Proceedings of the 2005 Winter Simulation Conference

M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, eds.

AGENT-BASED SIMULATION FOR SOFTWARE PROJECT PLANNING

David Joslin
William Poole

CSSE Department
Seattle University
Seattle, WA 98122, U.S.A.

ABSTRACT

Estimates of task duration and resource requirements in
software engineering are notoriously inaccurate, and as a
result effective project management often must be very
dynamic. In response to new information or revised esti-
mates, it may be necessary to reassign resources, cancel
optional tasks, etc. Project management tools that make
projections while treating decisions about tasks and resource
assignments as static will not yield realistic results. In this
paper we describe some preliminary attempts to adapt a
simulation-based planning algorithm developed for plan-
ning experimental activities of Mars rovers to the problem
of planning for software project management. Simulation
techniques offer the potential for modeling the way agents
behave in project development, and the way a manager
might adapt the project plan based on the project status at
future points, resulting in a tool that more accurately reflects
the realities of software project management.

1 INTRODUCTION

Effective project management is difficult and complex.
Tasks of various types must be assigned to resources (includ-
ing human resources) with different characteristics, taking
complex dependencies, constraints and uncertainties into
account, attempting to meet goals related to costs and time.
The complexity and nature of project management make
the use of simulation techniques an obvious choice. We
can simulate the characteristics of the agents involved, the
effects of external events, uncertainty about the duration of
tasks, and so on.

The most straightforward application of simulation to
project management is to simulate the application of a project
plan to see how uncertainties about task duration, etc., affect
the outcome. No matter how carefully we simulate the
various elements involved, however, the simulation will be
unrealistic if the plan is static.

1059

Project management must be very dynamic because
projects are very dynamic. An effective manager evaluates
new information as it becomes available and, when neces-
sary, modifies the current plan to adapt. Simulation of the
consequences of an initial set of decisions, treating those
decisions as static, is therefore unrealistic. At the same
time, it is infeasible to anticipate every possible combina-
tion of future events and plan responses in advance. We
can’t simulate dynamic project management this way.

Our objective in this research is to extend some Artificial
Intelligence (AI) planning techniques that have been recently
developed for planning activities for Mars rovers (Joslin,
Frank, Jonsson, and Smith 2005). A key consideration there
was the desire to increase the autonomy of Mars rovers,
or other future planetary rovers. In that respect the two
problem domains are very different. If these algorithms can
be applied to project management, their purpose won’t be
to take control away from the manager but rather to assist
the manager in decision-making.

What the domains have in common is a high degree
of uncertainty, and the need to adapt any plan to current
circumstances as new information becomes available. In
both cases it is infeasible to anticipate every possible future
combination of events. For the rover planning work, we
search a space of plan strategies, and use simulation to eval-
uate strategies. A strategy is not a static set of commitments,
but rather a representation of high-level considerations that
can be used to guide dynamic decision-making during sim-
ulated or actual execution. For planning experiments for
a planetary rover, we implemented a simple strategy that
identified key locations in order to guide the path the rover
would take and that set parameters to control opportunis-
tic decision-making during execution. More generally, the
strategy can be thought of as setting priorities; for project
management the analogous approach might include prior-
itizing tasks and resources. These priorities would guide
decision-making during simulation, such as decisions about
whether to reassign resources from one task to another in
response to revised estimates.



Joslin and Poole

Finding effective strategies can potentially be of great
benefit to a manager by helping provide better risk as-
sessment. Simulation of a static plan will not distinguish
uncertain outcomes that can be easily accommodated by
relatively small adjustments of the plan from uncertain out-
comes that cannot. Simulation of a reasonable strategy for
dynamically adapting plans can better reflect the way a
manager would actually respond to change, and thus better
uncover the critical issues in project planning. We don’t,
of course, claim that we will be able to create Artificial
Intelligence algorithms that would be competitive with good
managers, but if we can simulate reasonable responses to
dynamic situations then we can increase the accuracy of
the simulation.

We stress that this work is highly preliminary. This
paper outlines our research agenda, and explains the reasons
we are optimistic about being able to apply these ideas to
the domain of project management.

2 SIMPLE EXAMPLES

This section describes a few simple examples that illustrate
ways that uncertainty can make static decisions inefficient.

2.1 Resource Allocation

Suppose that in a software development project we have
two tasks, T1 and 72, both estimated to require six to twelve
man-weeks of effort. Further suppose that they both are
predecessors of another task, 73, and that both must be
completed before T3 can be started. If either 71 or 72 is
on the critical path because of the relationship it has to 73,
then they both must be on the critical path. Consequently,
we might divide available resources evenly between them.

Of course, the estimates may have been wrong. Suppose
that after three weeks have passed, it has become clear that
T1 is relatively easy, and its estimate is revised so that we
now expect it to require an additional two to four more
man-weeks. On the other hand, task 72 has turned out to
be difficult, and its revised estimate is now that it will take
six to ten additional man-weeks.

If we currently have two developers assigned to each
task, then based on the revised estimates we might want
to consider moving one developer off of the first task and
onto the second. That decision is not automatic. Increasing
the number of developers from two to three isn’t always (if
ever) going to decrease the duration of that task proportion-
ately. The “mythical man-month” problem is well-known,
and there are also costs involved in the reassignment itself
because of the time that will need to be spent bringing the
reassigned developer up to speed on the new task, for ex-
ample. Nevertheless, the resulting disruption may be worth
the benefits of this adjustment of assignments and, if it is,
a good manager will make that change. A simulation that

1060

assumes that the initial assignments will be maintained no
matter how the uncertainties in the task durations play out
is obviously going to be a flawed simulation.

2.2 Task Selection

Some software development projects have both a “core” set
of objectives that must be delivered by a deadline no matter
what, plus some additional objectives that are optional but
desirable. For example, if a retail web site is developing
web pages for a Christmas ad campaign, then having the
core functionality for those pages delayed until after the
Christmas shopping season is over would obviously make
the project a failure. Time permitting, there may be any
number of additional objectives that would be nice to have,
but that are not absolutely necessary.

An initial schedule may appear to allow for all of the
mandatory tasks, plus some number of optional tasks, but
inaccurate estimates or unexpected events may force the
manager to reassess the selected set of optional objectives.
Underestimated requirements may require that optional tasks
be sacrificed to ensure that the core functionality is completed
on time. A simulation that does not reflect this contingency
would be unrealistic, predicting project failure in scenarios
for which it may be possible to modify the plan and ensure
success.

Of course both of these examples are too simple to be
interesting, but they illustrate very real effects of uncertainty
that can be found embedded in large-scale real-world project
planning.

3 BENEFITS OF SIMULATION

The motivation for wanting to incorporate simulation into
project planning is clear. Simulation offers the possibility
for representing the complexity that is necessary for realistic
reasoning about a project, including the inherent uncertainty.
For example, we can represent task duration as a probability
distribution, given the current resource assignments, and use
Monte Carlo simulation to get an estimate of the expected
outcomes. We can represent uncertainty about resource
availability, due to illness and other factors.

Employees are not interchangeable, and considering
the individual characteristics of these resources can be very
important to good project management. Employees will
differ in their skill sets and levels of experience, of course.
They can also differ significantly in the amount of time it
takes them to “come up to speed” on a new task, differ on
how well they can balance their time across multiple tasks,
differ on whether they work most effectively individually
or in small groups assigned to a task, and so on. Expected
availability may differ from person to person. For example,
the more experienced someone is, and the longer they have
been with the company, the more likely it may be that they



Joslin and Poole

could be pulled away from a project to address a crisis
elsewhere in the company.

Resources are even less interchangeable after work on
a task has begun. Reassigning someone from one task
to another, or adding an additional resource to a task after
substantial progress has already been made on it, will usually
be inefficient in the short term. It takes time to become
familiar with the work done up to that point, and the people
currently working on the task may need to divert some of
their time to helping the new person become productive on
that task.

Simulation offers the potential for representing the com-
plexities of a software development project, the inherent un-
certainties, and the individual characteristics of the agents
involved and how they can be expected to affect the state of
the project. However, as we have pointed out, simulation
based on a static set of resource assignments, static estimates
for task requirements, and static decisions about optional
tasks is very unrealistic because as progress is made on tasks,
uncertainties are reduced and revised estimates, better or
worse, will often motivate revisions of the project plan. In
the next section we discuss an approach that addresses these
concerns.

4 STRATEGY-DRIVEN SIMULATION

Some AI planning algorithms build contingent plans that
check conditions and branch accordingly (Ghallab, Nau,
and Traverso 2004). For example, we could imagine a
contingent plan that says that if the estimated completion
of task 72 slips beyond a certain date, we want to reassign
a certain programmer from task 77 to task 72. Where a
relatively small number of highly-critical conditions can be
identified, this can be an effective approach. As the number
of branch points in a contingent plan grows, however, the
size of the plan, and the time required to generate the plan,
can grow exponentially. Furthermore, the more complex the
simulation, the more difficult it will be to identify simple
branch conditions.

Rather than searching the space of contingent plans, we
propose to search the space of plan strategies. A strategy is
defined relative to a decision-making procedure, such that
the strategy guides that procedure in a reasonable direc-
tion without requiring extensive search. We can think of a
strategy as identifying key factors from a global perspec-
tive. The critical path in a project, for example, captures
something important about a project when we are analyzing
static project plans. When the plan is dynamically adjusted
in response to new information, the notion of a critical path
is too simplistic.

At an abstract level the project management problem
has some strong similarities to the Mars rover experiment
planning problem (Joslin and Smith 2005)(Joslin, Frank,
Jonsson, and Smith 2005). The Mars rover problem was

1061

modeled after current rovers and expectations of future
rovers. More experiments are desirable than time, energy
and other resources allow. Experiments are assigned utility
values that reflect their relative importance, and the objective
is to maximize the total utility of the experiments that we
complete within a given time frame. Various constraints
must be satisfied in order to achieve an experiment, possibly
including location (i.e., an experiment may require that the
rover be adjacent to a particular rock) and time (i.e., an
image may be desired with sunlight from a certain angle, so
the experiment may be required to be performed between
certain hours of the day).

The duration of an action performed by the rover cannot
be known precisely in advance. For example, the time that
it takes to drive from point A to point B may depend on
the terrain, soil consistency, navigation difficulty, and other
factors. The only way to plan out all of the rover’s actions in
advance would be to use the worst-case estimates, resulting
in an inefficient plan because the rover will need to sit idle
whenever an action takes less than the worst-case time. We
might construct a contingent plan, but as noted earlier this
is practical only when the number of critical branch points
is relatively small.

In (Joslin, Frank, Jonsson, and Smith 2005), rather
than searching the space of possible plans or contingent
plans, we searched a space of plan strategies. A strategy
consisted of a set of weights and other information that
reflected the “big picture” priorities that needed to be taken
into account in order to achieve high-utility results. During
execution a strategy would guide opportunistic decision-
making. Computational resources on a rover are likely to
be limited, but the computationally intensive effort goes into
identifying an effective strategy. Applying that strategy is
quick. At execution time, rather than trying to analyze the
long-term implications of a decision, the strategy is assumed
to reflect those long-term considerations, and a decision is
made based on the priorities defined by the strategy.

After driving from point A to point B, for example, the
rover would look at the current status — the time, energy
available, etc. —and the experiments that could be performed
next, and apply the strategy to decide whether to perform
one of those experiments or to drive to a new location. If the
drive was relatively quick then we may have the option of
performing an experiment that would not have been feasible
(due to a temporal window constraint on the experiment, or
due to having less energy available after a longer drive) if
the drive had taken longer. The strategy determines whether
it seems more promising to perform that experiment, or to
forego it because higher-utility experiments are likely to be
available further along the rover’s path, as determined using
simulation.

The project management problem is similar in that we
cannot know in advance exactly how long it will take to
perform a task, and in a realistic setting therefore cannot



Joslin and Poole

know in advance what resource assignments we will want
to have at some future point, what optional tasks we might
want to pursue or abandon, etc. We propose to adapt the
strategy-based approach. A strategy in this case would
need to identify priorities and factors that should guide
decisions about changing the project plan. For example, if
the estimate for a task is revised upwards, as often happens, a
good strategy should reflect the degree to which it is critical
that resources be added to that task even if that means
sacrificing other optional tasks. The simulation would then
change (or not change) resource assignments accordingly.

A key difference between this domain and the rover
domain is that the goal with rover experiment planning was
increased autonomous operation. A strategy in that case
would need to be effective at making reasonably good deci-
sions across the range of likely outcomes for the operations
performed by the rover. Certainly a good manager would
never turn over project management decisions to software.
Instead, the goal is to provide a decision-support tool. Con-
sequently, a strategy for this domain only needs to reflect
some reasonable approximation of the priorities that a man-
ager might apply in dynamically adjusting a project plan.
To the extent that it does so, the resulting simulation and
analysis of risk factors, etc., can be much more realistic,
and therefore more useful to the manager.

5 SEARCH FOR STRATEGIES

Strategies are evaluated by simulation. Given a set of
resource assignments we want to use Monte Carlo simula-
tion based on probability distributions defined for uncertain
outcomes to generate a possible “next” world state. The
granularity of that simulation would depend on the nature of
the project. In our examples below we simulate one week
of activity at each step, but that granularity could be larger
or smaller depending on the characteristics of a particular
project.

Part of the world state will be estimates about the future,
relative to that world state. These estimates are what the
strategy must use in order to decide whether and how to
modify the current plan. Obviously it would be unfair
for the strategy to be based on infallible estimates of the
simulated future, so just as initial estimates are uncertain,
when we simulate the revision of an estimate that revised
estimate should also reflect realistic uncertainty.

We must execute multiple simulation trials to estimate
the probability of various outcomes. We can estimate the
expected utility using whatever definition of utility best
reflects management objectives. We could be trying to
minimize some cost calculation, minimize lateness if we
have a deadline, or some combination of these and/or other
factors. The “fitness” of a strategy is the expected utility
estimated by this simulation.

1062

We can apply a variety of Al optimization algorithms to
search for strategies with high fitness values. For the rover
planning experiments we used a simple genetic algorithm,
and a similar approach should be effective here as well.

6 IMPLEMENTATION

Here we describe the current state of an on-going imple-
mentation. The purpose here is primarily to illustrate our
approaches to resolving practical implementation issues, and
to discuss intended directions for further implementation.

We defined a simple project consisting of both manda-
tory and optional tasks, based very loosely on a real-world
example of a project involving the implementation of a
Christmas ad campaign for a retail web site. In the partic-
ular problem instance discussed below, we have a team of
eight developers, three mandatory tasks and eleven optional
tasks, and a planning horizon of twelve weeks. The manda-
tory tasks must all be completed within that period in order
for the project to be considered successful. Additionally, it
is desirable to complete as many of the optional tasks as
possible, so long as the mandatory tasks are not jeopardized.

6.1 Tasks

The “size” of a task is defined in work units. A work unit is
equivalent to one man-week, for a typical worker familiar
with the task. During startup phase a worker contributes
to the task at a reduced rate. Currently we simplify this
to a factor that reduces a developer’s contribution during
the first week in which they are assigned to a task. More
realistically, this startup phase could be longer or shorter
than one week, depending on how quickly the developer
learns, how easily they adapt to new tasks, etc. Having too
few or too many workers assigned to a task should reduce
efficiency; for now we limit the number of workers that
can be assigned to a task, with a maximum of either two
or three depending on the task.

The startup penalty is assessed every time a worker is
added to a task. If we were to remove a worker from a
task (diverting them to something more urgent, until it is
complete, for example), then add them back to the original
task, the penalty would be assessed again. This is intended
to reflect the fact that shifting assignments frequently is very
inefficient, and a plan that requires frequent reassignments
is unlikely to be an effective plan.

The startup period is not intended to reflect a learning
curve period during which the worker learns a new skill. This
should be represented by an explicit training period, after
which the worker’s new skill is reflected in the parameters for
that worker. Ideally a simulation would allow for strategic
decisions such as allowing time for training or sending
someone to training classes in order to make them more
valuable to the project once the training is complete. Hiring



Joslin and Poole

developers under temporary contracts would be another
example of an option that may be available to a manager, and
that may be important for risk mitigation. A strategy could
reflect the tradeoffs of time and cost involved in deciding
whether to augment a team with temporary contractors, so
that this contingency could be considered in the simulation.

Currently we assume that developers are only assigned
to one task at a time. We would want to allow the possibility
of a resource being assigned to multiple tasks, but with
some penalty factor applied to the worker’s contribution
level based on the number of tasks. This factor could
be an individual characteristic of a developer, since some
developers are much better at dividing their time effectively
than others. It should probably also depend on the types
of tasks involved.

6.2 Resources

The only resources currently represented are the software
developers, and these are the agents in the simulation. The
individual characteristics of those agents represented in the
current simulation are the probability distribution of their
contribution to the assigned task in any given week, and
a factor representing how readily they can be expected to
become fully productive on a newly-assigned task.

The contribution is represented as a uniform distribution
over a specified range. A value of 1.0 represents the weekly
contribution of a “typical” developer, once they have become
familiar with the task. The minimum and maximum values
were selected randomly during problem generation, resulting
in a variety of characteristics. For example, one developer
might contribute at a relatively low rate, but contribute at that
rate very dependably. Another might contribute at a much
higher rate some weeks, but with a high degree of variability.
This sort of variation might be due to temperament and/or to
other recurring responsibilities that require the employee’s
attention.

The startup factor represents the fact that we cannot
expect to assign a developer to a new task and have them
contributing at full capacity from the first day. On the
other hand, some people learn more quickly than others.
As described above, each resource has a startup penalty,
applied to the first week after assignment to a task. If the
penalty factor is 0.5, for example, then during that first
week they are assumed to contribute at half of their normal
rate.

A much richer representation of the individual charac-
teristics of resources is desirable. Skill sets, for example,
should be matched to task types, and the expected contri-
bution of a developer is unlikely to be the same across all
types of tasks.

1063

6.3 Simulation and Uncertainty

The granularity of simulation is one week. At the beginning
of each week we assign resources to tasks. We then simulate
the contribution of each resource to the assigned task (if
any), and then make new staffing decisions at the beginning
of the next simulated week. Staffing decisions can depend
on the current best estimate of required time to complete
the task with some hypothetical staffing.

We have an initial estimate of the work units for a
task. The estimate is a range, not a single value. When
a simulation begins, we decide what the actual number of
work units will be for that simulation run, and define the
estimate range around that. The actual (simulated) value
will fall within that estimate range — i.e., we assume that the
estimate is valid — but the size of that estimate range, and
where the actual value falls within that range, are random.

During the simulation we don’t want to use the original
estimate after a task has been partially completed. As
progress is made on a task, hopefully we get a better idea
of how hard that task is turning out to be. We don’t want
to use the actual value selected for the simulation, because
that would assume perfect knowledge about the future. We
also don’t want to have the estimate converge gradually
upon the simulated value, because that would be unrealistic
and might risk “leaking” information about the future, i.e.,
the rate of change in the estimate could be extrapolated to
make an accurate prediction about the future.

What we want is to simulate the revision of estimates.
Task estimates tend not to change gradually, and more often
than not they change at a point fairly close to the original
estimate, i.e., it becomes obvious that the time remaining is
not sufficient, and at that point the estimate is revised. The
revised estimate is itself unlikely to be exactly correct. To
model this we randomly select a point prior to the original
estimate, with a preference for points closer to the original
estimate. When that much work has been accomplished
on a task, we revise the estimate based on the remaining
actual (simulated) number of work units, again defining a
randomized estimate range around that value. We again
define a trigger point at which the new estimate will be
revised. As we get closer to completion of a task, the error
in the estimates decreases, which is as it should be.

6.4 Strategy

Resource allocation decisions are based on a rough approx-
imation of the probability of successful completion of a
task, given the current resource assignments and the time
remaining before the deadline. To calculate this estimated
probability we use the mean expected contribution of each
assigned resource (ignoring the startup factor for now), and
look at the range of estimates for the required work-units.
Assuming a uniform distribution across that range, we can



Joslin and Poole

estimate a probability of completing the task prior to the
deadline.

We have defined a very simple strategy consisting of
three threshold values. One is the required probability of
completion for mandatory tasks. We assign resources to a
mandatory task until its estimated probability of completion
exceeds the threshold, or we reach the limit on the number
of resources that can be assigned to that task, or no more
resources are available. If necessary, resources can be
preempted from optional tasks. In effect, the higher the
value for this threshold, the less initial risk we are willing
to take, based on the current estimates. The less initial risk
we are willing to take, the fewer resources we will be able
to assign to optional tasks at that point.

Once resources have been assigned to mandatory tasks
we look at the optional tasks, with a preference for tasks with
ahigher “utility rate,” defined as the ratio of the task s’s utility
to the mean of the work requirement estimate range. Two
threshold parameters guide resource assignment decisions
for optional tasks. First, we attempt to assign resources to
a task until it’s probability of completion estimate exceeds
one threshold. If that turns out not to be possible we may
try to complete that task anyway. The second threshold
related to optional tasks sets a minimum acceptable estimate
of the probability of completion. If we cannot assign
enough resources to exceed that threshold, or if revised
estimates cause us to fall below that threshold and we cannot
add resources to raise the probability above it again, then
we abandon that optional task and make those resources
available for other tasks. Resources are only preempted
from optional tasks to satisfy mandatory tasks, never to
improve another optional task.

This algorithm for resource assignment is executed at
the beginning of each simulation period. This algorithm
is a simple starting point that can obviously be improved.
For example, it might make sense to abandon an optional
task and preempt those resources for another optional task
if both have relatively low estimates of their probability
of success, i.e., we may have a preference for maximizing
the probability of one successful optional task rather than
continuing both and risking having both fail. We also do
not currently allow preemption from a mandatory task to
another mandatory task, but clearly there are times that this
would make sense. The proximity of the deadline is also a
factor that should be considered in these decisions.

More importantly, this strategy implementation is too
simple. We have in mind a strategy that does a better
job of identifying task priority than the current probability
estimate. Insimilar algorithms, priorities have been assigned
to individual tasks (Joslin and Clements 1998), or weights
have been defined that allow priorities to be calculated
dynamically (Joslin, Frank, Jénsson, and Smith 2005), and
these approaches could also be combined. We also want
to consider resource prioritization. Currently we use the

1064

average contribution of a resource to decide what resource
to select, but better prioritizations would be possible.

7 EXPERIMENTAL RESULTS

Our simple simulation can apply a strategy (the three thresh-
old values) over the weeks within the planning horizon. We
run multiple simulation trials with randomized values for
the actual workload requirements, the workload estimates,
the estimate revisions and the points at which those revi-
sions occur, and the weekly contribution of each resource
to its assigned task. Resource preemption occurs when
the strategy indicates that it should. The output of each
simulation run tells us whether all of the mandatory tasks
were achieved, the utility achieved for optional tasks com-
pleted, and the number of resource preemptions (if any)
that occurred. Multiple simulation trials give us an estimate
of the probability of project success (all mandatory tasks
completed), and the expected utility when successful.

We ran simulations varying the three parameters sys-
tematically across the range of possible values, with and
without preemption from optional tasks to mandatory tasks.
For each set of parameter values, 100 simulation trials were
run.

With resource preemption allowed, most parameter set-
tings (86%) avoided project failure across all simulation runs,
and the worst parameter settings had an estimated risk of
project failure of 2% or less. Across all settings and all
simulation runs, 90% of the time the project completed all
three of the mandatory tasks and two additional optional
tasks. Ten percent of the time only one optional task was
completed, and small fraction of a percent of the time three
optional tasks were completed.

In contrast, without allowing resource preemption, 98%
of the parameter settings resulted in a prediction of the chance
of project failure of 5% or worse, and 81% resulted in a
chance of project failure of 10% or worse. Three percent
of the settings resulted in failure rates of 20% or more.

When resource preemption was allowed, it was not
necessary to switch a resource from one task to another
very often in order to achieve the higher probability of
success. The average number of resource preemptions over
the life of the project ranged from 0.1 to 0.9, across the
various parameter settings, with a median of 0.7. In other
words, even in the worst case we never averaged more than
one resource preemption over the life of the project. As
noted earlier, the simulation was designed to recognize that
reassigning a developer from one task to another does not
mean that they can immediately start contributing to the
new task at full capacity.

An algorithm such as a genetic algorithm could be
used to search this space of parameters (or a more realistic
parameter space that includes some notion of prioritizing
tasks and/or resources). For example, we might search for



Joslin and Poole

parameter settings that maximize the chance of success on
mandatory tasks, maximize the expected utility of optional
tasks when all mandatory tasks are achieved, and minimize
the expected frequency of resource preemption.

The current problem is too simplified to be of any prac-
tical interest, so further analysis of the results serves little
purpose. The code would also need to be improved substan-
tially before we could meaningfully claim that it reflects
“intelligent” decision-making about resource preemption,
accurate estimates of the probability of task completion,
etc. We show these results of our initial investigation only
as a way of illustrating some ideas about the direction we
intend to take with this research.

8 RELATED WORK

The idea of using simulation methods in project manage-
ment has been around for many years. Van Slyke (Van
Slyke 1963) is widely cited as the first to use simulation for
project network analysis. That and other early work looked
at the use of simulation with PERT and related techniques
(Hebert 1979). Uncertainty about task duration was mod-
eled, and resource assignments were made using heuristics
for “resource leveling” when the tasks eligible for execution
required more resources than were available.

More recent work has extended that approach in a variety
of ways. A fairly recent survey is found in (Pich, Loch,
and De Meyer 2002). In looking at Al techniques applied
to project management, the authors point out a distinction
between “conditional planning,” in which contingencies are
built into the plan, and “execution monitoring,” in which
a static plan is executed, but if the plan fails at any point
then the current plan is discarded and replanning occurs.
We would describe our algorithm as not quite fitting either
category. We do not use replanning in the simulation,
but instead the strategy is applied based on the simulated
conditions that hold at each point. On the other hand, a
strategy is not a conditional or contingent plan in the usual
sense, because it does not itself spell out any decisions. A
strategy only implies those decisions in conjunction with
the execution algorithm.

Another recent example is (Antoniol, Di Penta, and
Harman 2004), in which simulation is used not only to
represent the inaccuracy of task estimates, but also the
possibility that a task may need to be abandoned, or that a
task may need to be revisited at some point after it has been
considered complete. Their research has some similarities
to the work we have described in this paper. They use
a genetic algorithm (GA) to search for what we would
describe as an effective prioritization of tasks. They don’t,
however, appear to model any individual characteristics of
the agents in the simulation, nor do task abandonment and
rework represent management decisions in the simulation
based on revised estimates.

1065

The best-known commercial project management prod-
uct is Microsoft Project (Microsoft Corporation 2003). Al-
though that product does not directly allow for representing
uncertainty about tasks, or for using simulation, a number
of add-on products provide these capabilities. One example
is SimEstimator (Orlando Software Group, Inc. 2004), a
tool that allows project plans to be simulated, with uncer-
tainty on task duration and other variables. The simulation
appears to assume a static plan, however.

We are not aware of any commercial product that simu-
lates the kind of dynamic decision-making we are interested
in modeling. In general, the way that the most commonly
used project planning and management software is used in-
volves defining a list of tasks and the predecessor/successor
relationships between them, assigning task durations (weeks,
or man-weeks, for example), and assigning resources to
tasks. Analysis tools may then provide feedback on that
plan, with or without considering the various elements of
uncertainty that are unavoidable in real projects, but the
state of the art appears to be analysis and/or simulation that
assumes a static project plan.

9 FUTURE DIRECTIONS

In this paper we have outlined a direction for future re-
search, adapting some algorithms that show promise for
using simulation techniques in planning under uncertainty
and applying those algorithms to software project planning.
The current implementation is not sufficiently accurate to
be of practical interest. To be of practical interest, not only
will the accuracy and detail of the simulation need to be
increased, the algorithm would also have to be embedded
in a decision-support tool. Unlike some other domains,
such as the Mars rover experiment planning domain, the
point of using simulation to support software project man-
agement is not autonomous operation. A good manager
will not want to just receive a plan that defines a set of
resource assignments, for example. Instead, they will want
a tool that provides them with insight into what factors
they should consider. Good parameter settings, particularly
when the current simple approach is augmented to reflect
prioritization of tasks and resources, need to be translated
into qualitative guidelines about what aspects of a project
seem to be the most critical.

Simulation can be particularly useful in this respect if
it allows a manager to focus on critical scenarios. If search
is used to find an effective set of prioritizations, a manager
might then want narrow the focus to the simulation runs
with those prioritizations in which the results were least
successful. Aggregate data about the tasks, task/resource
assignments, etc., that caused those particular simulation
trials to turn out badly may be of interest. Looking at the
events in individual simulations may be interesting to a
manager as well. Seeing the sequence of events that let to a



Joslin and Poole

poor outcome may help a manager anticipate critical condi-
tions earlier, or may suggest ways in which the simulation
model needs to be refined.

Our intention is to continue developing this approach
by implementing a more detailed and realistic simulation, to
experiment with a richer representation of a “strategy,” and
to apply this technique to more realistic data. We have also
identified a possible source of detailed historical project
management data, and hope to use that to help validate
our approach. We look forward to furthering these initial
steps toward using simulation in decision-making support
for software project management.

ACKNOWLEDGMENTS

The authors would like to thank Jeff Gilles for helpful
discussions of this material.

REFERENCES

Antoniol, G., M. Di Penta, and M. Harman. 2004. A robust
search-based approach to project management in the
presence of abandonment, rework, error and uncertainty.
In Proc. of the 10th International Software Metrics
Symposium, 172—183.

Ghallab, M., D. Nau, and P. Traverso. 2004. Automated
planning: Theory and practice. Morgan Kaufmann.

Hebert, J. E. 1979. Applications of simulation in project
management. In Proc. of the 1979 Winter Simulation
Conference, ed. M. Spiegel, R. Shannon, and H. High-
land, 211-219.

Joslin, D., J. Frank, A. Jénsson, and D. Smith. 2005.
Simulation-based planning for planetary rover exper-
iments. In Proc. of the 2005 Winter Simulation Con-
ference, ed. M. Kuhl, N. Steiger, F. Armstrong, and
J. Joines.

Joslin, D., and D. E. Smith. 2005. Squeaky-Wheel Optimiza-
tion for planetary rover experiment planning. In Proc.
of the Intelligent Systems and Agents 2005 Conference
(ISA2005).

Joslin, D. E., and D. P. Clements. 1998. Squeaky Wheel
Optimization. In Proc. of the 15th National Conference
on Artificial Intelligence (AAAI-98), Madison, WI, 340—
346.

Microsoft Corporation 2003. Microsoft project 2003.
<http://office.microsoft.com/en-us/
FX010857951033 . aspx>.

Orlando Software Group, Inc. 2004. Simestimator project
management and risk analysis tool. <http://www.
osgil.com/simestimator.html>.

Pich, M. T., C. H. Loch, and A. De Meyer. 2002. On
uncertainty, ambiguity, and complexity in project man-
agement. Management Science 48 (8): 1008—1023.

1066

Van Slyke, R. M. 1963. Monte carlo methods and the pert
problem. Operations Research 11 (5): 839-860.

AUTHOR BIOGRAPHIES

DAVID JOSLIN is an assistant professor in the Computer
Science and Software Engineering department at Seattle
University. He received his PhD from the University of
Pittsburgh in 1996. His research interests include Al plan-
ning and scheduling, and game AI algorithms. His e-mail
address is <joslind@seattleu.edu>.

WILLIAM POOLE is a professor and the chair of the
Computer Science and Software Engineering department at
Seattle University. He received his PhD from the Univer-
sity of California, Berkeley. His research interests include
software project management and process and the effects of
global information technology sourcing. His e-mail address
is <bpoole@seattleu.edu>.



	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print



