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ABSTRACT 

For the analysis of large-scale complex systems, agent-
based modeling and simulation has proven to provide a 
valuable research tool. The emphasis has, however, typi-
cally been on representing the dynamic behavior of physi-
cal entities such as aircraft. Simulation of human operators 
has often been minimal even though human behavior has 
an enormous impact on overall system performance and 
safety. Therefore, human capabilities and limitations need 
to be taken into account early in the system design process 
before irrevocable choices have been made. This paper re-
ports on the development of agent models with human-like 
performance characteristics using a cognitive architecture. 
We present an agent model of an air traffic controller that 
is developed and incorporated into an agent-based simula-
tion of the national airspace to support the design and 
evaluation of advanced air transportation concepts. 
 

1 INTRODUCTION 

Agent-based modeling and simulation (ABMS) is of in-
creasing interest for the modeling and simulation of com-
plex socio-technical systems such as the National Airspace 
System (NAS) (Lee 2002). A socio-technical system can 
be defined as a system consisting of a number of entities 
(such as humans, machines, technical systems, etc.) inter-
acting with each other to accomplish their goals (Barrett et 
al. 2001). Examples of such systems include ground/air 
transportation systems, economic systems, manufacturing 
systems, health care systems, supply chain systems, and 
military systems. These systems are typically highly com-
plex and dynamic with tightly coupled interacting compo-
nents. The overall dynamic behavior of such a system typi-
cally emerges from the interactions among components. 
For example, the NAS is a large-scale, complex socio-
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technical system composed of controllers, pilots, airline 
dispatchers, aircraft, airports, navigation aids, and technical 
devices. Its behavior can be characterized by the individual 
dynamics of these different entities and their interactions. 
In the operations of the NAS, human controllers play an 
important role in maintaining safe and efficient flow of air 
traffic throughout the controlled airspace sectors (Wickens 
et al. 1997). Specific controller tasks include monitor on-
going flights, respond to various pilot requests, and adjust 
traffic in response to special conditions such as bad 
weather (typically by instructing pilots to alter their aircraft 
speed, flight levels, and headings) (Nolan 1999).  
 ABMS provides a natural methodology for represent-
ing and simulating the individual entities of complex sys-
tems (Wooldridge and Jennings 1995). The collective and 
emergent behavior of heterogeneous system components 
including hardware, software, and human operators can 
also be modeled and simulated as an interaction among 
model agents (Iglesias et al. 1999). While most research 
and development efforts have focused on accurately mod-
eling the dynamics of physical components, less attention 
has been paid to the modeling and simulation of human 
behavior. However, humans are integral system compo-
nents and critical elements affecting overall performance 
and safety of systems. Accurate modeling and simulation 
of large-scale complex systems require suitable agent 
models of human operators. 
 Recent developments in human performance modeling 
provide a new approach to understanding human cognition 
and behavior in computational terms at the level of whole 
systems, as well as the individual agent level (Lee et al.  
2004). In ABMS, simulated human agents interact with 
computer-generated representations of the operating envi-
ronment. More recently, researchers sought to incorporate 
simulated human agents into the design process to assess 
the design with respect to not only the physical attributes 
of human operator, but also the cognitive attributes (Eilbert 
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et al. 1998).  Human performance models allow designers 
to simulate human behaviors and responses in a variety of 
situations and with different design options. Such models 
can also be used to evaluate the impact of human behavior 
on system performance as well as the impact of changing 
technologies on the performance of human operators.  
   Computational modeling of human performance has 
significant value for human-computer interaction (HCI) 
and engineering applications. However, psychological 
models of human cognition and performance have typi-
cally been confined to simple HCI tasks, such as computer 
aided design, use of automated teller machines, and menu 
selection (Card, Moran, and Newell 1983). Some engineer-
ing models of human performance have been developed for 
large-scale agent-based simulations, but few of these have 
considered the cognitive limitations of human operators 
(Foyle et al.  2003). 
  The goal of the current efforts is to develop a compu-
tational model that can be incorporated into a complex, dy-
namic simulation environment. This paper outlines a com-
putational approach to building agent models of human 
performance using the Apex (Architecture for Procedure 
EXecution) cognitive architecture developed at NASA 
Ames Research Center (Freed 1998). We describe how to 
construct a sequence of human behavior from elementary 
human behavior templates and how templates in our com-
positional approach might be structured to accommodate 
underlying human behavior. Our task analysis of human 
performance observed in a simulation of air traffic control 
operations conducted by the Federal Aviation Administra-
tion (FAA) is described. We also present an example of an 
agent model of an air traffic controller that is developed 
and incorporated into an agent-based simulation of the na-
tional airspace to support the design and evaluation of ad-
vanced air transportation concepts. 
 

2 AGENT-BASED MODELING AND 
SIMULATION OF HUMAN PERFORMANCE 

As systems become more complex, it becomes harder to 
anticipate all the potential interactions that can occur from 
a priori analysis. Recent developments in software engi-
neering, artificial intelligence, human-machine systems, 
and simulation science have placed an increasing emphasis 
on the concept of agent-based modeling and simulation 
(Davis, Sloman, and Poli 1995). 
 In ABMS, agent models can be heterogeneous, i.e., a 
variety of agent models may be included in a simulation to 
represent the diverse types of entities and their behavior. 
Agents can be physical entities such as people, animals, 
vehicles, and machines in the real world, or agents can be 
task-oriented entities such as strategic planning, schedul-
ing, monitoring, communications, and decision-making ac-
tivities. Agents used in agent-based simulation can also in-
98
clude rich cognitive human models and sophisticated 
communication and interaction mechanisms.  
 Agents can be used to capture the accuracy, speed, and 
variability of human performance, which are critical to the 
safety and performance analysis of the larger system.  A 
computational agent model of human performance can be 
defined as a representation of human behavioral character-
istics that can be implemented and executed in a simulation 
environment. 
 Modern technology has increased the importance of 
cognition in the design of complex systems.  Thus, human 
performance models have increasingly incorporated the 
perceptual, cognitive, and motor capabilities and limita-
tions of human operators. Although theories of cognition 
are presently incomplete and tentative, several recent stud-
ies have explored the development of agent models of hu-
man performance for analysis of large-scale complex sys-
tems (Pritchett et al. 2002, Jones et al. 1999, Callantine 
2001). These human agent models drive high-level behav-
iors by applying domain knowledge. However, they do not 
attempt to model the cognitive capabilities and constraints 
on human performance. 
 Humans can also be considered as a system of systems 
consisting of perceptual, cognitive, and motor systems, 
with the behavior of each human itself emerging from the 
interaction between the subsystems (Barnard 1985). Mod-
ules dedicated to perception, attention, working memory, 
and decision-making interact with each other to generate 
human behavior. Each module of human behavior is lim-
ited in its ability to process information (Card et al. 1983). 
Agent models of human operators need to encompass psy-
chological findings and theories to generate human-like 
behavior in psychologically plausible ways. Though much 
is known about the limitations of a single sub-system, the 
interaction among sub-systems makes it difficult to predict 
how people will respond in complex task environments 
such as an air traffic control (ATC) system. 
 The level of detail to which each human agent needs to 
be modeled depends upon the purpose of the simulation 
model. A simulation that is too detailed costs more and 
may only complicate the evaluation procedure, whereas a 
simulation that is too shallow provides insufficient or mis-
leading information. Given the complexity of human agent 
models, creating the ability to interact with other simula-
tion models (e.g., communicate with other agents and syn-
chronize their time advance with the other agents) can re-
quire significant adaptations. Ultimately, it is hoped that 
these simulations will have sufficient fidelity in their 
agents’ ability to reason and react to unexpected situations 
to examine a wide range of potentially hazardous situa-
tions. It should also be noted, however, that even examin-
ing the agents’ behavior in normal circumstances can iden-
tify potential weakness or inconsistencies in standard 
operating procedures. 
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There are several critical issues in developing agent 
models of human behavior and cognition. First, models 
must be able to generate human-like behavior in psycho-
logically plausible ways. Agent models provide insight into 
the impact of human performance on overall system per-
formance and predict global consequences of system 
changes. Second, models must be easily modifiable and 
quickly adaptable to new situations. Existing human per-
formance models typically require deep knowledge of hu-
man behavior and cognition and also require a great 
amount of time and effort to develop a new human per-
formance model for a specific domain of interest. Third, 
models should be implemented in a computational archi-
tecture with the capability for representing the range of be-
havior found in complex task domains, and that can be in-
corporated into a large-scale simulation environment to 
interact with other agents and can be run in a real-time 
fashion (Bass 1995). 

 

3 DEVELOPING HUMAN AGENT MODELS 

To build a computational agent model of human perform-
ance in complex domains it is essential to analyze the task 
structure at the level of resource utilization. Structured task 
analysis provides a detailed knowledge of the tasks to be 
performed, an understanding of the current system, and in-
formation flow within the system. The task analysis ap-
proach also enables an appropriate allocation of tasks and 
functions to be included within new systems. Our task 
analysis consists of a hierarchical task decomposition 
based on the Goal, Operators, Methods, and Selection 
(GOMS) technique (John 1990).  

CPM-GOMS (Cognitive, Perceptual, Motor -GOMS) 
combines GOMS with a cognitive architecture called the 
model human processor (MHP). MHP makes an assump-
tion that human behavior can be described as the interac-
tion of cognitive, perceptual and motor systems. The CPM-
GOMS task analysis consists of a set of goals that the hu-
man is trying to achieve. The top-level goal is decomposed 
into subgoals, and these are decomposed into low-level 
CPM operators. Operators describe the perceptual, cogni-
tive and motor actions that are required to accomplish the 
task. Methods describe the procedural knowledge required 
to complete the tasks. When several methods compete for 
task completion, selection rules predict which method the 
human operator would select in a given situation.   

3.1 Template-Based Modeling Approach 

In general, detailed models of human performance are dif-
ficult and time-consuming to build and require specialized 
knowledge about human cognition and behavior. To facili-
tate model construction, our approach is to decompose a 
complex task into a set of primitive task-level operations 
98
and develop common, reusable building blocks, templates, 
that model fundamental human cognitive, perceptual and 
motor behaviors that recur in multiple task domains 
(Matessa et al. 2002). Representing human behaviors in 
terms of the fundamental-level operators allows very accu-
rate prediction of human performance. 
 Templates are psychological models of elementary 
human cognitive, perceptual, and motor behaviors, (e.g., 
monitoring a screen and detecting an event, typing, moving 
a mouse and clicking a button, etc.), that are common 
across task domains. By integrating a theory of composi-
tion from templates, larger models of human performance 
can be created without requiring modelers to have a deep 
understanding of cognitive psychology. A standard library 
of domain-independent templates can be applied in differ-
ent circumstances. Templates eliminate the need for devel-
opers to have extensive knowledge of the underlying cog-
nitive architecture. Consequently, the use of templates 
makes cognitive modeling more accessible to a wider 
range of domain experts.  
  There are two issues that add to the complexity and 
difficulty of the compositional approach: template con-
struction and composition of extended behavioral se-
quences from templates. In constructing reusable and 
scaleable templates, the choice of primitives and the 
method of combining basic cognitive, perceptual, and mo-
tor operations into larger behavior units are critical. To 
construct templates for modeling human performance, it is 
necessary to identify those portions of the behavioral 
stream that contain routine behavior through a detailed task 
analysis. 

Apex composes extended behavioral sequences by 
automatically interleaving templates for successive behav-
iors. We have recently described an approach for automati-
cally generating the sequence of behavior using the Apex 
cognitive architecture (John et al. 2002). The automation in 
Apex makes it possible to derive detailed predictions of 
human performance with complex tasks and interfaces. 

3.2 Apex Cognitive Architecture 

Apex is designed for generating adaptive, intelligent hu-
man behavior in complex, dynamic environments. Apex 
incorporates many high-level aspects of cognition includ-
ing action selection under uncertainty, managing multi-
tasking, and task interleaving, which allows modeling of a 
wide range of human behaviors common to complex do-
mains. Apex models a human operator engaged in multiple 
tasks, and decides how to allocate limited resources to ac-
complish these tasks. The high-level architecture of Apex 
is shown in Figure 1.  
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Figure 1. Apex Agent Architecture 
 

   The Apex framework includes a Human Resource Ar-
chitecture, an Action Selection Architecture, and a Proce-
dure Library. The Human Resource Architecture defines 
limited-capacity cognitive, perceptual, and motor compo-
nents. The Action Selection Architecture coordinates the 
use of the resources, enforces constraints on resource allo-
cation, and applies domain knowledge. It determines which 
tasks should be active and how resources should be allo-
cated. Tasks become active when events match the condi-
tions on a procedure in Apex’s Procedure Library. The 
Procedure Library contains domain knowledge and a set of 
tasks to be performed in the target domain. The knowledge 
is represented in the form of procedures. 
 

4 A MODEL OF AN EN-ROUTE AIR TRAFFIC 
CONTROLLER 

Building a human performance model for a complex do-
main such as air traffic control requires in-depth under-
standing of the task structure in that domain. In order to 
develop a model of an air traffic controller responsible for 
traffic in a single en-route sector, we examined the tasks 
and procedures performed by controllers based on existing 
functional task analyses (Seamster et al. 1993, Leiden 
2002, Niessen, Leuchter, and Eyferth 1998).  
 In routine operations, a radar en-route controller moni-
tors the flights passing through the sector, responds to 
various pilot requests, and adjusts aircraft trajectories by 
instructing pilots to maintain the safe and efficient flow of 
air traffic within his sector. A high level functional analysis 
of current en-route control operations is presented in previ-
ous work (Remington et al. 2004). The most important 
high level tasks of the controllers can be classified into ac-
cepting handoffs of the aircraft from other sector, initiating 
transfer of control of the aircraft to the other sectors, moni-
toring aircraft, detecting and avoiding conflicts, detecting 
and resolving metering violations, attending to pilot re-
quests and communicating with the pilots and other 
neighboring controllers. Typically, many tasks of control-
98
lers can be performed in parallel. For example, controllers 
perform a handoff task while concurrently giving a clear-
ance command to a pilot and monitoring radar screen for 
other events. 

With little effort a hierarchical task analysis can be 
represented as a GOMS task analysis. In our template-
based modeling approach as shown in Figure 2, the high-
level tasks are recursively decomposed into the template-
level of elementary behaviors such as move and click be-
havior, scrolling, speaking, and typing and so on. The low-
level templates are typically domain independent. Our ap-
proach is to combine and interleave low-level templates to 
build models of human performance in any domain.  
 

Slow-Move-Click Fast-Move-Click Speaking Typing

Accept HandoffInitiate Handoff Metering CD&R

Air Traffic Control in Enroute Sector

Scrolling
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via Radio Comm.

Transfer of 
Communication

Monitoring
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Transfer of 
Communication
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Figure 2. Hierarchical Task Decomposition 

   
 Based on the task analysis, we developed a simple 
Apex model of an en-route sector controller for a handoff 
task. Figure 3 shows a detailed task analysis of accepting a 
handoff. We have constructed templates (e.g., move-and-
click, typing, and speech templates) for handoff operations 
based on the task analysis. The model predicts time and re-
source usage, both of which are necessary to provide in-
sight into the mental demands placed on the controller in 
routine operations. This model permits estimates of work-
load, throughput, and suggest efficient ways to structure 
tasks. In our Apex model, a set of resource constraints is 
implemented to mirror human performance limitations. 
Tasks that require the same resources can temporarily pre-
vent parallel execution of multiple tasks. For example, a 
controller can visually detect two handoffs simultaneously, 
but can only accept one handoff at a time because the task 
requires a limited resource, the use of a trackball. This il-
lustrates how the resources in our Apex model capture con-
straints on human behavior, which have consequences on 
overall performance. 

Description at the level of resource utilization adds 
value by providing insight into issues such as workload 
and throughput, hence we wish to retain this essential char-
acter of CPM-GOMS by first identifying and modeling 
those portions of the behavioral stream that contain routine 
behavior from detailed task analysis. Model parameters 
like durations of operations are estimated from existing 
2
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theories and analyses, which represent zero-parameter pre-
dictions of performance. For example the mouse-move-
and-click template includes finding the target, fixating on 
the target, moving the mouse to the target and clicking the 
target. In this template Fitt’s law is used to compute the 
time taken to move the mouse to the target. 

 

Typing TemplatesMove-and-Click Templates

Situation Monitoring

Handoff 
Initiation

Metering

CD & RDetect a flashing of AC

Fixate on the aircraft flashing

Accept
Handoff

now?

yes

no

KeypadUse keypad 
or trackball?

Delay
Handoff?

Trackball

Move cursor to AC symbol

Click on the symbol 

Verify the symbol is not flashing 

Move hand to keypad

Type CID of the AC 
[CID(3)][Enter(1)]

Verify the symbol is not flashing 

Wait for Pilot’s Initial Callin Contact

Reject
Handoff?

no

Typing TemplatesMove-and-Click Templates

Situation MonitoringSituation Monitoring

Handoff 
Initiation
Handoff 
Initiation

MeteringMetering

CD & RCD & RDetect a flashing of ACDetect a flashing of AC

Fixate on the aircraft flashingFixate on the aircraft flashing

Accept
Handoff

now?

Accept
Handoff

now?

yes

no

KeypadUse keypad 
or trackball?
Use keypad 
or trackball?

Delay
Handoff?

Delay
Handoff?

Trackball

Move cursor to AC symbolMove cursor to AC symbol

Click on the symbol Click on the symbol 

Verify the symbol is not flashing 

Move hand to keypadMove hand to keypad

Type CID of the AC 
[CID(3)][Enter(1)]

Type CID of the AC 
[CID(3)][Enter(1)]

Verify the symbol is not flashing 

Wait for Pilot’s Initial Callin ContactWait for Pilot’s Initial Callin Contact

Reject
Handoff?

Reject
Handoff?

no

 
Figure 3. Task Analysis of Accepting a Handoff 

 
 From the reusable templates we can start building tem-
plates that are domain-specific. For example, typically 
when the aircraft icon on the radar screen starts flashing, 
this indicates the controller that the aircraft is ready to be 
accepted into their sector. The template of accepting air-
craft would include fixating on the flashing aircraft, decid-
ing to accept the aircraft, moving the mouse and clicking 
on the aircraft icon. This detailed task analysis can be rep-
resented in Apex as a domain specific procedures for ac-
cepting handoff which bottoms out to domain independent 
templates. 
 The hierarchical goal structure of a GOMS model is 
expressed in Apex using its Procedure Description Lan-
guage (PDL). PDL steps are decomposed hierarchically 
into procedures of simpler steps until those steps bottom 
out in primitive actions that occupy human resources. Fig-
ure 4 shows high-level PDL procedures for the handoff 
task that decompose into low-level procedures. Figure 5 
illustrates a template-level procedure written in PDL. This 
level of procedure represents very detailed human cogni-
tive, perceptual, and motor behaviors. This move-and-click 
template was an existing template developed for a different 
98
task. This existing template was reused to develop a human 
performance model for handoff task.  
 
 

 
Figure 4. High-level Apex Task Procedures  

 
 

  
(procedure 
 (index (slow-move-click ?target)) 
 (step c1  (initiate-move-cursor ?target)) 
 (step m1 (move-cursor ?target)     (waitfor ?c1)) 
 (step c2  (attend-target ?target)) 
 (step c3  (initiate-eye-movement ?target)   (waitfor ?c2)) 
 (step m2  (eye-movement ?target)      (waitfor ?c3)) 
 (step p1  (perceive-target-complex ?target)   (waitfor ?m2)) 
 (step c4  (verify-target-position ?target)    (waitfor ?c3 ?p1)) 
 (step c5  (attend-cursor-at-target ?target)   (waitfor ?c4)) 
 (step w1  (WORLD new-cursor-location ?target)  (waitfor ?m1)) 
 (step p2  (perceive-cursor-at-target ?target)   (waitfor ?p1 ?c5 ?w1)) 
 (step c6  (verify-cursor-at-target ?target)   (waitfor ?c5 ?p2)) 
 (step c7  (initiate-click ?target)     (waitfor ?c6 ?m1)) 
 (step m3 (mouse-down ?target)     (waitfor ?m1 ?c7)) 
 (step m4 (mouse-up ?target)      (waitfor ?m3)) 
 (step t1  (terminate)       (waitfor ?m4))) 

 
Figure 5. Template-level Apex Task Procedure 

   

5 INTEGRATED APEX-ACES SIMULATION 

In the Virtual Airspace Modeling and Simulation (VAMS) 
project, a joint NASA and FAA effort, modeling and simu-
lation methods are being applied to evaluate the effect of 
changes in the operation of the national airspace. To this 
end, the Apex agent architecture has been integrated with 
the ACES (Advanced Concepts Evaluation System) air-
space simulation system 
 ACES is a fast-time distributed agent-based simulation 
for the analysis of the NAS. The ACES simulation emu-
lates an entire day of operations in the NAS with agent 
models for aircraft, Air Traffic Control System Command 
Center (ATCSCC), ARTCC, Traffic Flow Management 
(TFM) & Air Traffic Control (ATC), Terminal TFM & 
ATC, Airport TFM & ATC, traffic demand, and weather. 

(procedure  
 (index (detect initiating handoff ?aircraft)) 
 (step s1 (decide whether to initiate handoff ?aircraft)) 
 (step s2 (initiate handoff ?aircraft to next controller) 
               (waitfor ?s1)) 
 (step s3 (monitor response from receiving controller)   
               (waitfor ?s2)) 
 (step s4 (issue frequency change to pilot) (waitfor ?s3)) 
 (step s5 (mark ac shipped) 
               (waitfor ?s4 (pilot readback))) 
 (step done  (terminate) (waitfor ?s5))) 
 
(procedure 
 (index (receive handoff request for ?ac-symbol)) 
 (step s1 (acquire sa for handoff ac)) 
 (step s2 (determine response) (waitfor ?s1)) 
 (step s3 (respond to initiating controller ?ac-symbol)    
               (waitfor ?s2)) 
 (step s4 (wait for initial contact from pilot)  
               (waitfor ?s3)) 
(step done (terminate) (waitfor ?s4))) 
3
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These different types of agents interact with each other 
through message passing during the simulation. However, 
ACES does not have agent models of human operators, 
such as air traffic controllers and pilots.  
 In order to allow Apex models to participate in large-
scale simulations of the national airspace system, our ap-
proach was to integrate the agent model of an en-route air 
traffic controller developed using the Apex architecture 
into the ACES simulation environment (Lee et al. 2004). 
Figure 6 shows a high-level framework of the integrated 
Apex-ACES system for air traffic control simulations. 
Conceptually, ACES provides a simulation environment 
including agent models for the operations of the NAS. 
Apex provides a model of an air traffic controller for re-
ceiving and interpreting information coming from the 
ACES simulation world and for taking appropriate actions, 
as a human controller does.  
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Figure 6. A Schematic of Integrated Apex-ACES System  

 
 To enable communication between these two systems 
we developed communication interfaces and message pro-
tocols using TCP/IP sockets. As shown in Figure 6 the 
Apex human agent model interacts with other agents in the 
ACES simulation environment through a Communication 
Interface. Information about the external world and events 
are received through the communication interface and 
stored into a limited-capacity working memory through the 
perception system of the Apex agent. Incoming informa-
tion is matched against the specifications of procedures in 
the procedure library of the Apex agent. If the conditions 
9

for a procedure are met then the action selection architec-
ture of the Apex agent schedules the steps of the procedure 
in accordance with the constraints and task management 
mechanisms. To control the aircraft’s motion the Apex 
agent issues commands to a corresponding ACES agent. 
The interface converts the commands to a message format, 
which can then be interpreted by ACES agents. Currently, 
an aircraft is controlled through setting the desired state of 
the aircraft (i.e., speed, heading, and altitude). 
 Apex is used to model both the human agent and the 
displays and controls the agent interacts with. In this way, 
timing of agent actions and delays imposed by the equip-
ment and user interface can be simulated at high fidelity. 
Communication with the ACES simulation will occur at 
synchronized message passing times in accordance with 
ACES protocols. This scheme provides a natural division 
between the human performance model and the ACES-
level agent. The Apex agent only needs to transmit to its 
ACES counterpart those messages of significance in the 
larger context. Thus, while each keystroke of data entry 
into flight computers must be simulated to predict the time, 
the ACES-level agent need only be informed when the 
keystrokes produce some change in the its state, such as 
activating a mode, or changing a control setting. 
 Figure 7 shows a snapshot of the integrated Apex–
ACES simulation. For this simulation, an agent model of 
an en-route air traffic controller was developed using Apex 
from task analyses and other literatures for high-level rou-
tine controller tasks (i.e. accepting handoffs, initiating 
handoffs, resolving metering violation, monitoring, the 
progress of aircraft, and conflict detection and resolution 
tasks) (Remington et al. 2004). The agent model of an air 
traffic controller developed was successfully integrated 
into the ACES agent-based simulation to interact with 
other agents and accomplished tasks with a simple traffic 
scenario. 
 

 

Figure 7.  A Snapshot of Integrated Apex-Aces Simulation 
84



Lee, Ravinder, and Johnston 

 
6 VALIDATION OF APEX TEMPLATE MODELS 

Templates in the Apex enroute controller model have been 
validated with the human-in-the-loop simulation data from 
the FAA. Comparison of the results show that the agent’s 
performance fell in the range of best performance of highly 
skilled controllers. 
 We compared the predicted times of Apex model for 
accepting handoff with the human-in-the-loop simulation 
data from FAA, as shown in Figure 8. The task time for 
accepting handoff means the time from first fixating the 
aircraft to the acceptance of the handoff. After fixating on 
the aircraft, the controller model accepts it by moving a 
trackball cursor over the target and clicking the button. The 
times for these actions were taken from existing theory and 
data (Leiden 2000). They are fixed in the model, not esti-
mated from the observed simulation times, providing zero-
parameter predictions. On average, the model predicts the 
total task time of accepting the handoff accurately and pro-
vides at least the fastest task response time of experienced 
air traffic controllers. 
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Figure 8. Average Task Time of Accepting Handoff 
 

   
 Figure 9 plots observed simulation data and predicted 
times of the communication duration between air traffic 
controllers and pilots. The communications include initial 
contact, welcome acknowledgment, and speed, altitude, 
and heading change commands. A speaking template de-
veloped in this study predicts the total speaking (utterance) 
time based on the number of syllables where it is assumed 
that each syllable takes 200ms. In most cases, as shown in 
Figure 9, the template predicts speaking times well. Em-
pirical simulation data show slightly longer times of utter-
ance than the predicted times of the model. The correlation 
of the simulation data and predicted time was 0.837.  
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Figure 9. Comparison of Speaking Times 

   
In both the cases the reason for the empirical data to 

show longer times than that predicted by the model is that 
the templates predict the fastest task completion time. An-
other reason might be the controller was engaged in a 
higher priority task such as conflict resolution, metering 
task, or next tasks to be performed immediately while talk-
ing to a pilot. For example, we noticed that while commu-
nicating vocally with a pilot, controllers sequentially fix-
ated data blocks or executed a handoff acceptance from 
other aircraft. However, it was hard to capture those cases 
where the controller suspended an on-going task (inter-
rupted by a higher priority task) and resumed the inter-
rupted task when the higher priority task was completed. 
These high-level multitasking behaviors require further in-
vestigation 

 

7 CONCLUSIONS 

Computational agent models of human performance hold 
the potential to provide a safe and cost-effective way to test 
the design and implementation of new technology, predict 
possible human errors, as well as to anticipate transitional 
challenges and their impact on implementing new task pro-
cedures.  
 This article described a template-based approach for 
developing agent models of human performance in com-
plex domains. We have shown how computational agent 
models of human performance can be built with human 
performance templates from a GOMS task analysis  in the 
Apex cognitive architecture. We have also validated the 
templates with data from the FAA Tech Center. Our results 
show that, without estimating parameters from the task, our 
Apex model was able to make accurate estimates of the 
time taken to execute the acceptance of a handoff and the 
time of utterances. The model developed largely from task 
analysis is now being expanded and modified in response 
to patterns observed in the simulation data.  
 It was also demonstrated that human performance 
models using the Apex architecture can be extended to in-
5
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teract with a larger agent-based simulation environment. 
The Agent-based modeling and simulation approach may 
provide an efficient and effective way of developing and 
simulating human performance models.  However, the de-
cision of what should be modeled as an agent in ABMS is 
not always clear-cut. As described, human entities within 
the system under investigation can be modeled as agents, 
or agents can be defined around functional attributes and 
tasks (Bonabeau 2002). For example, each agent may rep-
resent the behavior of one human in the system or different 
agents may handle different tasks involving multiple hu-
mans, such as having one agent handling a negotiation ac-
tivity, another handling communications, etc. Therefore, 
the trade-off between the level of decomposition and effi-
ciency in terms of the design and modeling of individual 
agents should be further investigated. The interactions be-
tween agents should be carefully considered in designing 
agent models. 

In order to develop higher fidelity human performance 
models, we must have detailed human performance data, 
greater psychological understanding of fundamental human 
behavior, and improved architectures for building human 
performance models efficiently. Our future goals include 
expanding our template library to cover more domain-
independent activities, and to induce more proactive be-
havior by enhancing the model’s monitoring, spatial rea-
soning capabilities, and dynamic multitasking behaviors. It 
is expected that the template library will allow model de-
velopers develop agent models of human performance in a 
cost and time efficient way. 
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