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ABSTRACT

We describe a simulation system that models the user of
a calendar-management tool. The tool is intended to learn
the user’s scheduling preferences, and we employ the sim-
ulator to evaluate learning strategies. The simulated user is
instantiated with a set of preferences over local and global
features of a schedule such as the level of importance of
a particular meeting and the amount of preparation time
available before it is to begin. The system then processes a
set of simulated meeting requests, and over time and through
user feedback, it learns the user’s preferences, affording it
the ability to thereafter manage the user’s schedule more
autonomously.

1 INTRODUCTION

We are interested in the design of interactive activity man-
agement systems able to assist their users in carrying out
their daily plans. There is a broad spectrum of users targeted
by such systems, ranging from people with cognitive impair-
ment, who use them to help remember routine daily activities
(such as eating, drinking, taking medication, cleaning, etc.)
to busy executives, who use them to keep track of a large set
of meetings and a long to-do list. Examples of the former
include Autominder (Pollack et al. 2003, Rudary, Singh, and
Pollack 2004), COACH (Mihailidis, Fernie, and Barbenel
2001), the Aware Home Project (Abowd et al. 2000), and
the Assisted Cognition Project (Kautz et al. 2002). Sys-
tems used for schedule and meeting management include
CABINS (Miyashita and Sycara 1995), Carnegie Mellon’s
CMRadar (Modi et al. 2004), and SRI’s Personalized Time
Management Assistant (Berry et al. 2004).

Designing activity management systems presents sig-
nificant challenges, in part because of the characteristics of
the intended users. People with cognitive impairment are
unlikely to be able to handle “alpha”-version software as
they may become confused in the face of software errors,
while busy executives are unlikely to be willing to use
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“in-development” systems and will instead demand robust,
off-the-shelf products. Thus, there is an important role for
systems that simulate the users targeted by activity manage-
ment systems. By simulating users and their environments,
we can test alternative designs and approaches to activity
management before sending the systems to actual users.

Here we present a case study of a user simulation that
we have designed and tested to investigate the feasibility of
employing machine-learning techniques to infer meeting-
scheduling preferences of the user of an activity management
system. In Section 2 we discuss other research similar to
our own. Section 3 describes the target activity management
system that we have investigated using our simulated user,
followed by a description of the simulated system itself in
Section 4. Section 5 reports on experiments we conducted
using the simulator. Section 6 presents a discussion of
future work and draws conclusions.

2 RELATED RESEARCH

Simulating human behavior is a challenging task, on which a
great deal of work has been done; see Giordano et al. (2004)
for an excellent overview of the field. Of particular relevance
to our work are systems that simulate the users of computer
systems, for the purpose of facilitating the development
and testing of those systems. Typical examples of such
work include the simulation of cell-phone users to predict
the effects of alternative interfaces on driving behavior
(Salvucci 2001) and the simulation of air-traffic controllers
to understand the trade-offs in different ATC designs (Gluck
and Pew 2001). Also of interest are applications to computer
security: for example, Putezka et al. (1996) simulate both
authorized and malicious users of computer systems, in order
to create data that can be used in studying the detection of
security breaches. Boddy et al. (2005) take a similar track,
using AI planning methods to generate adversarial courses
of action that a simulated user of a computer system might
take.
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A recent effort to model the users of activity management
systems was done by Rudary, Singh, and Pollack (2004)
who constructed a simulator for a memory-impaired user
of the Autominder cognitive orthotic system. As in our
current project, they were interested in using this simulator
to study the feasibiliy of adding machine learning to activity
management; however, there are several differences with
our own work, including the fact that they were specifically
modeling an impaired user and they were learning reminder
strategies as opposed to scheduling preferences. Gervasio
et al. (2005) also constructed a simulator for the user of
an activity-management system–in fact, the same activity-
management system that we target; they used this system
to study the effects of alternative active-learning strategies
to support an underlying Support Vector Machine that was
tasked with learning a user’s scheduling preferences. While
that work is a direct precursor of what we report on here,
our extensions include a richer set of user-feedback options,
and a focus on learning whether and when the system should
act autonomously on its user’s behalf.

3 THE TARGET SYSTEM

The simulation system that we describe in this paper is
intended to model users of the PTIME activity-management
system. PTIME, or the Personalized Time Manager (Berry
et al. 2005), is designed to help a user manage his or
her calendar, unobtrusively learning user preferences (e.g.,
about when meetings should be scheduled) using passive
learning, active learning, and explicit advice-taking, and,
over time, becoming more and more autonomous. The
system maintains a model of the user’s plan–i.e., the things
that he or she must do and constraints on how and when
they should be done–as well as a user preference profile.
Note that PTIME is capable of handling both meetings with
fixed times (e.g., next Tuesday from 4 to 5pm), but also
“to-do” items with floating times (e.g., for about an hour,
sometime before next Friday). However, in this paper we
focus on fixed meetings.

Figure 1 shows how PTIME is integrated with our
simulator. Note that we simulate both the user and the
user’s environment, where the latter comprises the set of
meeting requests received each day. Figure 2 shows the flow
of information through the system. First a meeting request
arrives and is processed by the calendar tool, resulting in one
of three outcomes: it is accepted and consequently added
to the user’s plan, it is rejected, or a query is generated
so that the user can decide what to do with the request.
In the case in which the user must be queried, the system
must make an additional decision: can the user currently
be interrupted? If so, the query will be issued immediately
(and the expectation is that the user will reply immediately);
if not, the query will be deferred until the user is available.
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Figure 2: System Flow Diagram

In addition to interactions triggered by meeting requests,
the user can at any time provide feedback to the system,
alerting it to its mistakes and providing a metric for its level
of performance. We differentiate between two forms of
user feedback. One type of feedback involves providing the
calendar tool with a numeric score indicating the number of
correct decisions (accept or reject) that have been made over
a given amount of time (a day, a week, etc.). With the other
form of feedback, the user instead identifies the specific
decisions that were incorrect. Note that while this requires
the input of more information, it may actually be more natural
for the user. In fact, it may not be necessary to explicitly
request such information; instead, it can be obtained by
observing the user as he or she makes corrections to the
calendar to undo actions taken by the system: moving or
deleting meetings that were scheduled, and adding meetings
that were rejected. (For this to work, the user must have
access to a list of rejected requests.) With either form of
feedback, the system then adjusts its user preference profile.

Our research goal is to address the problem of enabling
a calendar tool to learn its user’s preferences with respect
to meeting-scheduling, so as to make appropriate decisions
about how to deal with meeting requests as they arrive. In
particular, a short-term subgoal is to compare the usefulness
of the two alternative methods of user feedback, to give us
a sense of how long it takes for the system to converge to
correct preference profiles, given different amounts of infor-
mation about performance. The user simulator is designed
to help us achieve these goals as efficiently as possible, by
conducting many more tests than would be feasible with
human users.
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4 USER SIMULATOR

As noted in the previous section, we simulate both the user
and his or her environment; in this section we discuss each
of these in turn.

4.1 User Model

The most important aspect of the user that we need to model
is his or her meeting preferences; in particular we model
three types of preferences:

1. Preferences over times of day and days of the week
for meetings, e.g., does the user prefer morning or
afternoon meetings?

2. Preferences with respect to the arrangement of free
time in the schedule during the week, e.g., does the
user prefer meetings clustered together, with rela-
tively large blocks of free time, or does s/he prefer
meetings more evenly interspersed throughout the
week?

3. Preferences with respect to the amount of prepara-
tion time needed for each meeting, e.g., how much
advance notice does the user require for a meeting?

To model the first type of preference, we partition the
work week into 25 blocks, 5 per day, corresponding to
early morning, late morning, lunchtime, early afternoon
and late afternoon, and each block of time is associated
with a preference value from 1 to 4, with 1 representing
a maximally preferred slot and 4 representing a minimally
preferred slot. Every meeting is assigned an importance
value, and to schedule a meeting in a particular time block,
its importance must exceed the preference level assigned
to that block. (Learning importance values from meeting
subjects and participants is a topic for future research.)

To model the second type of user preference, we again
use a 4-valued preference in the user model. Some users
may prefer long blocks of uninterrupted free time while
others may be more interested in a large number of shorter
blocks of free time. A user who prefers to have meetings
broadly dispersed is assigned a value of 1; a value of 2 is
used to model a user who has a preference for some large
blocks of free time, but still values dispersal of meetings
more highly; a value of 3 models the reverse–i.e., a user
who wants blocks of free time, but still doesn’t want an
excessive amount of clustering of meetings; and a value
of 4 models a user whose main preference with respect to
clustering is to have meetings clustered as much as possible,
hence preserving blocks of contiguous free time that are
as long as possible. More specifically, a simulated user
with less than one-quarter of its meetings scheduled within
a block of two or more meetings is assigned a value of
104
1, whereas a user whose meetings are clustered more than
three-quarters of the time is assigned a 4.

The third user characteristic is his or her preference for
meeting-preparation time. If a meeting request is sent at
noon for a 1pm meeting, the user may not have sufficient
time to prepare, and so might prefer to defer the meeting or
even reject it outright. In the current simulation, we make
the admittedly unrealistic assumption that preparation time
is independent of meeting type and importance. We again
model each user with one of four values, where 1 represents
a preference for less than 30 minutes of preparation time,
and 2, 3, and 4 represent preferences for between 30 and
60, 60 and 120, and more than 120 minutes of preparation
time respectively.

When we simulate a user to conduct testing, we begin
by setting the values of these three preference features. The
calendar tool is also instantiated with an initial preference
profile, which may be randomly generated or may be created
by making an inference from the entries already in the user’s
plan.

During experimentation, the activity-manager is pre-
sented with a meeting request and must make a decision
about whether to accept it, reject it, or query the user
about what to do. For this purpose, it consults its current
preference profile. In the experiments reported on in the
next section, we make use of a very simple method for
comparing the current request with the preference profile,
namely, we require that all three thresholds established by
the profile be exceeded. In other words, in order to be
accepted, a meeting request for a given time slot T must (1)
have importance greater than or equal to preference value
associated with T , (2) not result in the maximum percentage
of unclustered meetings within the user’s schedule being
exceeded and (3) have arrived early enough to permit the
amount of preparation time required by the preparation-time
value. If any of these three conditions are violated, the sys-
tem rejects the meeting request. If all three are satisfied,
and, in addition, the meeting request does not conflict with
an already scheduled meeting, then the system accepts the
request. Otherwise (if the conditions are satisfied but there
is a conflict), then the system queries the user about what to
do. The simulated user then schedules or rejects the meeting
in accordance with the fixed set of preferences with which
the user was instantiated.

The effect of combining preferences in this way is that
we actually view the preferences as requirements: they all
must be satisfied for a meeting to be scheduled. A future
goal is to modify the combination function, to employ a
weighted sum function instead.

The key role for the user simulation in our experiments
is to generate feedback to the system. It does this by
considering each meeting request itself and using its set of
preferences to decide whether or not the meeting should be
scheduled. The calendar tool is considered to have made
5
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a mistake whenever the action it chooses does not match
with the one the simulated user believes to be correct;
such a mistake represents an error in the preference profile,
which must be adjusted by the calendar tool. As described
above, mechanisms for user feedback include periodically
providing the calendar tool with a score representing the
number of correct decisions made, or implicitly scoring the
system by manually adjusting meetings already accepted or
rejected by the system.

4.2 Model of User Environment

The simulated environment comprises the meeting requests
that arrive each day for processing. Currently we use a very
simple model in which, n times each day, the user receives
a meeting request to be scheduled, where the day, time, and
importance of the meeting are all randomly generated. We
choose n as an approximation of the number of meeting
requests that an arbitrary user might receive on a given day,
noting that this parameter can be set and adjusted during
simulation.

5 INITIAL EXPERIMENTS

In a preliminary series of experiments, we used our user
simulator to study the feasibility of a particular approach to
preference learning: a limited version of hill-climbing over
the space of preference profiles. The system receives meet-
ing requests and makes decisions about what to do, and then
periodically receives feedback from the user, as described in
the previous section. We refer to the period of time between
the receipt of feedback as a training episode. At the end
of each training episode, when feedback is received, the
system needs to adjust its current user preference profile.
To do this, it first compares its performance in the current
episode against a stored preference profile, which represents
the best one found so far. Performance is measured as the
percentage of correct decisions made during an episode:
the number of correctly accepted and correctly rejected
meetings divided by the total number of meeting requests.
(Thus, queries to the user do not improve the score.) The
better of the two candidate preference profiles–the current
one or the stored one–is selected, and becomes the new
stored profile. In addition, the selected one is modified,
as explained below, to create the preference profile for the
next training episode.

The form of the modification depends upon the type
of feedback received from the user. When the user simply
provides an overall score, the system randomly adjusts each
of its three preference values: each value is either increased
by one, decreased by one, or left unchanged, with probability
1/3 each. (If the value before modification was 1 (4), then
with probability 1/3 it is adjusted up (down), and otherwise
it remains unchanged.)
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With the more informative feedback mechanism, the
update process is more principled. In particular, given the
nature of the preference combination function, a great deal
can be learned when the user adds a meeting that was initially
rejected by the calendar tool. This is because, when it rejects
a meeting request, the calendar tool can readily keep track of
its reason(s) for doing so, i.e., it records which of the three
preference values were not satisfied. So, for example, if a
meeting was rejected because it was not important enough
for its time slot, the stored reason would be importance;
if it was rejected because it caused the user’s schedule to
become too crowded with singleton meetings and because
there was not enough preparation time for it, the stored
reasons would be free-time, prep. If a rejected meeting is
later restored by the user, then the current values for all the
reasons associated with its rejection must be too high, and
consequently they are each immediately lowered. Then,
when a new preference profile is generated, the current
values serve as upper bounds on the new values.

Unfortunately, it is not as easy to learn from the case
in which the user rejects a meeting that the calendar tool
accepted. Because of the structure of the preference rule, in
which all three preferences must be satisfied, it is impossible
to know which of the preference values needs to be raised
in this situation: it could be any or all of them. The system
thus currently does not use these instances in generating
a new preference profile, but reverts to a random change
in the preference values for features for which the only
feedback is the rejection of an initially accepted meeting.

5.1 Preliminary Experimental Results

In order to test our learning mechanisms, we implemented
our simulator in Java and ran it on a sparcv9 at 1062MHz. We
conducted experiments in which we first randomly generated
a set of preference values for a simulated user, and populated
the user’s calendar using these preferences to bias meeting
placement. We also randomly (and independently) generated
an initial preference profile for the calendar tool to use. We
then conducted two runs, one for each of the feedback
mechanisms. In each run, we generated 20 fixed-time
meeting requests per day, and had the simulated user provide
feedback at the conclusion of each day, and we allowed
the system to run until its learned preference profile was
exactly equivalent to the preferences of the simulated user.
We repeated this process for 20 different simulated users
(i.e., 20 sets of preference values) for a total of 40 runs.

The graph in Figure 3 depicts the results of our initial
experimentation, smoothed for readability and cut off after
1000 days of processing. (We used a 4253H smooth. The
average number of mistakes per day with pure scoring
dropped to exactly zero close to day 3000.)

The x-axis measures the day of the simulation and the
y-axis represents the number of errors per day; the results
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Figure 3: Comparison of Feedback Mechanisms

are averaged over each of the 20 runs. The two lines on
the graph show the results for each of the two feedback
mechanisms.

Even though this is just a preliminary experiment, we
can draw two conclusions. First, and not surprisingly, the
experiment confirms our hypothesis that it is worth using
a feedback mechanism in which mistakes are explicitly
identified: the average number of errors per day is always
smaller with this method than with the summary-scoring
method. Second, while convergence to an exact preference
model, even with the explicit feedback method, takes an
inordinately long time (approximately 500 days), it takes
less than 30 days to achieve a level of performance with
25% or fewer errors per day; this is approaching a duration
that may make the approach feasible for real applications.

6 FUTURE WORK AND CONCLUSIONS

The goal of our research is to create a computational agent
capable of managing the schedule of its user, learning the
user’s preferences so as to become more autonomous over
time. Testing such a system, and comparing alternative
learning procedures, alternative mechanisms for user feed-
back, and so on, can be very time consuming. With a
simulated user, we can relatively quickly test many alterna-
tives without a human-in-the-loop. To date our simulated
user is quite simple, consisting mainly of a model of pref-
erences used to provide feedback to the system, and the
experiments we conducted to date have been quite pre-
liminary. Even so, they suggest that it may be feasible
to use an explicit feedback mechanism to converge to a
reasonably accurate preference profile within an reasonably
small amount of time. Of course, there are some things that
cannot be tested with a simulated user: for example, there
is no way to determine which of the alternative feedback
methods is more attractive to a real user.

There are a number of ways in which our current system
can and should be expanded. First, and most obviously, there
are other user features that should be modeled–and there are
also additional features of the meetings themselves that our
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calendar tool should take into account in deciding how to
process a meeting request. For example, it should consider
how hard it will be to cancel a meeting once accepted,
and it should consider what the opportunity-cost will be
for rejecting or deferring a meeting request. At present,
we assume that there is essentially no cost to canceling an
accepted meeting, and that an initially rejected (or deferred)
meeting can always be scheduled later, but of course both of
these assumptions are too strong. Second, as we mentioned
earlier, we make use of a very simple function for combining
preferences in deciding how to process a meeting request,
and a more realistic model would use a richer aggregation
function, such as a weighted sum. Third, we have so far
only considered meetings with fixed times, but we need also
to consider floating meetings and other to-do tasks. Fourth,
we have not yet properly handled requests for meetings that
conflict with something already scheduled; in the current
version of the system, we simply ask the user what to do in
such cases. Instead, we would like to enable the system to
decide when to schedule a conflicting meeting (and likewise
whether to cancel the meeting with which it conflicts or
leave it on the schedule as well), reject a conflicting meeting,
or resort to asking the user or deferring the request.
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