
Proceedings of the 2005 Winter Simulation Conference 
M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, eds. 
  

 
 

A CONCEPTUAL ARCHITECTURE FOR STATIC FEATURES IN PHYSICAL SECURITY SIMULATION 
 
 

Volkan Ustun 
Haluk Yapicioglu 

Skylab Gupta 
Abishek Ramesh 
Jeffrey S. Smith 

 
Department of Industrial and Systems Engineering 

207 Dunstan Hall 
Auburn University 

Auburn,AL,36849,U.S.A. 
   
   
ABSTRACT 

The aim of this paper is twofold: First, to propose a data 
model that enables the user to model a physical facility at 
different levels of detail and explicitly incorporate interac-
tions among the components of the facility. Second to sug-
gest a methodology for line-of-sight, which is the primary 
factor in recognition of threats in physical security settings. 

1 INTRODUCTION 

This paper describes the conceptualization of the static as-
pects of a facility such as geometry, structure etc. and de-
fines the relations between these aspects and the active en-
tities in the simulation of physical security systems. Jordan 
et al. (1998) discuss the general problem of simulation of 
physical security systems and state that the use of discrete 
event system simulation in the design and evaluation of 
physical protection systems is limited and current ap-
proaches are either very low-cost analytical tools or highly 
costly stochastic models involving human participants. 
Discrete event system simulation might be an alternative 
for those who want to know the responses of a given 
physical protection system under various threat scenarios 
at a moderate cost.  
 Smith et al. (1999) describe a general system structure 
for physical security discrete-event simulation. In this 
structure, there are two different types of simulation enti-
ties: intruders and guards. Intruder entities move through 
the facility in order to reach or acquire a specified target 
and guard entities are trying to detect the intruder entities 
in order to prevent them from achieving their goals. Dis-
cussions in this paper assume a similar setting. 
 One inherent feature in physical security system simu-
lation is its explicit attention to spatial features and spatial 

  
9

behavior. Hence, it is important to formally define a con-
ceptual infrastructure to represent the spatial features of the 
facilities that would then allow modeling these aspects in 
an object-oriented design. Precise reflection of spatial fea-
tures is of vital importance for physical security system 
simulations since most of the cognition and decision mak-
ing activities of the entities will be based on these spatial 
features. 
 Threat detection is primarily performed by vision and 
recognition in our physical security system context. There-
fore, vision is the primary method that is used to perceive 
the environment and it is the main moderator of behavior 
of the entities in our physical security system simulation. 
Static data model and vision are closely related and they 
provide the necessary infrastructure that will let to add ad-
vanced behavioral features to the entities that participate in 
the simulation. 
 The remainder of the paper is organized as follows. In 
Section 2, the details of the conceptual data model are 
given. Then, the relation between this data model and the 
actual simulation is discussed. Methodology used for vi-
sion and some preliminary findings on the performance are 
provided in Section 4. Finally, we conclude in Section 5. 

2 CONCEPTUAL DATA MODEL 

Static aspects of the facilities (i.e. structure and the loca-
tion of buildings, other objects present within the area, 
properties of the materials) will be used by several compo-
nents of the simulation software and hence a common data 
structure should be used in order to increase the overall ef-
fectiveness of the system. This common data structure 
might also be thought of as a standard that dictates design 
rules for different components of the simulation software. 
The data model described in this section defines the con-
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ceptual relationships between different types of data and 
provides a conceptual tool to extract information from fa-
cility drawings. Moreover, it provides a representation hi-
erarchy, which allows a way to describe the facility at dif-
ferent levels of abstraction.  
 The data model is inspired from a natural hierarchical 
leveling such as, at the top level there is the whole facility, 
and as we go deeper in the hierarchy there are buildings, 
floors, rooms and objects in the rooms. However, this natu-
ral representation is not sufficient to cover the relationships 
between different data types that are consumed by the soft-
ware. Furthermore, it also creates some ambiguity while 
running the simulation at various levels of detail. The data 
model that we propose enhances this natural decomposi-
tion. It defines three data types to represent the static fea-
tures of a facility and describes the relationship between 
these data types. To simplify the physical modeling, all 
data types use eight point convention to define the corner 
points of any object of any of the three data type. Three 
different data types are: 
 

• A solid object is any 3-dimensional solid shape. 
• A zone is a 3-dimensional volume that is de-

scribed by its bounding objects. Its distinction 
from a solid object is that zones allow entity 
movement in them. Hence, a zone is basically a 
hollow shape either empty or filled with some-
thing that allows entity movement (e.g. water). 

• A portal is a 3-dimensional shape that is included 
in a bounding object that connects two or more 
zones either visually or letting movement between 
zones (e.g. windows, doors etc.). 

 
 Our data model is represented in the form of a tree-
like structure; the root node (starting node) of the tree cor-
responds to the highest level of abstraction (lowest level of 
detail); as we go further down the tree, the level of abstrac-
tion decreases (higher level of detail). There are several 
levels in the data model and these levels determine the de-
sired precision (fidelity) in the simulation. For example, we 
may want to deal with a building as a solid object. A 
higher level of detail may be defining the object as a hol-
low 3-dimensional object, which is defined by a zone in 
this data model. The next level of detail may be partition-
ing the building into rooms and so on. Each structure in the 
facility may have different representations at different lev-
els. For example, whole facility may be represented as a 
solid cube object in level 0 and it may be represented as a 
hollow cube (zone) in level 1 representation.  
 There are three types of relations that define the con-
nections between different data types in the data hierarchy 
either vertically or horizontally. These relations are: 

• Bounding relation: This relation is used to define 
a zone using some other objects (referred as 
bounding objects) as the boundaries for the zone. 
959
This relation is a horizontal relation in the data hi-
erarchy. 

• Inclusion relation:  Inclusion defines a different 
type of relation for different data types. 
− Zone-object: Objects can be related to zones 

by inclusion relation. This is a horizontal re-
lationship. Defines the objects that are in-
cluded in a volume. (e.g. desk in a room) 

− Zone-zone: Zones can include other zones in 
a horizontal relationship. An example for this 
having rooms in a floor.  

− Object-portal: This relationship can only be 
defined for bounding objects. It connects a 
portal to an object. (E.g. door in a wall). This 
is again a horizontal relationship.  

• Parent-child relation: This type of relation con-
nects different data types at different hierarchical 
levels. Hence, this is a vertical relation. There are 
three different types of parent-child relationships. 
− Zone-zone: A zone can be represented as a 

combination of different zones in a lower hi-
erarchical level. This relation defines an exact 
partitioning and hence the combination of 
zones used in the lower hierarchical level 
should exactly form the zone in the higher hi-
erarchical level.  

− Object-object: An object can be defined as a 
combination of different objects in a lower 
hierarchical level. (e. g. at the higher level, a 
table can be defined as a solid cube which 
can be represented by 8-points. This solid 
cube is then represented as a combination of 
5 different objects in the lower level, one top 
and four legs. The important point here is 
combination of these 5 objects doesn’t neces-
sarily give the cube that is used to represent 
the table at the higher level.) 

− Object-zone: An object can be represented 
as a zone in a lower hierarchical level. Exam-
ple for this type of relationship is having a 
building defined as an object in the higher hi-
erarchical level and as a zone bounded by 
walls, a floor and a ceiling in the lower hier-
archical level. 

 
 In this context, different levels in the tree structure 
represent a vertical relationship, which is a partitioning of 
an object into smaller pieces in order to obtain a better fi-
delity. Inclusion and bounding relationships are horizontal 
relationships and they represent the relationships between 
objects at a single level.  
 A simple example facility is used to illustrate the con-
ceptual data model described. This sample facility (Figure 
1) comprises of two buildings and one building is divided 
into two rooms. First building has a door (D1) and a win-
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dow (W1). Second building has a main entrance door (D2) 
and two windows (W2,W3). There is also another door that 
is located in the wall that separates the two rooms in this 
building.  
 

D1

D2

D3

W1

W2

W3

ZONE 2
ZONE 1

ZONE 4

ZONE 5

ZONE 3

 
Figure 1: Sample Facility 

 
 This sample facility is conceptually described using 
the data model defined in this section (Figure 2). There are 
three hierarchical levels in this conceptual description. 
First level shows the whole facility as a single solid object, 
which is the root of the conceptual description tree. Second 
level introduces three zones. First zone (Zone 1) covers the 
whole facility excluding the two buildings. Zone 2 and 
Zone 3 presents the two buildings in the facility and these 
zones are included in Zone 1. Each zone is bounded by 
solid objects. These bounding objects are simply walls for 
the buildings. Bounding objects for Zone 1 represent the 
boundaries for the facility. One of the bounding the objects 
of Zone 2 includes a door (D1) and another one includes a 
window (W1) as portals. Bounding objects for Zone 3 in-
clude a door (D2) and two windows (W2,W3) as portals. 
For simplicity, only one bounding object for each zone is 
presented in Figure 2. 
 At level 3, Zone 3 is partitioned into two zones (Zone 
4 and Zone 5). Zone 4 and Zone 5 share the all bounding 
objects with Zone 3 except one. Both Zone 4 and Zone 5 
are also bounded by the separator wall, which includes a 
door (D3) as a portal. 
 This conceptual description facilitates running our 
simulations at different fidelity levels. For example, if the 
simulation is running at level 1, only Zone 1, Zone 2, and 
Zone 3 will be present in the simulation along with their 
bounding and included objects. If we need a higher preci-
sion, simulation can be run at level 3. In this level, Zone 1 
and Zone 2 will be present along with their associated ob-
jects. However, Zone 4 and Zone 5 will replace Zone 3.  
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Figure 2: Sample Facility Conceptual Data Model 
 

3 USE OF DATA MODEL IN THE SIMULATION 

Spatial features of the environment will affect the entities 
in two general ways. First, they will limit the movements 
of the entities and secondly, they will obstruct the vision 
and hence impact “who sees whom” information. These 
interactions are captured using two different graphs. The 
former graph represents the possible movements available 
to an entity while the latter represents the possibility of 
visibility allowed by the environment. 
 Both of these graphs can be defined by means of “por-
tals”. For example, consider the facility in Figure 1. For 
this example facility, we have three doors that can allow 
movement and visibility between zones and three windows 
that can allow visibility between zones depending on their 
states.  There can be several states for a portal, some of 
them can be accepted as “open” states (that allow move-
ment and/or visibility through) and some of them can be 
accepted as a “close” states (movement and/or visibility is 
not allowed). 
 Zone movement graph defines the possible move-
ments between zones. Entities in the simulation can move 
from one zone to another zone if there is an edge between 
these two zones and the conditions for this edge are satis-
fied. Entities can move freely within the zones (not collid-
0
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ing with the objects that are in the zone), however, move-
ments between zones will be controlled using the zone 
movement graph. Zone movement graph for example facil-
ity is shown in Figure 3. This figure shows the access paths 
to the different zones of the facility. From Zone 1, Zones 2, 
3, and 4 are accessible, and Zone 5 is accessible through 
Zone 4 only. It should also be noted that Zone 3 decom-
poses to Zone 4 and Zone 5 in a higher levels of detail. 
 

Zone1 Zone2

Zone3

Zone4

Zone5

-Level 1/2

*

-D1 Open

*-Level1

*

-D2 Open

*

-Level 2*

-D2 Open

*
-Level 2*

-D3 Open*

 
Figure 3: Zone Movement Graph 

 
 Teller introduced the concept of potentially visible sets 
(Teller 1992) and discussed the importance of their appli-
cation in virtual environments with a high degree of occlu-
sion. Portal Visibility Graphs use a similar approach and 
show which portals are visible from a certain portal. This 
information is important for the line of sight calculations 
that are introduced in Section 4. Portal Visibility Graph de-
creases the number of objects that are incorporated in visi-
bility calculations and hence the computation required to 
perform line of sight calculations. Portal Visibility Graphs 
are constructed in the pre-processing stage by casting lines 
from several points in a portal to other portals. If any of 
these lines can reach the target portal then an edge is added 
to the Portal Visibility Graph between the vertices that are 
representing these two portals. An example Portal Visibil-
ity Graph for the sample facility is depicted in Figure 4.  
 Figure 4 can be read as follows: from the location of 
door 1, D1, there is a possibility of visibility through door 
D2, and windows W1 and W3. Now assume that there is 
an entity in the simulation which is in Zone 1 and it can 
only see the portal W2. Through portal W2, it may see por-
tals W3, D2 and D3 but portals D1 and W1 are invisible to 
this specific entity. The first immediate conclusion is noth-
ing inside Zone 2 is visible to this entity. The second con-
clusion is Zone 2 can be treated as a single object instead 
of using the bounding objects of Zone 2 in line of sight 
calculations for this entity.  

4 VISIBILITY DETECTION  

Line of Sight (LOS) visibility computations form an im-
portant aspect of simulation models for physical security 
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Figure 4: Portal Visibility Graph 

 
systems. The basic question is to determine all entities that 
a particular entity can see; indeed, in a simulation model, 
such visibility questions arise at every simulation step, and 
these need to be answered a large number of times. The an-
swer to visibility questions determines an entity’s future 
behavior, and so it is important that LOS computations be 
as accurate and efficient as possible. As noted in Darken 
(2004), LOS detection is basically a problem of visibility 
of an entity’s surface. Furthermore, in a 3-dimensional 
simulation model, visibility calculations need to take into 
account not only the attributes of the entity (such as how 
far can it see), but other facility characteristics such as any 
barriers (walls for instance) that obstruct the view.  
 Line-of–sight module described by Smith et al. (1999) 
uses planar barriers and the entities in this module are rep-
resented by a single point. Visibility calculations in this 
module are performed by basic point-to-point ray casting 
and checking whether or not this ray intersects with any 
planes that are representing the barriers. As noted earlier, 
the models of the environment (such as buildings and 
rooms) described in this paper consist of 3-dimensional 
shapes (represented by eight points) and entities are de-
fined by multiple points. Line-of-sight calculations dis-
cussed in this paper use these 3-dimensional definitions. 
 We define the field of vision of an entity by three pa-
rameters – the looking direction, LOS range, and the cone 
half-angle. The LOS range determines how far the entity 
can see, and the looking direction is defined by a vector (in 
3-dimensional space) in which the entity is looking; lastly, 
the actual region of view is represented as a 3-dimensional 
cone (with the vertex at the viewpoint of the entity) that is 
centered around the looking direction vector, with a half 
cone-angle specified by the third parameter above. Visibil-
ity detection then reduces to finding all entities that are 
within the field of view (the 3-dimensional cone) of an en-
tity. 
 We follow the Multiple Ray Casting Approach similar 
to the one discussed in Darken (2004), to determine if an 
1
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entity i can see entity j. Here, we compute the visibility of 
multiple candidate points on entity j’s surface by casting 
rays from the viewpoint of entity i; if all the candidate 
points are not visible, then we conclude that entity j is not 
visible, and if at least one candidate point is visible, we 
conclude that entity j is visible. As per the precision level 
desired, a predetermined number of points representing the 
target entity j are chosen (these can be the positions of the 
entity’s arms, feet, head, and so on). Thus, the basic as-
sumption here is that if a sufficiently large number of 
points representing entity j are chosen, they will correctly 
represent the 3-D object(s) representing the entity in the 
model. 
 We now briefly describe the LOS visibility algorithm. 
The algorithm starts by forming a list of all possibly visible 
target entities; this list contains all entities that are within 
the cone of view of the viewing entity (the ‘source’ entity). 
For each entity in this list, we then check if any candidate 
point representing the entity is visible; a candidate point 
might not be visible if there is a barrier obstructing its 
view. This basically calls for checking if the ray cast from 
the source entity’s viewpoint to a candidate point of a tar-
get entity intersects any barriers in the environment. The 
list of possibly obstructing barriers is then constructed, 
mainly to speed up the overall algorithm. This is done by 
first translating/rotating the 8 corners of a barrier and then 
applying front and back clipping procedures to determine if 
the barrier can obstruct the view; these clipping procedures 
also determine the exact portions of a barrier that may pos-
sibly obstruct the view. After the list of possibly obstruct-
ing barriers is formed, the algorithm then loops through 
each barrier in the list and checks if the barrier obstructs 
any of the candidate points of the target entity; if all candi-
date points are obstructed by some barrier, then the target 
entity is not visible, otherwise the algorithm concludes that 
(a portion of) the target entity is visible. The computations 
to determine if a barrier actually obstructs vision are rather 
involved, and we briefly describe them next. 
 The main idea here is to define a plane perpendicular 
to the ‘looking direction’ vector, and then project all barri-
ers from the set of obstructing barriers to this plane; this 
plane is called the Viewing Plane. The candidate points of 
a target entity are also projected onto the viewing plane, 
and a check is made to see if the projected points are 
within the boundaries of any of the projected barriers. If all 
of the projected candidate points are within the boundaries 
of a (projected) barrier, then the barrier obstructs the view, 
otherwise not. We basically perform Perspective Projec-
tion, since it more realistically models practical situations. 
It should be noted that since we are using perspective pro-
jection, the size of objects projected on the viewing plane 
depends on the focal length, and this focal length is also a 
parameter defined for each viewing entity. It remains to 
determine if a candidate point lies within any projected 
barrier; and this is accomplished by first determining the 
9

convex hull of the projected corners of the barrier (using 
Graham’s Scan algorithm), and then using the Crossing 
Number algorithm to determine if a particular candidate 
point is within the convex hull polygon corresponding to a 
barrier. 
 Thus, LOS computations form a major part of simula-
tion models for physical security systems. The proposed 
visibility detection methodology uses techniques from 
computational geometry and carefully optimizes and 
blends these together, resulting in an efficient and effective 
LOS visibility algorithm. 

4.1 Computational Efforts of LOS Visibility Algorithm 

Since LOS calculations are one of the most intensely used 
component of the simulation package, the execution time 
of the LOS visibility algorithm is of vital importance. In 
order to obtain a basic idea on the computational time re-
quirement of the algorithm, we tested the algorithm using 
randomly generated test cases. Results are summarized in 
the following Table 1. 

 
Table 1: Computational Time 

n Avg (in seconds) CV
10 0.0006 7.7645
20 0.0007 8.4203
30 0.0006 8.5912
50 0.0008 6.7139
75 0.0009 6.0339

100 0.0024 5.3497
150 0.0032 4.4853
200 0.0033 3.6408
250 0.0033 3.5069
300 0.0036 3.2191
400 0.0045 2.8980
500 0.0058 2.7095
600 0.0064 2.5243
800 0.0076 2.0492

1000 0.0089 2.0931  
 

In Table 1, n denotes the number of barriers in each 
test case. Note that the test problems are generated such 
that all the barriers created randomly within the cone of 
view. The LOS visibility algorithm is coded with Java and 
executed using a PC with a Pentium-IV 3 GHz processor 
and 512 MB of RAM running a Windows XP operating 
system. 

As can be clearly seen from Figure 5, the computa-
tional time requirement changes linearly with respect to the 
number of barriers in the cone of view. The trend line fitted 
to the plot has an R2 value of 96%. Even with a number of 
barriers of 1000, the execution of the LOS visibility algo-
rithm does not take more than 0.01 seconds. Based on this, 
we can claim that the LOS visibility algorithm is fast 
enough to be accommodated within the simulation pack-
age. 
62
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Figure 5: Average LOS Visibility Algorithm Execution 
Time (in seconds) 

 

5 CONCLUSION 

Effective modeling of complex human behavior and the 
corresponding decision-making processes is critical for 
simulation-based analysis of physical security systems.  
However, most of the research reported in the literature en-
capsulates very simple, largely pre-determined entity be-
havior models. The central role of visual cognition on en-
tity behavior and the difficulty of explicitly incorporating 
this visual cognition in simulation models is a major cause 
of the limited use of complex entity behavior within these 
simulation models.  Our perception is that the difficulty of 
representing the spatial features of the environment is a 
significant component in the difficulty of modeling visual 
cognition. The conceptual architecture described in this 
paper is an important milestone in this regard since it al-
lows us to formally define the environment and to effec-
tively incorporate the spatial features of the environment 
for visual cognition. Performance tests conducted for the 
line-of-sight algorithm generated good results and we be-
lieve that it is possible to extensively use this algorithm for 
visibility calculations in physical security system simula-
tions. 
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