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ABSTRACT 

In this paper we explore the concept of two-sided competi-
tive coevolution as a mechanism to explore the dynamics 
of competition in a simulation context.  One potential value 
of doing so is the ability to rapidly explore simultaneous 
adaptations to two sides, presumably Blue and Red, in or-
der to find solutions that perform well and are relatively 
robust even in the face of an adaptive adversary. 

1 WHY COEVOLUTION? 

Analyses using combat simulations typically involve per-
turbing a base case in order to perform sensitivity analyses 
on a set of measures of effectiveness.  Frequently, the op-
posing side’s input parameters, which may represent 
physical or behavioral characteristics, are held constant.  
Although this process can yield interesting insight into the 
scenario at hand, it lacks the ability to characterize what 
can happen if Red and Blue parameters are changed in re-
sponse to each other, i.e., as a result of direct competition 
with each other.  The topic of coevolution is presented here 
as it pertains to evolving red and blue force parameters in 
direct response to each other, allowing the simulation of a 
competitive “arms race” for continued improvement, and 
reaching a more robust solution.  In some part, this may be 
construed as an abstraction of simulating an adaptive en-
emy. 

Coevolution is a term originally from the field of evo-
lutionary biology that describes the phenomenon of two 
species evolving over time, in direct response to each 
other.  Coevolution can be either cooperative or competi-
tive.  This paper addresses competitive coevolution.  In 
competitive bi-partite coevolution, the fitness of an indi-
vidual in a predator population is based on direct competi-
tion with individual(s) from a prey population. (Rosin and 
Belew 1995).  Notable is the fact that both populations as-
sume the role of predator and prey simultaneously.  As 
stated in (Ficici and Pollack 1998), “the key to coevolu-
tionary learning is a competitive arms race between op-
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posed participants”.  Also, “coevolution has been proposed 
as a way to evolve a learner and learning environment si-
multaneously such that progress arises naturally with 
minimal inductive bias.  Each participant (candidate solu-
tion) in a coevolutionary system is both a learner as well as 
an environment against which other participants learn”. 

Many believe that a competitive learning process en-
courages an evolutionary development such that as one 
learner develops new strategies, its opponent adjusts its 
abilities and discovers new strategies of its own (Angeline 
and Pollack 1993).  There have been several studies that 
have suggested that coevolutionary learning can increase 
the efficacy of the search for the global optimal solution (if 
one exists), and can also result in finding a less globally 
optimal but more robust solution, as compared to more 
conventional search techniques or one-sided evolutionary 
learning (Blair et al. 1999, Juille and Pollack 1998, Paige 
and Mitchell 2001). 

2 SOFTWARE AND ALGORITHM DETAILS 

2.1 Coevolutionary Software and Algorithm 

For a general overview of the field of evolutionary compu-
tation including the basics of the standard genetic algo-
rithm and coevolutionary algorithms, see (Mitchell 2000) 
and (Hillis 1991).  For example, the issues of parent selec-
tion, recombination, and mutation were treated in a “stan-
dard” way, the word standard being in quotes because there 
actually is much exploration ongoing with regard to evolu-
tionary algorithms.  Basically though, an evolutionary al-
gorithm is a biologically-inspired approach to finding a so-
lution to a problem whose search space is large or whose 
characteristics are unknown.  Inspired by the Darwinian 
principle of natural selection, possible solutions compete 
for survival.  Generally speaking, the stronger solutions 
remain to reproduce and give birth to new ones, while the 
weaker solutions are discarded and replaced by new (ran-
dom) members.  This iterative process of replacement of 
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solutions with new ones typically leads to better solutions 
being discovered. 
 A software package called NALEX (for Natural Algo-
rithm Experimenter), developed in Java was used to con-
duct the coevolution.  NALEX is a software framework de-
signed to accommodate many different natural algorithms. 
Natural algorithms are a set of heuristic search techniques 
that have been motivated by analogies from the natural 
world.  In the physical world, the annealing process of sol-
ids has motivated the development of a class of algorithms 
called simulated annealing. Biological analogies have in-
spired the class of evolutionary and co-evolutionary algo-
rithms, immune algorithms, and bacterial algorithms. And 
the social world has inspired the development of particle 
swarm, ant, and cultural algorithms.  Also, realizing that 
there is no a priori reason for limiting the algorithms to 
constraints imposed by the natural world, algorithm devel-
opers have begun extending and combining these algo-
rithms to form new algorithms with the goal of enhancing 
performance. NALEX is designed to accommodate these 
extensions as well. 
 The components of NALEX easily allow researchers 
to experiment with a number of algorithms, but addition-
ally, by providing the necessary structure indicative of a 
framework, to develop their own versions of various struc-
tures by extending the components included in NALEX. 
These user-developed components can then be shared with 
other researchers, facilitating the development of reusable 
component repositories that could then be used as a com-
mon computational foundation for behavioral experiments 

There are many variants of coevolutionary algorithms.  
Some interesting ones can be found in (Ficcici and Pollack 
1998) and (Rosen and Belew 1995).  The following are 
some key characteristics of the coevolutionary algorithm 
used in this effort. 
 

• Four parameters were chosen for Blue to evolve 
over (n = 4) and four parameters for chosen for 
Red to vary over (m = 4).  In general, m need not 
equal n. One “typically” will evolve over a larger 
number of parameters, to take advantage of the 
power of the evolutionary algorithm.  However, a 
total of four parameters per side were chosen to 
ensure that the emergent behavior resulting from 
these parameter settings is analytically tractable. 

• A population (for either Red or Blue) will consist 
of 30 individuals, also referred to as chromosomes 
in the evolutionary computation literature. 

• The concept of iterations, or turns, is utilized in 
the algorithm.  One side (either Red or Blue) will 
go first and find a best response to the current set 
of adversaries. Then the other side will evolve 
against the new set of its adversaries, and so on.  
An iteration consists of 30 generations of evolu-
tion.  The end result of an iteration is that a “best-
100
so far” will be stored.  In addition a “worst so far” 
will also be stored, for comparative analysis pur-
poses. 

• “Best-so-far” is determined to be the individual 
with the best average fitness against the best per-
forming individual of the opposing population 
each across 30 random restarts. 

• The fitness measure used was the Force Exchange 
Ratio. 

 
It is beyond the scope of this paper to discuss the po-

tential variations to the above, and the pros and cons of do-
ing so.  However, there is much to be gained by altering 
the “dynamics of competition”.  As merely one example of 
varying the dynamics discussed in this section, we could 
choose to evaluate an individual based on a subset of the 
current adversary population which includes both good and 
poor performers, or that includes some randomly selected 
individuals, instead of choosing to evaluate against the best 
adversary as we did in this effort.  There is some discus-
sion in the literature that suggests that such a strategy may 
make the best-so-far more robust.  Some studies have sug-
gested that there may be a tradeoff between search efficacy 
and maximum evolved fitness of individuals (Paige and 
Mitchell 2001). 

2.2 Simulation Software and Scenario 

The simulation used for this experiment was Map Aware 
Non Uniform Automata (MANA) an agent-based model of 
combat developed by the New Zealand Defense Technol-
ogy Agency.  This work was part of a larger study per-
formed for the U.S. Marine Corps to examine the effec-
tiveness of aggregation/dispersion behaviors, distance 
between units, and unit size (squad vs platoon) in an ex-
perimental distributed operations scenario.  Many of the 
details of the scenario will not be fully described here in 
the interest of keeping this paper focused on the details of 
the coevolutionary work. 

3 EXPERIMENTAL DESIGN OF THE 
COEVOLUTIONARY RUNS 

A brief description of the Blue simulation parameters that 
were evolved over is as follows: 
 

• Cluster:  the size of the group that Blue should try 
to stay in regardless of situational circumstances.  
One agent represented a fire team, so a size of 3 
can be interpreted as squad-sized. 

• Inorganic Situational Awareness (SA):  Toward 
Friends:  the weighting that governs how much 
Blue wants to move towards or away from other 
friends (can be interpreted as a cohesion or dis-
persion parameter), that it knows about because 
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the information was passed to the squad from an 
external source.  Negative weights imply moving 
away from and positive weights imply moving 
towards. 

• Inorganic SA:  Towards Enemy Threat 3:  the 
weighting that governs how much Blue wants to 
move towards or away from enemies with the 
highest perceived threat level that it knows about 
because the information was passed to the squad 
from an external source. 

• Max Distance to Inorganic Friends:  the distance 
Blue should try to keep from other (non squad) 
friends.  One pixel represented 250 meters. 

 
A brief description of the Red simulation parameters 

that were evolved over is as follows: 
 

• Cluster:  the size of the group that Red should try 
to stay in regardless of situational circumstances. 

• Squad SA:  Toward Friends:  the weighting that 
governs how much Red wants to move towards or 
away from other non-squad friends (can be inter-
preted as a cohesion or dispersion parameter), that 
it knows about from internal sensing capabilities. 

• Squad SA:  Towards Enemy Threat 3:  the 
weighting that governs how much Red wants to 
move towards or away from enemies with the 
highest perceived threat level that it knows about 
from internal sensing capabilities. 

• Max Distance to Organic Friends:  the distance 
Red should try to keep from friends. 

 
The description of the Blue and Red simulation pa-

rameters are quite similar.  In fact, in this case, the only 
major difference between the group of Blue parameters 
evolved over and the group of Red parameters evolved 
over, is that Blue was acting on information it received 
“inorganically”, in other words, information that was 
passed to it from other squads or entities over the network. 

4 RESULTS 

The numeric results of the coevolution are presented in 
Tables 1 through 4.  The parameters corresponding to the 
highest fitnesses are highlighted displayed in bold. 
 
Table 1:  Blue Variable Settings Corresponding to the 
Highest Fitness, Per Turn 

BLUE cluster friends enemy max dist 
turn 1 14 -42 22 134 
turn 2 13 -38 19 137 
turn 3 15 -42 20 136 
turn 4 19 -41 25 130 
turn 5 12 -59 37 116 
turn 6 18 -42 21 135 
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Table 2:  Blue Variable Settings Corresponding to the 
Lowest fitness, Per Turn 

BLUE cluster friends enemy max dist 
turn 1 9 -8 67 264 
turn 2 6 47 -16 251 
turn 3 7 -49 -55 5 
turn 4 9 -35 -27 379 
turn 5 5 83 -93 244 
turn 6 8 -29 -27 379 

 
Table 3:  Red Variable Settings Corresponding to the 
Highest fitness, Per Turn 

RED cluster friends enemy max dist 
turn 1 5 11 -87 112 
turn 2 4 8 -81 22 
turn 3 9 8 -81 16 
turn 4 11 3 -82 24 
turn 5 7 7 -81 24 
turn 6 12 18 -83 284 

 
Table 4:  Red Variable Settings Corresponding to the Low-
est Fitness, Per Turn 

RED cluster friends enemy max dist 
turn 1 10 2 6 299 
turn 2 19 45 -89 334 
turn 3 19 20 69 297 
turn 4 9 48 43 347 
turn 5 7 1 5 298 
turn 6 19 45 -17 252 

 
It was further observed that, in this round of coevolu-

tion, the highest and lowest fitnesses for each turn of evo-
lution did not significantly vary from one turn to the next.  
One interpretation of this that the best solutions found for 
each side were relatively robust to random variation. 

Another reason for the lack of intense competition is 
that these eight parameters, when explored over these 
ranges, only account for limited variability in the success 
of the Blue or Red Forces.  If we were to repeat the coevo-
lutionary experiment, we may choose to evolve over a 
greater number of parameters per side, to allow for the 
possibility of even greater variation in the fitness measure.  
But, for this first test of the coevolutionary runs, we chose 
to evolve over a smaller number of parameters to start, and 
the variation seems suitable for our purposes.  

Next, we examine how the evolution progressed 
within each turn.  A common way to view this progress is 
to plot the fitness of the best-so-far by generation.  That 
plot, for the first turn of Blue evolution is contained in Fig-
ure 1. The figures for the other turns were very similar so 
they are not displayed separately here. 
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Figure 1: A Look at Evolutionary Progress for Blue Turn 1 

 
In order to further examine how well the coevolution-

ary algorithm performed, we should assess how much of 
the “possibility space” was explored.  As a first step to-
wards that end, Figure 2 displays the two histograms for 
Blue killed and Red killed, respectively.  We can conclude 
that there was sufficient variation in the fitness measure.  

 

 
 

Figure 2: Histograms for Blue and Red Casualties 
 
We now examine to what extent each of the Blue pa-

rameters was explored by the algorithm.  Figure 3 depicts 
the histograms for each of the Blue parameters evolved over. 

We would not expect to see uniform sampling in Fig-
ure 3, since the evolutionary algorithm attempts to balance 
exploration and exploitation.  However, since we note that 
there is less variation in the inorg en3 and inorg friends pa-
rameters, we now take a closer look at the projection onto 
the inorg en3 – inorg friends space.  In Figure 4 we depict 
a colored surface plot where the z axis (and the use of 
color) represents the fitness metric for Blue. 

From Figure 4 we see that the space looks pretty well 
sampled, with a high peak corresponding to a propensity to 
stay close to other friendly squads while also pursuing en-
emy squads. 

Turning now to the analysis of results within the context 
of the overall study that was being performed, there were 
some interesting findings in this data.  It is noted though that 
all findings discussed below resulted from the exploratory 
analysis of an agent-based model, and additional means for 
seeking insight into this scenario is recommended.  
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Figure 3: Histograms for Blue Parameters Evolved Over 
 

 
 

Figure 4: Examination of Two Dimensions of the Blue 
Space Explored with Corresponding Fitness Measure  
 

In this set of experiments though, the Blue cluster pa-
rameter that yielded the best results was 12.  In this effort 
one agent represented a fire team, so 12 fire teams repre-
sents a group that is just over one conventional platoon in 
size.  This suggested that it may be true that a Distributed 
Operations (DO) Unit the size of a platoon is more surviv-
able, in general, then a DO Unit the size of a squad. 

In addition, examination of the Inorganic:  Friends 
weight suggested that, under a scenario assumption that 
DO Units were not specifically trying to aggregate, a DO 
Unit of the proper size, should generally maintain distance 
from other DO Units.  The maximum distance was sug-
gested by the evolution of the Max Distance parameter, 
which was approximately 30 km for the best performing 
Blue.  In other words, Blue performed best when they were 
separated by no more than 30 km on (in this scenario) 150 
km by 150 km piece of medium complexity terrain.  In this 
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case, they would have been able to aggregate had they 
wanted to in about one hour, given trafficable terrain that 
was trafficable by the vehicles represented in this scenario. 

Further, examination of the Inorganic:  Enemy Threat 
weight suggested that Blue did best when pursuing (not 
avoiding) the conventional Red threat.   

An analysis of the evolution of Red parameters sug-
gested that they do best when they disperse, to a point.  
Specifically, Red did best when clustered in groups of 
about a platoon size, separated by at most 4 km away from 
each other, a much smaller distance than the distance 
evolved for Blue.  Also, Red should avoid being in close 
proximity to other Red, and with strong propensity, should 
avoid contact with Blue if at all possible.  This may all 
suggest that dispersion and avoidance is the best Red could 
do against a Blue DO-type attack.  This is plausible in that 
the more dispersed and on the move Red is, the harder it 
will be for Blue to hit all of it with inorganic assets.   

5 CONCLUSION AND FUTURE WORK 

This effort represented a first attempt to use a coevolution-
ary algorithm as a wrapper around simulation runs in order 
to better explore the space of possibilities.  As mentioned 
previously, there are many variants to the coevolutionary 
algorithm, some of which may perform better in different 
circumstances.  We intend to continue this exploration in 
pursuit of more effective algorithms, and in pursuit of algo-
rithms which perform well at discovering robust, multi-
peaked Blue solution sets. 
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