air Force
Academy; MS 2005 Air Force Institute of Technology. His
M.S. thesis research is entitled “A Genetic Algorithm for
UAV Routing Integrated with a Parallel Swarm Simulation.”
His interests primarily include software engineering and
artificial intelligence.

KENNETH MELENDEZ Post Doctorial Researcher, De-
partment of Electrical and Computer Engineering, Graduate
School of Engineering and Management, Air Force Insti-
tute of Technology, WPAFB, Dayton, OH 45433. BS 1963
and MS 1965 New Mexico State University; PhD 1972
Oklahoma State University. His interests include artificial
intelligence, parallel computing, and simulation. His e-mail
address is <kmelende@afit.edu>.

GARY B. LAMONT Professor of Electrical and Com-
puter Engineering, Department of Electrical Engineering and
Management, Air Force Institute of Technology, WPAFB,
Dayton, OH, 45433, USA; B. of Physics, 1961; MSEE,
1967, PhD, 1970; University of Minnesota. His research
interests include: evolutionary computation (genetic algo-
113
rithms, evolutionary strategies), artificial immune systems,
information security, parallel and distributed computation
and simulation, combinatorial optimization problems (single
objective, multi-objective), formal methods, software engi-
neering, digital signal processing, intelligent and distributed
control systems, computational and numerical methods, and
computer-aided design. Dr. Lamont has authored various
textbooks (Multi-objective EAs, Computer Control) and
book chapters as well as over 150 papers on the above
topics. Professor Lamont has advised over 250 MS stu-
dents and 30 PhD students. Dr. Lamont was also an
engineering systems analyst for the Honeywell Corp, for
6 years. His contact information is 937-255-3636, x4718,
<GaryLamont@afit.edu>.
7


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print



