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ABSTRACT 

The stochastic Argus Invasive Species Spread Model 
(AISSM) is constructed using an Agent-Based Modeling 
(ABM) approach with cellular automata (CA) to account 
for spatial relationships and changes in those relationships 
over time.  The model was constructed to support a wide 
range of geographical locations; however, this paper fo-
cuses on its application in the state of California.  A time-
series of daily historical weather observations on a 6-
kilometer grid was obtained for six weather variables im-
portant to insect and disease development.  Weather condi-
tions were then simulated using the K- nearest neighbor 
(K-nn) regional weather generator.  The weather simula-
tions were summarized into a monthly time-step and cou-
pled with satellite land cover imagery to identify a habitat 
quality for each simulated month.  This information was 
combined with the introduction of invasive species in the 
AnyLogic™ modeling environment.  The spread of inva-
sive species is driven by the habitat quality layer, which 
regulates its dispersal rate. 
 
1 INTRODUCTION 

The ability to model the spread of invasive species is in-
creasingly important given the potential impact the pests 
could have on industries that are the basis for many 
economies of both industrialized and developing nations 
throughout the world.  The information obtained from a 
simulation model capable of effectively modeling these 
threats enables policy makers and industry leaders to better 
understand, mitigate, manage, and recuperate from the as-
sociated risks. 
 The amplification of the threat is primarily attributed 
to three factors: the increasing ease of transportation, re-
duction in trade barriers, and terrorism.  These obviously 
include both accidental and intentional introduction of in-
vasive species as a result of the movement of humans, 
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animals, or goods.  All of these factors must be considered 
during model development.   
 As a result of these concerns, research has been con-
ducted by several university and government agencies in 
an attempt to quantify and mitigate these concerns.  Some 
of the invasive species modeled by researchers have in-
cluded foot-and-mouth disease and Bovine Spongiform 
Encephalopathy (BSE) (Schoenbaum and Disney 2002, 
Disney and Peters 2003, Green 2003).  However, the con-
tinued development of more robust and adaptive modeling 
techniques is required to address the broad range of inva-
sive species threatening different segments of the national 
economy.  
 The Agent-Based Modeling (ABM) approach has been 
used in numerous applications including modeling the in-
teractions of both animal and insect agents, including 
coyotes, stream fish, and mosquitoes (Carnahan et al. 
1997; Pitt, Knowlton, and Box 2001; Railsback et al. 
1999).  The ABM approach can also be applied in a spatial 
environment using cellular automata (CA) as demonstrated 
in the glassy-winged sharpshooter model developed by a 
consortium of university and government researchers 
(White et al. 2000). The basic principles used in the glassy-
winged sharpshooter model were used as a basis during the 
development of the Argus Invasive Species Spread Model 
(AISSM). 
 
2 DATA 

There are three primary components driving AISSM: the 
time-series of invasive species introductions, invasive spe-
cies specific model parameters, and the invasive species 
specific habitat quality time-series.  The first is the simu-
lated time-series of invasive species introductions, which is 
stochastically selected from a spatial specific time-series of 
historical invasive species detections by either federal, 
state, and industry regulating agencies.  The time-series is 
exogenously generated and introduced into AISSM assum-
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ing at introduction 1% of the grid point (i.e. a specific geo-
graphic location) is contaminated with the invasive species.  

The second component is the invasive species specific 
model parameters that define the pest’s behavior.  The pa-
rameters detail the rate of dispersal at 100% habitat quality, 
limitations on the dispersal, the minimum detectable infes-
tation, and the distributions of the times required to detect, 
respond, eradicate, and quarantine the species.  A parame-
ter is also included to randomly introduce invasive species 
into grid points where detections have not historically oc-
curred. The parameters used in AISSM are depicted in 
Table 1. 
 

Table 1:  AISSM Parameters 
 Parameter  Unit             
spreadCriticalValue % Infestation 
maxDistancePerMonth Km / Month 
gridResolution Km 
minDetectablePopulation % Infestation 
detectionMin Months 
detectionMode Months 
detectionMax Months 
eradicationMin Months 
eradicationMode Months 
eradicationMax Months 
quarantineMin Months 
quarantineMode Months 
quarantineMax Months 
depopulationCriticalValue % Infestation 
eradicatedPerMonth % Reduction 
minHQWithoutPopRed % Habitat Quality 
randomInfestationIntro % Grid Points / Month 
 
 The third component is the invasive species specific 
habitat quality time-series for each grid point.  The habitat 
quality time-series is identified as a combination of three 
primary variables: simulated weather conditions, satellite 
land cover imagery, and the invasive species specific pa-
rameters.  Weather conditions are simulated using the K-
nearest neighbor (K-nn) regional weather generator.  The 
generator enables a wide range of weather variables to be 
simulated while maintaining correlation between a large 
number of geographic locations (Yates et al. 2003).  The 
simulated daily weather conditions are summarized into a 
monthly value.  The weather quality (WQ) in a specific 
simulated month for a particular invasive species is identi-
fied by weighting the 6 weather variables, which identifies 
the importance each weather variable has to a particular 
invasive species’ development.  The invasive species spe-
cific WQ is converted into a habitat quality (HQ) by multi-
plying it to the percent of land cover in the grid point con-
sidered a host for the invasive species of interest.  The HQ 
time-series regulates the invasive species’ dispersal in the 
model. 
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3 MODELING ENVIROMENT 

AISSM was developed in the AnyLogic™ modeling envi-
ronment.  The software is flexible and allows the modeler 
to define agent behavior using state charts and other 
graphical constructs, as well as using equations and algo-
rithmic functions.  In AISSM, agents are characterized by a 
number of parameters which can be easily interchanged to 
model different invasive species.  Most spatially specific 
invasive species models have previously been constructed 
in the Swarm modeling environment.  However, the Any-
Logic™ platform is preferred for this application due to its 
user friendly characteristics and model animation compo-
nent.  
 
4 MODEL FRAMEWORK 

AISSM was constructed on a 6 kilometer (km) grid result-
ing in 14,240 grid points for the state of California.  The 
ABM approach in AISSM is to define each grid point as an 
agent with numerous properties. The primary property is 
the percent of the grid point infested by the invasive spe-
cies while other properties such as eradication timeouts and 
quarantine restrictions are maintained as an agent’s internal 
variables.  Each cell changes its state at the end of month, 
with the state change dependent on neighboring cells’ 
states, random invasive species introductions, and the 
cell’s habitat quality. 
 The invasive species are introduced into AISSM in 
two manners.  The first is through actual historic detections 
that are stochastically selected.  The detections are grid 
point specific and ensure that the underlying distributions 
are reproduced on a monthly and annual basis.  The second 
manner an invasive species may be introduced is randomly 
in any grid point.  The percent probability is specified in 
the randomInfestationIntro model parameter.   
 Once the invasive species is introduced into the model, 
its rate of dispersal is defined by the species specific 
maxDistancePerMonth (MD) model parameter.  The MD 
parameter is augmented by the species and grid point spe-
cific HQ times-series.  The MD assumption is the maxi-
mum distance an invasive species can travel per month at 
100% HQ.  It is assumed that the invasive species will 
spread within a grid point each month as long as the per-
cent HQ exceeds a minimum threshold as defined by the 
minHQWithoutPopRed (mHQ) parameter.  The percent 
infestation increase for grid point 1 in month t (IPIt GP1) is 
calculated by multiplying the MD variable to the percent 
habitat quality for month t,   

 
IPIt GP1 = HQt GP1 * MD.     

 
The total percent infestation for month t is calculated by 
adding the increase in the percent infestation in month t to 
the percent infestation for the grid point in month t-1, 
9
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PIt GP1 = IPIt GP1 + PIt-1 GP1.     
 
The infestation spreads until it is detected by either an in-
dustry member or a regulating agency.  The time before the 
invasive species is detected (DTt GP1) is determined using a 
triangle distribution.  The distribution is characterized on a 
monthly time step and is defined by the detectionMin 
(DTMin), detectionMode (DTMode), and detectionMax 
(DTMax) model parameters, 

 
 DTt GP1 = TRIANGLE (DTMin, DTMode, DTMax).    

 

 Once the invasive species is detected, the eradication 
distribution is triggered.  The eradication distribution de-
tails the time period required for the industry or regulating 
agency to respond to the detection.  Often a lag of up to 10 
days occurs in order to better define the species’ dispersal 
and concentration so treatment measures many be used in 
the most effective manner.  A triangle distribution defined 
by the eradicationMin (ETMin), eradicationMode (ETMode), 
and eradicationMax (ETMax) model parameters is used to 
stochastically generate the time before eradication is initi-
ated (ETt GP1),   

 
ETt GP1 = TRIANGLE (ETMin, ETMode, ETMax).   

 
 The eradication program (Et GP1) is initiated once the 
duration that the infestation has been detectable in the grid 
point, as defined by minDetectablePopulation parameter, is 
equivalent or exceeds the summation of the detection and 
eradication periods, 

 
Et GP1 = IF (ITGP1 ≥  (DTt GP1 + ETt GP1), 1, 0).   

 

The infestation is reduced on a monthly basis by the eradi-
catedPerMonth (PE) model parameter once the eradication 
program has been triggered.  The parameter is the percent 
of the infestation that is assumed to be eradicated on a 
monthly basis.  The remaining percent infestation in month 
t  after eradication (EPIt GP1) is the product of the percent 
infestation in month t-1 (PIt-1 GP1) and the difference of 1 
minus the portion eradicated (PE), 

 
EPIt GP1 = IF(Et GP1 = 0, PIt GP1, [PIt-1 GP1 * (1 – PE)]).    
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 Once an eradication program is initiated, the grid 
points immediately surrounding the point triggering the 
program are also eradicated.  The eradication program con-
tinues until the infestation for the grid point is less than the 
depopulationCriticalValue (DV).  Once the value is en-
countered, the species is assumed to be eradicated and the 
percent infestation is forced to 0% for the next time step. 
 If the HQ is less than the mHQ, then the infestation is 
reduced proportionally and the final percent infestation 
(FPIt GP1) is identified for the simulated month, 
 

   FPIt GP1 = IF (HQ t GP1 > HQm, EPIt GP1, EPIt-1 GP1   
* (1- (HQm - HQ t GP1) / HQm).  

 
The infestation spreads to surrounding grid points after it 
exceeds the spreadCriticalValue parameter.  The infesta-
tion’s rate of dispersal into surrounding grid points is dic-
tated by the HQ time-series for each grid point.   
 Quarantine programs are triggered in the same manner 
as eradication programs.  The model parameters defining 
the quarantine duration are defined by the quarantineMin, 
quarantineMode, and quarantineMax model parameters.  
Once quarantines are initiated, the rate at which the inva-
sive species can spread is drastically reduced to account for 
the restricted movement of host material.   
 AISSM dynamically adjusts eradication and quaran-
tine durations in the model to meet criteria specified by the 
regulating agency for the specific invasive species being 
modeled.  Eradication and quarantine programs are ceased 
when the infestation in the grid point and grid points im-
mediately surrounding are eradicated and the buffer time 
period has lapsed, which is invasive species specific.  
Therefore, depending on the invasive species being mod-
eled, the eradication and quarantine actives will continue 
beyond the elimination of the infestation as detailed by the 
quarantine regulations.   
 
5 MODEL RESULTS 

AISSM produces a time-series of the invasive species per-
cent infestations, duration of eradication, and quarantine 
activities for each grid point in the region.  The output is 
currently written to a text file, but it can also be exported in 
a variety of other file formats and may be directly exported 
to a relational SQL database.   
 AISSM may also be monitored during a model run us-
ing the AnyLogic™ modeling environment.  Two different 
views of AISSM’s animation are displayed in Figure 1 and 
Figure 2.   
0
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Figure 1:  Invasive Species Spread Model in AnyLogic™ Modeling Environment (Topographic Map) 

 

 
Figure 2:  Invasive Species Spread Model in AnyLogic™ Modeling Environment (County Map)
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The actively spreading Mediterranean fruit fly invasive 
species infestations are represented by the bright green ar-
eas depicted in the figures.  AISSM is currently parameter-
ized for numerous invasive species including both insects 
and diseases.  Some of the species included in the model 
are Caribbean fruit fly, Mediterranean fruit fly, Mexican 
fruit fly, Melon fruit fly, Oriental fruit fly, Asiatic citrus 
canker, and Karnal bunt.  Through the use of on-screen 
controls, the animation and agent properties can me modi-
fied as the model is running.  
 
6 CONCLUSION 

The ABM modeling approach coupled with the principles 
of cellular automata, as demonstrated in AISSM, offers a 
considerable advancement in the modeling of invasive spe-
cies.  Provided the increasing threat invasive species pose 
to nations’ economies worldwide, the ability to effectively 
model these pests will become ever increasingly important.  
Principles used in AISSM will enable policy makers and 
industry leaders to better mitigate, manage, and recuperate 
from the associated risks posed by invasive species world-
wide. 
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