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ABSTRACT 

This paper lays out provocative assertions about major 
challenges for the modeling and simulation community.  
One relates to building M&S for the purpose of assisting 
the search for strategies that are flexible, adaptive, and ro-
bust despite uncertainty.  A key aspect of this search is ex-
ploratory analysis, coupled with selective zoom.  These, in 
turn, require multiresolution modeling with sound models 
(albeit, with uncertain data).  But sound models must be 
adaptive models, since humans are adaptive.  And rigorous 
analysis with adaptive models, such as those involving 
agents, requires new methods and attitudes, as well as new 
tools. 

1 INTRODUCTION 

This paper is organized around the following propositions, 
discussed in turn: 

 
1. Because of ubiquitous and often massive uncer-

tainties, analysis should often discard notions of 
“optimizing” and instead focus on finding strate-
gies that are flexible, adaptive, and robust.  This 
goes beyond the heuristic of finding a strategy 
that is "good enough." 

2. Doing so is best accomplished with a combination 
of exploratory analysis and selective zooming us-
ing sound, mutually informed families of models, 
games, and other sources of information. 

3. The soundness of models often depends of incor-
porating adaptiveness (e.g., through one or an-
other type of agent). 

4. Rigorous analysis with adaptive models requires a 
new set of attitudes and methods. 

 
Those who build models, simulations, and related 

analysis tools can do much to help.  They can:  
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• Design for multiresolution, multiperspective work 
and for use of diverse sources of information. 

• Build tools to facilitate context-dependent aggre-
gation, disaggregation, and calibration. 

• Build in adaptiveness and related explanation ca-
pabilities. 

 
Some of the ideas expressed here have evolved from 

my work over the last two decades.  Others are new and 
less well formed. 

2 PROPOSITIONS FOR AN UPDATED 
APPROACH 

2.1 Demoting the Paradigm of Optimizaton 

The shortcomings of focusing on optimization have been 
noted for the last fifty years.  In the 1950s and 1960s, for 
example, the late Nobelist Herbert Simon introduced his 
concept of bounded rationality, which elaborated the fact 
that in real-world strategic decision making it is not possi-
ble to apply the idealized notion of maximizing expected 
subjective utility because so many of the key inputs to such 
a calculation are uncertain, even deeply so.  He went on to 
suggest that the best we can do is to satisfice, i.e., find a 
strategy that is “good enough,” and that the way real peo-
ple accomplish that often involves heuristics of various 
types. 

Simon’s work dovetailed with some of the discoveries 
of behavioral psychologists, notably Nobelist Daniel Kah-
neman and Amos Tversky, who observed in the laboratory 
that real people use a wide variety of heuristics when mak-
ing decisions.  The early thrust of the Kahneman-Tversky 
work tended to emphasize that the heuristics sometimes led 
to “cognitive biases” and to decisions that are irrational as 
judged by the standards of classic utility-maximizing deci-
sion theory.  Numerous researchers proceeded to seek 
ways of  correcting for these “errors” and attempts have 
been made to introduce debiasing mechanisms in decision 
support systems. 



Davis 

 

Over the last decade or so, it has become increasingly 
evident, however, that not only do real humans tend to 
make decisions in very different ways than envisioned by 
the so-called rational analysis paradigm, so also are there 
virtues in doing so.  First, the "naturalistic" methods suit 
biologically wired-in mental processes; second, they also 
hedge well for the real world in which facts are very sel-
dom so cut-and-dried as asserted in the psychology tests 
that demonstrate the allegedly irrational heuristics at work. 

A synthesis in decision making theory should recog-
nize the virtues of both the rational-analysis approach and 
the naturalistic approach studied by Gary Klein, Gird Gig-
erenzer, and others, and do so with special appreciation 
that real-world decision-support should account realisti-
cally for uncertainty.  Much of this is discussed in a recent 
survey (Davis, Kulick, and Egner 2005), which cites the 
relevant literature, particularly articles by Simon, Kahne-
man and Tversky, Klein, and Gigerenzer. 

Progress has also been made in the theory and practice 
of confronting uncertainty in applied work (Davis, 1993, 
Davis, 2002).  Most recently, the Department of Defense 
has accepted the need for this, shifting to capabilities-
based planning (CBP) precisely because of the apprecia-
tion by Secretary of Defense Rumsfeld that planning built 
around long strings of highly uncertain assumptions makes 
no sense.  The emphasis, instead, should be on strategies 
and plans that are flexible, adaptive, and robust.  It is 
doubtful that Secretary Rumsfeld has ever asked one of his 
generals or staff members whether a higher-level strategy 
was “optimal.”  He has repeatedly asked, however, 
whether uncertainties have been adequately considered.  
This new emphasis is by no means idiosyncratic to Rums-
feld.  Indeed, secretaries of defense have usually thought in 
CBP-like terms, even while their organizations have acted 
to obfuscate uncertainty and create convenient myths and 
routines, such as focusing on plans for two highly specified 
more-or-less-simultaneous major theater wars. 

To be sure, optimization is still profoundly important 
for many problems of operations research and daily life.  
The paradigm shift is recognizing that the style and im-
plicit assumptions associated with optimization are often 
fundamentally wrong-headed when dealing with more stra-
tegic matters, or indeed any matters where uncertainty is 
large, deep, and ubiquitous.  Table 1 draws some contrasts, 
albeit with some exaggeration. 

2.2 Finding Adatpive Strategies 

For the remainder of the paper I will shorten the phrase 
“flexible, adaptive, and robust” to “adaptive.”  How do we 
find a good adaptive strategy? 

It is apparent that to do so we need  some mechanism 
for evaluating the possible outcome of a given strategy 
over a wide range of assumptions—not just one or two 
mathematically convenient parameters, but over all of the 
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Table 1: Contrasts of Paradigm 
Issue Stereotypical Opti-

mizer’s Attitude 
Strategist’s Atti-
tude  

Uncertainty Look for "authorita-
tive data" (whether or 
not valid) 

Confront uncer-
tainty so as to in-
crease odds 

Objective 
of Analysis 

Optimal strategy (for 
narrow set of as-
sumptions) 

Flexible, adaptive, 
and robust strategy 

Precision To be sought Noninterest 
Utility An essential concept 

for optimization 
Contempt, because 
of multiple objec-
tives that are not 
usefully combined  

 
uncertainties that matter.  Furthermore, we need to be able 
to reason about the analysis.  We don’t want to make im-
portant decisions based on some numbers that came out of 
a huge model; instead, we want to be able to reason along 
the lines, “Hmm, it seems that with Option 1 we do well 
for most reasonable values of X and Y, but we fall apart if 
Z’s value is low, which is plausible.  Option 2, on the other 
hand, does almost as well across reasonable values of X 
and Y, but also does much better across all values of Z.  
Option 2 is better.” 

Realistically, our reasoning must revolve around a 
small number of variables—two, three, or a dozen, but not 
tens, hundreds or thousands.  That implies the need for a 
low-resolution model of the problem.  However, such an 
abstracted depiction hides many important matters.  Thus, 
being able to explore the consequences of an option across 
the broad range of uncertainties at low resolution is neces-
sary, but not sufficient.  We also need to be able to zoom 
into more detail, both to understand the implications of our 
high-level reasoning (what are we implicitly assuming 
about more microscopic factors?) and to move from gran-
diose strategy to matters more concrete.  Just as a designer 
uses a low-resolution model to sketch his system, but needs 
more detailed models to define it usefully and well, so also 
should strategic decision making be supported by both 
low- and high-resolution depictions.  Table 2 contrasts the 
value of low and high-resolution models, simplifying as 
though there were only two levels and types of resolution 
(Davis and Bigelow 1998 and earlier references). 

An additional complication is that, whether in exploring 
at low resolution or seeking to zoom for more information, it 
often happens that we need to think about problems “differ-
ently,” i.e., with different variables.  If a military com-
mander shifts his attention to logistics, for example, he may 
find himself having to reason in a different framework, and 
with different variables, than when talking to those focused 
on strike or maneuver.  An even better example perhaps is 
when an acquisition executive consults both bottom-up en-
gineering models and empirical cost models when assessing 
what to expect for a next-generation system. 
8



Davis 

 

Table 2: Value of Low and High-Resolution Models 
Low-Resolution High-Resolution 

Early design Detailed design 
Using low-resolution 
knowledge 

Using high-resolution 
knowledge 

Analysis responding to 
high-level questions 

Narrow, in-depth analysis 
for accuracy, precision, or 
detail 

Reasoning and comprehen-
sion with high-level vari-
ables 

Reasoning and comprehen-
sion in terms of more 
atomic phenomena 

Informing, calibrating, or 
summarizing high-
resolution work 

Informing, calibrating, or 
explaining low-resolution 
work 

Abstracting “big picture” Simulating reality 
 
The result of such considerations is that we need mul-

tiresolution, multiperspective families of models (FOMs).  
Actually, even more is needed, since some of the models 
that may be important are naturally expressed in different 
formalisms (e.g., differential equations versus expert sys-
tems versus closed-form analytical expressions).   Ideally, 
we should have families and the ability to navigate among 
family members even while accomplishing necessary 
changes of representation and formalism. (Davis 2002, 
Dreyer and Davis 2005, Davis, Kulick, and Egner 2005). 

Even this is not enough.  Models, after all, depend on 
input data and their structure depends on beliefs about the 
world.  Where do we get the necessary information?  It 
may be common for those involved with M&S to stick 
closely to their computer programs and officially distrib-
uted data bases, but real information comes in diverse 
forms and is often contradictory.  If our search for a robust 
adaptive strategy is  to be successful, we may need to draw 
on all of the information available.  How do we do so? 

One answer has been the image that organizations of-
ten offer, which involves a putative family of models ar-
ranged in a pyramid, with the models all calibrated bottom-
up, thereby allowing the organization to claim that each of 
its models is rock-solidly based in a deeper model and, ul-
timately, in reality.  Perhaps that would be a useful image 
if the models and data were perfect, but that, of course, has 
nothing to do with reality.   

A wiser course is to recognize that to do a first-rate job 
we should use fragments of knowledge from many 
sources—in different resolutions, perspectives, and formal-
isms.  Our ideal should be something like Figure 1 (National 
Research Council 1997), which emphasizes mutually in-
formed and calibrated models that make use of everything 
from historical accounts (sometimes called anecdotes) to 
hard laboratory or field-test data to theory.  There is nothing 
cut-and-dried about such an image.  Lest this seem unexcep-
tionable, the reader may ask how often he has used more 
than one or two of the types of data on the left side.  In my 
experience, it is a rare individual who does so. 
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Figure 1: Mutual Calibration and Diverse Information 

 
It is, moreover, nontrivial to move among such 

sources of information.  Currently, for example, my col-
leagues and I are building models to inform counterterror-
ism efforts.  We are drawing on the empirical social-
science literature.  That literature, however, tends to gener-
ate regression data on whether, over the last n years, in-
creased levels of development or democratization have 
tended to be correlated with increased or decreased levels 
of terrorism.  The results are complicated by the heteroge-
neity of the data base and related hidden variables.  For ex-
ample, civil wars may have occurred, which focused the 
energy of revolutionaries on something other than terror-
ism.  Or perhaps the issue was less democratization than 
the loss of state control over seditious political activities.  
In any case, the studies are very useful in informing simu-
lations, but not in calibrating them.  Similarly, highly ag-
gregate data on historical battles is often not straightfor-
ward to use when calibrating simulation models of combat.  
Nonetheless, there is information to be gleaned and time 
invested can be worthwhile—especially if it is time spent 
on understanding phenomena rather than just generating 
statistics.  As an example, it took years before researchers 
doing regression analysis on historical attrition data, trying 
to fit it to one or another Lanchester equation, finally came 
to the reluctant conclusion that the battles in question had 
phases with different characteristics.  In a good simulation 
model, by contrast, that is obvious: the type battle and type 
terrain are state variables that change at each time step.  
There may, for example, be an assault phase and a very 
different post-breakthrough phase.  The notion of constant 
attrition coefficients, as in Lanchester equations, can be 
grossly nonphysical.  So also can static regression equa-
tions.  

On the one hand, then, we should milk all the forms of 
information available.  On the other hand, we should not 
attempt to do so naively.  Indeed, a good deal of modeling 
may be necessary to relate empirical information to the pa-
rameters of a simulation model. 
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Table 3 provides an image for thinking about how dif-
ferent sources of information can assist in different ways.  
Every time I rethink the issue, the image changes a bit, be-
cause of various subtleties, but the basic idea is simple:  
simple, low-resolution analytical models (top left) are great 
for agility and breadth (covering the landscape), but poor 
for unveiling phenomenology, especially human behavior.  
In contrast, field exercises (lower right) are reasonably 
good for unveiling phenomenology and especially good for 
revealing certain aspects of human behavior, but are poor 
with respect to agility and breadth.  A theater-level simula-
tion (referred to as a strategic simulation in the table) could 
be rather good for agility, breadth, and even phenomena, 
including human phenomena—but only if it included real-
istic adaptation mechanisms, such as from relatively so-
phisticated agents, as discussed in the next section.  With-
out such mechanisms, however, it would be much weaker.  
Table 3 includes lines for both analysis of historical data 
and paying attention to historical anecdotes and other ac-
counts. 

 
Table 3: Comparing Strengths and Weaknesses of Diverse 
Information Classes 

 

2.3 Achieving Adaptiveness with Agents and Other 
Mechanisms 

If the models and other information sources of our imag-
ined family are to be truly good, in the sense of being able 
to predict outcomes reasonably given a set of inputs (albeit 
uncertain ones), then we must recognize that the systems of 
interest in combat modeling are typically complex-adaptive 
systems (CAS).  This implies the need to represent human 
behaviors and decisions dynamically.  In some instances 
that can be accomplished with submodels built in the style 
of a control theorist, or game theorist, but in many in-
stances it is more appropriate to use one or another version 
of what are called “agents.”  

I understand, of course, that clever analysts can often 
make do with scripted models, and that scripted models 
vary a great deal in their rigidity.  If behaviors are sensitive 
to the right  dynamic state variables, perhaps including 
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some state variables representing limited memory, then ob-
served behaviors can sometimes be realistic enough to pass 
muster.  For example, it doesn't require agent-based model-
ing to have a simulated aircraft veer before running into a 
mountain, or for a simulated sensor detect a weak but re-
petitive signal. 

The fact remains, however, that most of our legacy 
models and some of our newer ones are too rigid in impor-
tant respects, and that analysts are fooling themselves if 
they believe that they can easily make do by merely rerun-
ning the simulation and tuning parameters until the behav-
ior seems reasonable.  That tuning may often be exces-
sively dependent on the detailed situation.  If some 
parameter of the simulation is changed slightly, the 
scripted behavior may no longer be appropriate, thereby 
undercutting the validity of sensitivity analysis and creat-
ing mysterious nonmonotonicities.  More adaptation is 
needed in the models.  

As a facetious  example of what is involved, suppose 
that we have a model of what happens when a dim-witted 
individual piles head-on, repeatedly, into a block of vari-
able hardness.  We might ask how long it takes for the 
dimwit to kill himself, as a function of the block's hard-
ness.  Perhaps the answer is the dark curve in Figure 2. 
However, if we considered the simplest possible adaptive 
behavior (a super-simple agent), the result might be as 
shown by the dashed line:  adding more hardness does no 
cause earlier death, but rather, after a slam or two, even the 
dim-wit backs off.  If this sounds irrelevant, consider clas-
sic piston models of ground-force attrition.  No matter how 
unwise it would be in the real world to continue fighting, 
the losing side grinds away until it disintegrates.  A real 
general would more likely pull back to fight another  day.  
The model could readily be designed to permit a periodic 
decision on such matters, but older models typically treat 
strategy as a fixed input buried in data. 
 

 
 

Figure 2: Implications of Adaptation 
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As another example, consider a serious study some 
years back in which two competing models described how 
the number of enemy aircraft killed in a campaign depended 
on the number of U.S. Patriot batteries deployed.  The first 
model showed a monotonic increase.  In contrast, the second 
model showed a drop in aircraft killed as the number of Pa-
triots increased.  Why?  The reason was that in the second 
model the adversary's strategy for use of air forces was adap-
tive: when U.S. sectors were well protected, the attacker fo-
cused instead on allied sectors.  In this instance, the adapta-
tion was due to a game-theoretic decision model (SAGE) 
developed by colleague Richard Hillestad (unpublished).  
Functionally, it was behaving like an agent. 

What does it take to introduce such modest approxi-
mations of realism?  Essentially, it requires that the sides’ 
reassess their strategy and tactics from time to time and 
that they have alternative courses to take.   One way to ac-
complish that is with agents.  

In theory there are many possible agents types with very 
different logic and programming styles. A number of authors 
have offered definitions of "agent," but I am most struck by 
how different (and parochial) the definitions often are.  An 
excellent comparison of definitions, followed by a useful 
taxonomy is given by Franklin and Graesser (1998). 

Informally, it seems to me that the elementary concept 
of agent is and should be of "an object that acts in behalf of," 
with "object" being either simply a chunk of code or an ob-
ject in the sense of object-oriented modeling.   For example, 
even older theater-level combat models sometimes had sim-
ple algorithms that operated at regular intervals to allocate 
operational ground-force reserves among sectors.  Such al-
gorithms were arguably acting as simple agents in the sense 
of acting in lieu of the humans who would otherwise have 
made decisions interactively.  The game-theoretic SAGE 
model mentioned earlier acted as a theater air commander.  
Nonetheless, neither of these was regarded at the time as an 
agent. Some would argue that "algorithmic" approaches are 
not in the spirit of agent-ness, but that strikes me as some 
kind of technologist's bias.  It reminds me of when, in the 
1980s, some people looked down upon expert-system-type 
artificial-intelligence systems unless they were built in LISP, 
even when some of us discovered that a model built origi-
nally in a LISP-based language could be made 1000 times 
faster and in some ways clearer by reprogramming into a 
more efficient language, typically procedural.   

2.4 Alternative Mechanisms for Adaptiveness 

Let me now describe briefly at least a few very different 
ways of achieving adaptive behavior in military models. 

2.4.1 The RAND Strategy Assessment System (RSAS): 
Complex Agents in a Complex Simulation 

The RAND Strategy Assessment System reached fruition 
just in time (circa 1988) to see the Soviet Union go belly-
1071
up.  It had adaptive logic from the perspective of a theater 
commander.  Its inputs could include theater objectives, 
alternative strategies, tradeoff rules if tradeoffs had to be 
made, and various metrics for assessing how well a given 
strategy was working or was likely to work.  In the RSAS, 
these included a stored library of results from past simula-
tions.  Looking at a few current state variables, and some 
history such as how much mobilization time the sides had 
had before war began, the agent could look at its library of 
past simulations and see that prospects were, say, very 
good, good, marginal, bad, or very bad.  The result might 
cause the agent to change strategies or keep plodding.  Al-
ternatively (but not so usefully in practice), the decision 
model could order up a "look ahead" in which the simula-
tion would be run "inside itself" to assess alternative 
strategies before the best one was chosen. 

These models were called Red and Blue military-
command-level agents, and were motivated in part by the 
artificial-intelligence method known as slotted scripts, but 
mostly by the real-world image of war plans with branches 
and sequels (Schwabe 1992). 

An even higher-level set of agents represented the na-
tional-command levels of Red (Soviet Union and Warsaw 
Pact) and Blue (United States and NATO).  These agents 
were less plan-bound and more focused on objectives, 
strategies, and, within that, issues of escalation, de-
escalation, and termination (Davis, Bankes, and Kahan 
1986).  A composite Green Agent represent third countries, 
which had to decide with whom to cooperate, and to what 
degree.  They could base this on allegiances, bandwagon-
ing, narrow self interest, and other considerations (Shlapak 
1988). 

None of the Red, Blue, and Green agents had much in 
common with the agent-based models in common use to-
day.  They certainly acted in behalf of humans (and could 
be replaced by humans at decision points), sensed the envi-
ronment, communicated, directed resources, and learned 
(in a limited sense). They could also change in the sense 
that we did simulations that included replacement of one 
Red Agent by another, representing a coup.  The agents did 
not, however, include random actions, mutation in the 
usual sense, or general AI-style learning.  Furthermore, de-
spite experiments with AI-style programming, we chose to 
build the agents top-down with well-defined, hierarchical 
logical rules.  Thus, they were quite different from the 
LISP or PROLOG-style agents of the era. 

2.4.2 Current-Day Relatively Simple Agents in Simple 
or Moderately Simple Simulations 

Another way to achieve adaptation is with the kind of 
agent-based modeling that many authors currently have in 
mind when they use that term.  A number of recent refer-
ences provide background (Sanchez and Lucas 2002, Hill, 
Champagne, and Price 2004, Horne and Johnson 2002), 
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citing the seminal efforts of Andrew Ilachinski's ISAAC 
(Ilachinski 2000). 

The current tendency is to equate agent-based model-
ing with models that have simple or only moderately com-
plex simulation, plus agents characterized by simple be-
havior rules informed by observation of the environment.  
The behaviors are often stochastic. Some of the simpler 
agent-models are called distillations because the intention 
is to distil the essence of complex behavior. 

Interestingly, some of those using these agent-based 
models have done so out of frustration with official legacy 
models with which they are to some extent stuck.  Unfor-
tunately, these models are sometimes puzzling because, 
while they may exhibit interesting and plausible behaviors, 
the behaviors are often difficult to understand.  The simula-
tions in which the agents are embedded have uncertain va-
lidity, and the interaction of the agents with the simulations 
sometimes seems contrived or over-aggregated (a criticism 
also of pioneering applications in social systems, such as 
Epstein and Axtell 1996).  In other cases, the simple agents 
and simple simulations seem clearly to provide a good deal 
of legitimate insight, even to those not easily convinced. 

2.4.3 A Contrasting Type of Current Agent-Based 
Modeling 

As a contrasting example of current-day work, consider 
next the Systems Evaluation Analysis Simulation (see Zinn 
2004 or http://www.teamseas.com/). 

SEAS was developed at Aerospace Corp. by Robert 
Weber and others, later with assistance from RAND and 
with support from Sparta.  One of its important purposes is 
to illuminate the value of space and C4IS4 systems as a 
function of related architectures,  context, and concepts of 
operation.  It was designed from the outset for exploratory 
analysis in the information domain.   

SEAS is a rather complex simulation with relatively 
complex agents.  It was designed by analysts with studies 
in mind. As a result, analysis is more nearly straightfor-
ward and less dependent on the complex statistical analysis 
described, for example, in Sanchez and Lucas (2002).  
Even so, interpretation can be challenging. 

2.4.4 The Range of Adaptation Types 

The point of this background is that we need adaptation in 
models, but that there are many ways to achieve it, with 
greater or lesser sophistication, and the adaptivity can be 
coupled to a simple or complex simulation.  We can find 
examples of all of these if we look.  Table 4 gives one such 
list.  Columns differ by the complexity of the adaptation 
mechanism; rows differ by the complexity of the simula-
tion. 
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Table 4: Examples of Model Types 
     Adaptation
     Mechanism 
Simulation 

 
None 

 
Simple 

 
Complex 

Simple Lanchester 
equations 

ISAAC ? 

Moderate Most 
spreadsheet 
models 

MANA, 
EXHALT 

SEAS 
 

Complex Janus, 
most thea-
ter models 

JICM with 
some adap-
tive logic 

Brawler, 
SAGE, 
RSAS, 
Eagle, 
NSS, One-
SAF 

 
Table 4 characterizes the overall model by whether the 

simulation (e.g., the physics) is simple, moderate, or com-
plex, and by whether the model has no adaptation, simple 
adaptations, or complex adaptations.  Lanchester-equation 
simulations are simple and have no mechanism for adapta-
tion.  As with the dimwit above, the losing side continues 
fighting until eradicated.  The early work by Ilachinski 
with ISAAC had a very simple simulation for movement 
and terrain, but also included simple agents.  The result 
was interesting and surprisingly realistic tactics by the 
simulated Marine infantry.  I am not sure of a good exam-
ple of a simple simulation and complex agents, but there 
surely are some.  Turning to the second row, consider that 
most of the spreadsheet-level models that many of us build 
have no adaptation mechanisms.  However simple agents 
can be built.  The EXHALT model (McEver, Davis, and 
Bigelow 2000) includes an agent representing a com-
mander trading off the depth of enemy advance at which he 
can expect to halt an invasion against the losses of his own 
aircraft and pilots.  That "agent" was built without the 
benefit of the convenient structures available in agent-
based programming languages.  In contrast, models built 
with MANA (Lauren, Stephen, and Anderson 2002) em-
ploy an easily used mechanism for building agents and the 
simulations are also simple or only moderately complex. 
The SEAS model mentioned earlier has a moderately com-
plex or complex simulation of space and C4ISR, and mod-
erately sophisticated agents at several levels of detail.  
Turning to the last row, Janus is an excellent example of a 
complex simulation (developed originally by Donald Blu-
menthal and colleagues at Lawrence Livermore National 
Laboratory) with no adaptive behaviors.  RAND’s JICM 
(Joint Integrated Contingency Model) is a global- and thea-
ter-level model that has, e.g., some simple low-level algo-
rithmic agents (e.g., one that decides which sectors to rein-
force) and that can be given higher-level adaptive logic, 
although not all users bother to do so.  Brawler is the Air 
Force’s venerable engagement-level model of air-to-air 
warfare in which mathematician-style algorithms are used 
2

http://www.teamseas.com/
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to create behaviors that pass muster when viewed by pilots; 
SAGE is an undocumented game-theoretic optimizer of 
air-force allocations and apportionments in a theater-level 
model; as mentioned above, the RSAS of the 1980s had 
sophisticated agents representing U.S. and Soviet leaders, 
and NATO and Warsaw Pact theater commanders. Eagle, 
developed for the Army by the Los Alamos National Labo-
ratory and the MITRE Corporation for corps-level combat, 
used expert-system agents for adaptations.  One-SAF is the 
Army’s next-generation entity-level brigade-and-below 
constructive simulation.  It will incorporate a number of 
approved behaviors in entity-level simulation (see 
www.onesaf.org). 

The point, then, is that building in adaptiveneess can 
be done with any of a number of approaches. 

2.5 Achieving Rigor with Agent-Based Models 

One of the obstacles in using adaptive models, and particu-
larly agent-models, has been a set of long-standing atti-
tudes about what is required from models for rigorous 
analysis.  A common imagery is that a model is like a func-
tion with some parameters.  One evaluates the function at a 
base set of parameter values, resets one of the parameters 
to another value (e.g., varying warning time), and recom-
putes.  With a deterministic model, the results are repro-
ducible.  This procedure can be seen as a controlled scien-
tific experiment. 

In this image, agents "cause trouble."  The typical 
complaint is that when agents are present, small changes of 
input can lead to substantially different outcomes for rea-
sons that are difficult to understand, much less evaluate.  
This undercuts the desire for well-controlled, scientific, 
one-at-a-time study of how assumptions change things.  To 
make things worse, some agents are stochastic. 

My own view on this matter is deeply impatient.  It 
seems to me that people have confused convenient with 
scientific.  If in the real world minor changes of situation 
lead to adaptive behaviors resulting in substantially differ-
ent paths being taken, so be it.  The problem, ultimately, is 
that the real world—the system that we are attempting to 
represent—is not linear and its behavior is often not mono-
tonic, at least at higher levels of observation.  If this is so, 
then we should get used to it and think about what consti-
tutes rigorous analysis in this context.  Table 5 may be use-
ful in doing so.  The last column postulates something that 
is currently in short supply: agent-based models with good 
explanation capability. 

The first requirement for rigor is that the cases be well 
defined.  In my view, having agents doesn't change any-
thing in this regard.  Further, reproducibility is equally 
possible if the agents are deterministic.  If they're not, then 
reproducibility should be achievable with enough samples. 
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Table 5: Contrasting Experiments with Models That Do 
and Do Not Have Agents 

Attribute Traditional 
Models (no 

agents) 

With 
Agents 

With 
Agents and 
Explanation 
Capability 

Well defined 
cases 

Yes Yes Yes 

Reproducibility Yes Yes* Yes* 
Monotonic be-
haviors 

Yes No No 

Explainable 
Behaviors 

Yes No Yes* 

Well Behaved Yes** No No 
*But many current agents are stochastic, so that the concept of 
reproducibility is different than with deterministic models. 
**Many legacy models are not as well behaved as myth would 
have it.  See Speight (2003).   

 
Monotonicity is another matter.  Models with agents 

will often exhibit nonmonotonic behaviors.  One generic 
cause of this is that a type of agent will reach a threshold 
and do something different thereafter, or will learn from 
experience and do something different.  The whole purpose 
of the adaptations is to change the course of events (e.g., 
breaking off from a losing battle, or temporarily adopting 
swarm tactics to reduce one's attrition), so nonmonotonic 
trajectories are to be expected.  If they are realistic, then so 
be it.  In some cases, however, the models show unrealistic 
behaviors that may be described as chaotic.  These are 
typically artifacts of imperfect decision rules, as noted by 
Andreas Tolk and Reiner Huber in the 1990s (see 
http://www.unibw-
muenchen.de/campus/presse/hochschulkuri
er/hsk06_99/tolk/tolk.html). 

A key issue is explainability.  Many agent-based mod-
els do rather mysterious things and that is not good for rig-
orous inquiry.  The solution, then, would seem obvious: 
build in the explanation capability!  I don't mean to be flip-
pant, since doing so is a major challenge (Sanchez and Lu-
cas 2002), but the conclusion seems evident.   

As for well-behavedness, that is arguably in the eyes 
of the beholder.  For someone accustomed to linear sys-
tems, then "well behaved" means one thing.  For someone 
interested in the phase transitions of chemistry and physics, 
the discontinuous behaviors are marvelous, as is the dis-
covery that sometimes one can "slip around" the disconti-
nuities to obtain, temporarily, super-heated or super-cooled 
fluids.  Similarly, social scientists—including military his-
torians—have always been interested in how horseshoe 
nails, or discrete examples of brilliance or heroism, can 
have effects far beyond what might naively expect.  Those 
who contemplate effects-based operations, including the 
potential "collapsing effects" of rapid-decisive operations, 
are very much interested in such matters, and very much 
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aware that small things can make a difference.  If prag-
matically oriented, they will also identify regimes in which 
small differences will not have untoward effects. 

Here again it is appropriate to mention the central role 
of exploratory analysis.  In simple linear systems with 
fixed structures, it is possible to understand system behav-
ior with a relatively small number of sampled observations: 
extrapolations and interpolations work well.  That is not at 
all the case for complex adaptive systems, in which not 
only are there many nonlinearities, there are also changes 
in the very structure of the system.  For example, small 
units may combine suddenly for a swarm operation, and 
then disperse.  Or the character of a military campaign may 
change when a different leader takes the helm, or one of 
the combatant parties changes sides.  When dealing with 
such complexity, analysis must invariably involve explora-
tion.  This exploration may involve more than merely 
checking end points. 

3 CHALLENGES FOR PRACTITIONERS OF 
MODELING AND SIMULATION  

Against this background of propositions, let me now sug-
gest what the community of M&S practitioners might re-
gard as important challenges. 

3.1 Designing for Multiresolution, Multiperspective 
Models and Families 

The first challenge is systematically and consistently work-
ing to develop multiresolution, multiperspective models—
both by building such features into individual models and 
by working out the relationships among models within 
what become model families.  If those building models 
have this challenge in mind from the outset, much can be 
done with relatively little additional effort, whereas efforts 
to insert such features after the fact can be difficult. 

In some instances, designing MRM models is straight-
forward.  This occurs when the variables fall naturally into 
hierarchies.  More often, this does not occur because "eve-
rything affects everything else," leading to interconnected 
graphs, rather than hierarchical structures.  Experience, 
however, suggests that hierarchical structures are often 
good approximations, if merely one bothers to look for 
simplifications (Davis and Bigelow 1998). 

The challenge of connecting pre-existing models is 
greater and often requires some reprogramming.  Those 
who have been involved in building model federates are 
well aware of the issues and know that sensible connec-
tions can often be established, but not trivially.   

The vision here is related to the larger ideal of model 
composability, which imagines libraries of models that can 
be assembled easily in plug-and-play fashion.  That vision 
is seriously flawed for subtle reasons (Davis and Anderson 
2004), but a weaker version certainly has merit.  Existence 
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proofs for weaker versions can be found in commercial 
games on one extreme, and in a few laboratories. 

3.1.1 The Special Problem of Low-Resolution Models 

Although I strongly support development of ever-
improving high-resolution models and simulations (e.g., 
Matsumura, et al. 2001), and regard this activity as crucial 
to the future of analysis, that seems to be less problematic 
in organizations than developing good low-resolution 
M&S.  When responsible officials understand the need to 
have low-resolution models for exploratory analysis, the 
common lament is “How do we obtain them?”  From a 
theoretical perspective, the following suggest themselves: 

 
1. Use a big model that was designed to facilitate pa-

rametric exploration, as was RAND’s JICM 
model.  Fairly modest reprogramming of some 
legacy models could produce comparable flexibil-
ity. 

2. Build a new and relatively simple model from 
knowledge of phenomenology and the specific 
problem (something many of us have done with 
spreadsheet-level models of individual missions, 
such as airlifting forces or interdicting a moving 
army). 

3. Generate a statistical metamodel by conducting 
experiments with a trusted high-resolution model 
(something I personally dislike, as discussed be-
low). 

4. Better than (3), generate a motivated metamodel 
by conducting experiments with a trusted high-
resolution model, but only after having specified a 
provisional analytical form based on phenome-
nology and allowing for correction terms if that 
form proves inaccurate (see below) 

5. Build a data base of high-resolution runs and an 
interface mapping low-resolution questions into 
appropriately representative cases in the data base. 

3.1.2 Motivated Metamodeling 

Let me elaborate only on motivated metamodeling (Davis 
and Bigelow 2003), which is akin to what physical scien-
tists have long done in analyzing experiments.   The ana-
lytical form is postulated, based on a theory believed to be 
at least reasonably accurate, some room is left for correc-
tion factors and terms, and then the statistical machinery is 
applied.  If the postulated form was good, then the statisti-
cal analysis establishes coefficients and the model is ready 
for explanation and drawing insights.  If it is not so good, 
then the corrections are significant, suggesting the need for 
iteration.   

This approach can be particularly important when de-
scribing systems or systems of systems that have multiple 
4
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individually critical components.  In that case, the natural 
analytical form may have a multiplicative form to enforce 
the point that failure of any critical component leads to 
failure overall. The effective of precision fires, for exam-
ple, may depend on having excellent C4ISR and a delivery 
platform and a precision weapon.  A failure of one cannot 
be compensated for by higher quality in the other. Such 
considerations should be a major element of capabilities-
based planning (Davis 2002). 

3.2 Context-Dependent Aggregation and 
Disaggregation 

A second next challenge is building the methods and tools 
enabling analysts easily to construct context-dependent ag-
gregations and disaggregations.  Currently, aggregations 
are often accomplished by nothing more sophisticated than 
using an allegedly representative high-resolution case to 
evaluate the lower-resolution variable.  An exchange ratio 
for a force-on-force engagement, for example, might be 
based on what some higher-resolution model predicts, as-
suming a particular configuration of attacker and defender 
consistent with the force ratio at issue.  This is mathemati-
cally indefensible except in special cases.  Conceptually, 
the nominal value of a low-resolution variable expressed as 
a parameter should be some kind of average over higher-
resolution scenarios and a higher resolution function.  To 
use the same example, one should consider an entire distri-
bution of attacker and defender configurations consistent 
with the low-resolution force ratio, and an entire distribu-
tion of assumptions about high-resolution details.  What 
distribution should be used is highly context dependent.  
For example, if air-to-air combat, if one side has informa-
tion superiority, then the engagements will be strongly 
skewed toward configurations favorable to that side.  In 
particular, its aircraft will not be attacked from the rear.  If 
one combines this with the orientation dependence of radar 
cross sections (including stealthy cross sections), the re-
sulting exchange ratios can be dramatically different from 
those of a simple average over orientations.  

What is wrong with just using a "representative" case?  
The answer is that there is no such thing.  Depending on 
context, the best single case to use might be a conservative 
case in which the enemy gets the breaks, an optimistic case 
in which one's information superiority is credited with 
making the breaks, or a neutral no-one-has-advantage case. 
A classic example from the Cold War involved air-to-air 
combat.  If the purpose was to appreciate the leverage of 
long-range missiles, then one might assume a configuration 
of long-range engagement of one friendly versus n  enemy 
aircraft.  However, if one were concerned about cases in 
which rules of engagement might require visual detection, 
then n-on-n dog fights became more relevant, with drasti-
cally different results.  Such issues should not have to be 
discovered only by clever analysts.  Models and the tools 
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that accompany them should make it easy to recognize the 
issues and work the different cases. 

3.3 Sophisticated Agents and Explanation Capability 

The last challenge area involves the issue of agents and ex-
planation capability.  The challenge for those doing agent-
based modeling, I believe, is to move toward more sophis-
ticated agents in more sophisticated simulations, and to 
build in explanation capabilities so that it is straightforward 
to follow the cause-effect chains.   

This can be done, but it is not trivial.  Indeed, it is one 
of the unsolved problems of artificial intelligence.  How-
ever, much is possible if ambitions are limited.  "Explana-
tion" does not always have to be of the ultimate variety.  It 
can be enough merely to follow chains of evaluations such 
as: 

 
Because X was X' 
And Y was Y' 
And Z was Z' 
Q was evaluated as Q1 
 
If the logic determining Q's value is tabular, then this 

explanation is straightforward and, in a sense, all there is.  
In other case, explanation would be much more complex, 
as in "because the horseshoe nail was lost, the horse was 
lost; because the horse was lost, ..."  I have no generic solu-
tions here, just the challenge.  Until the challenge is met, 
there will continue to be resistance to agent-based models 
for analysis. 

4 CONCLUSIONS 

In conclusion, I have attempted in this short paper to lay 
out some provocative assertions and a set of corresponding 
challenges for the modeling and simulation community. 
The last decade's progress in modeling and simulation has 
been quite impressive and I would hope that the same will 
be said ten years hence. 
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