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ABSTRACT 

We describe an approach based on particle swarm optimi-
zation (PSO) for determining the optimal allocation of 
spares as well as repair resources while satisfying a desired 
availability constraint. The proposed method expands the 
original PSO algorithm to handle stochastic constraints and 
discrete decision variables. Computational results show 
that the proposed approach is efficient for determining the 
optimal choice of spares and repair channels for  multi-
echelon repairable-item inventory systems.  

1 INTRODUCTION 

There is considerable interest in the design and perform-
ance of repairable item inventory systems. The general 
problem to be investigated is the determination of the op-
timal spare levels and repair capacities in a repairable item 
inventory systems in which a finite number of items is de-
sired to be operational at any given time, and in which 
queueing may occur at the repair facilities when all chan-
nels – finite in number – are busy. Consider for example, 
the classical machine repair problem. The situation mod-
eled has a population consisting of M+ sY  machines; we 
desire at all times to have M machines operational, an ad-
ditional sY  machines are spares that support the system 

(i.e. there are sY  machines as cold standby). There are rY  

parallel repair channels. If more than rY  machines require 
repair, a queue forms at the repair facility. Operating times, 
until failure, are exponentially distributed random variables 
with the mean time to failure of any machine denoted by 
1/λ.  When an operating machine fails, it is instantaneously 
sent to the repair facility and a spare, if available, replaces 
the failed machine. Service times for repairs are generally 
distributed with the mean time to repair denoted by 1/μ.  
 A more complicated system consists of a single base 
with a central repair facility as well as a local repair capa-
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bility. When an item fails, there is a known probability, α,  
that it can be repaired at the base [(1 - α)  is the probability 
that it can be sent directly to depot repair]. Of those that 
are sent to base repair, a further fraction β (after undergo-
ing service) cannot be fixed and are sent to depot repair 
 Finding the exact solution of the above models is very 
difficult because of the interdependence of the bases due to 
their joint utilization of the depot repair service. More spe-
cifically, the lead time between the placement of an order 
and the return of the repaired machine to the base is a func-
tion of the total number of bases and the number of back-
orders at each base. Thus, the interdependence between the 
bases results in a very complex lead-time distribution 
which is very difficult, if not impossible to determine. Due 
to the nondeterministic repair and failure rate and the two 
echelon system assumed in the model, elementary queuing 
theory results cannot be used to solve the stationary prop-
erties as has been done in similar research.   
 The optimization problem presented in this paper can 
be formulated as follows. Let Ω∈y  be a )d1( ×  vector 
of decision parameters over which the optimization is to 
occur; the set dR∈Ω  is the discrete admissible set of de-
cision parameters. In our case y represent number of spares 
and number of repair channels at the bases and at depots. 
Let f(y) be the objective function representing the total cost 
(T.cost) of running the system and let ),( ωyig  denote the 
ith performance measure of the system, where ω  is the 
outcome of the random process. Let )],([)( ωyy ii gEg =  
be the ith expected performance of the system.  The gen-
eral mathematical formulation of the problem is given be-
low. 
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where δ  is the minimum desired level of system perform-
ance. We are interested in those systems whose )(gi y  can 
not be obtained through analytical means and therefore 
must be estimated from sample paths, e.g., via stochastic 
simulation. In the next section we propose an algorithm 
based on particles swarm optimization PSO to solve the 
above problem.  
 Most multi-echelon repairable item work has concen-
trated on steady state solution and revolves around the 
METRIC (Multi-Echelon Technique for Recoverable Item 
Control) type of model , which assumes an infinite popula-
tion of items that can fail and infinite repair capacity, so 
that no queue ever forms at the repair facility [Sherbrooke 
[1,2]). Clearly, in many practical situations, this may not 
be the case when there are only a small number of ma-
chines and/or repair facilities. A comprehensive review of 
the relevant literature on METRIC and its extensions can 
be found in  [3,4].     
 Gross et. al. [5] present a closed queuing network 
model for multi-echelon repairable-item inventory model 
with Markovian repair and failure rates. The Markovian 
property enabled the authors to use the closed queuing 
network theory to model the stochastic process and an im-
plicit enumeration algorithm is used to solve the optimiza-
tion problem  
 Ahmed et. al.[6]  present a heuristic integrated ap-
proach of simulated annealing with simulation to deter-
mine the design parameters of multi-echelon repairable-
item inventory system.       
 Recently, a new evolutionary computation technique, 
called particle swarm optimization (PSO), has been pro-
posed and introduced [7,8,9,10]. This technique combines 
social psychology principles in socio-cognition human 
agents and evolutionary computations. PSO has been moti-
vated by the behavior of organisms such as fish schooling 
and bird flocking. Generally, PSO is characterized as sim-
ple in concept, easy to implement, and computationally ef-
ficient. Unlike the other heuristic techniques, PSO has a 
flexible and well-balanced mechanism to enhance and 
adapt to the global and local exploration abilities.    
 In this paper, a novel PSO based approach is proposed 
to optimize the repairable-item inventory system with 
state-dependent repair and failure rates. The proposed 
method expands the original PSO algorithm to handle sto-
chastic constraints and discrete decision variables. Compu-
tational results show that the proposed approach is efficient 
in determining the optimal choice of spares and repair 
channels for multi-echelons repairable inventory systems  
algorithm to handle stochastic constraints and variables in-
tegrality requirements.    

2 PARTICLE SWARM OPTIMIZATION (PSO) 

The PSO algorithm is an evolutionary technique consists of 
a swarm of particles each represents a solution point in a 
8

multidimensional, real valued search space of possible 
problem solution. The particles evaluate their positions 
relative to a goal (fitness) at each iteration, and particles in 
a local neighborhood share memories of their best posi-
tions, then use those memories to adjust their own veloci-
ties, and thus subsequent positions. So by letting informa-
tion about good solutions spread out through the swarm, 
the particles will tend to move to good solution in the 
search space.   
 Suppose that the search space is d-dimensional ( d is 
the number of optimized parameters), then at iteration n the 
jth particle of the swarm )(njY can be represented by a d-

dimensional vector, )](),...,([)( ,1, nynyn djjj =Y , where 

y's are the optimized parameters and )n(y k,j is the posi-
tion of the jth particle with respect to the kth dimension at 
iteration n . The velocity of the flying particles (position 
change) at iteration n can be represented by another d-
dimensional vector, )](),...,([)( ,1, nvnvn djjj =V  where 

)n(v k,j  is the velocity component of the jth particle with 
respect to the kth dimension. As particle moves through the 
search space it keeps track of the best visited position so 
far. For the jth particle, the best previously visited position 
is denoted as )](),...,([)( ,1, npnpn djjj =P .  Defining g as 
the best index of the best particle in the swarm (i.e., the g-
th particle is the best). Hence, 

)](),...,([)( ,1, npnpn dggg =P represent the best position in 
the swarm up to iteration n.  At each iteration the Pj vector 
and the Pg  vector are combined to adjust the velocity along 
each dimension, and that velocity is then used to compute a 
new position for the particle. The swarm is manipulated 
according to the following two equations [7,8]: 
 
Velocity updating  
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Where   
       )(nψ  = inertia weight at iteration n. 
 W1 , W2 =  two positive constants. 

 
The role of the inertia weight ψ (n), in Equation (2), is 
considered critical for PSO convergence behavior. A large 
inertia weight facilitates global exploration (searching new 
areas), while a small one tends to facilitate local explora-
tion, i.e., fine-tuning the current search area. A suitable 
value for the inertia weight usually provides balance be-
tween global and local exploration abilities and conse-
quently results in a reduction of the number of iterations 
required to locate the optimum solution [9].  Parameters 
W1 and W2 are the cognitive and social learning rates, re-
58
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spectively. These two rates control the relative influence of 
the memory of the neighborhood to the memory of the in-
dividual. Recent work reports that choosing larger cogni-
tive parameter , W1, than social parameter, W2, but with 
W1 + W2 4≤  produce better performance [9,11]. 
 
Position updating 
Based on the update velocities, each particle changes its 
position according to the following equation 
 
   )()()1( ,,, nynvny kjkjkj +=+   (3) 

3 ENHANCEMENTS TO THE BASIC PSO 
ALGORITHM  

The basic PSO algorithm presented in (2) and (3) has been 
used in the literature for unconstraint continuous optimiza-
tion problems. This section presents an enhancement to the 
basic PSO algorithm to handle stochastic constraints and 
variables integrality requirements. 

3.1 Constrained Optimization 

Since we are considering a stochastically constrained op-
timization problem in this paper, the PSO algorithm must 
be modified to reflect the feasibility conditions of the sys-
tem as well as the random behavior of the simulation out-
put. To consider the constraints of the system, one can ei-
ther searches the whole space but only keeps records of 
feasible solutions or accept infeasible moves with a pen-
alty. In the later case, the constraints of the problem are re-
laxed and incorporated into the objective function with as-
sociated penalty. The penalty approach has proven to be 
inappropriate to our test problems since it stops at local 
minima, hence we use the PSO algorithm which keeps re-
cords of feasible moves only.  
 Let )],([)( ωyy ii gEg = ;iδ≥  be the ith expected per-
formance constraint of the system where y is the vector of 
decision parameters and ω  is the output from the random 
process. Letting ),( ωyig denote the estimate of )(yg on 
the ith replication and running the simulation n times, the 
estimate for )(g y can be determined over the n replications 

as ∑ =
=

n

i igng
1
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by ,n/)],(gvar[ iωy  where )],(gvar[ iωy  is estimated 

in the usual fashion as 
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. Thus, as-

suming the classical assumption of hypothesis testing to 
hold, we wish to test δ≥)(: ygH o  against the alternative 

hypothesis δ<)(:1 ygH . We accept oH  if 
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)(ˆ)1(),1( ˆ)( yy gntg σδ α−−−>  where )1(),1n(t α−− is the upper 

)1( α− critical point for the t distribution with (n-1) de-
grees of freedom and )(ˆˆ ygσ denotes an unbiased estimator of 

the standard deviation of )(ˆ yg .Using this criterion, the 
original constraints can be transformed into a manageable 
form as follows:  
   δσα >+= −− )(ˆ1,1 ˆ)(ˆ yy gntgUB  

where UB is the upper confidence limit calculated for the 
response )(yg at the )1( α− level.  

3.2 Discrete/Integer Variables. 

In this paper, we consider two different modifications to 
the basic PSO algorithm in order to accommodate integral-
ity requirements as suggested by Gerhard and Sobi-
eszczanski [12]. The first approach is straightforward. The 
position of each particle is modified to represent a discrete 
point, by rounding each position coordinate to its closest 
discrete value after applying position update (3).  
 In the second approach the position of each particle is 
modified to represent a discrete point, by considering a set 
of candidate discrete values about the continuous point, ob-
tained after applying position update. The candidate dis-
crete points are obtained by rounding each continuous po-
sition coordinate to its closest upper and lower discrete 
values. The discrete point to use as the new position for the 
particle is selected from the candidate set of discrete points 
as the point with the shortest perpendicular distance to the 
velocity vector. Experiments with both approaches indicate 
that there is no significant difference in the performance of 
the PSO algorithm when using the first as compared to the 
second approach. Accordingly, we adopt the first approach 
in this paper.  

4 COMPUTATIONAL RESULTS 

To obtain good parameters setting for the proposed PSO 
algorithm, several runs have been performed with different 
values of the PSO key parameters. In our implementation, 
the initial inertia weight )n(ψ  is set to 1.2 and gradually 
decreased to 0.2. The swarm's size was set equal to 5D for 
all test cases where D is the corresponding dimension of 
the problem. W1 is set equal to 2.5 and W2 is set equal to 
1.5.  
 We consider a two-echelon repairable item inventory 
system . We will consider the system in steady state situa-
tion. In this system the decision parameters are spares and 
repair channels at base ( sbY , rbY ) and repair channels at 

the depot ( rdY ). In this system let A1 represent the frac-
tion of time that all M machines are operational, and let A2 
represent the fraction of time that at least 0.9 M machines 
9
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are operational.  If we let kP  to be the probability that k 
machines are operational, then the mathematical formula-
tion can be presented as follows: 

rdrdrbrbsbsb YCYCYCMinimize ++=   Z  

 subject  to 

  ∑
+

=

=≥=
sbYM

Mk
kPA 9.01 δ  

  89.0
9.0

2 ∑
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sbYM

Mk
kPA δ  

 sbY  , rbY  , sdY   are non-negative integers. 
 Gross et. al. [5] solved a problem similar to that de-
scribed in this section for a Markovian system in steady 
state. The Markovian property enabled the authors to use the 
closed queuing network theory to model the stochastic proc-
ess and an implicit enumeration algorithm is used to solve 
the optimization problem. We used the proposed approach to 
find the optimal solution of the problem. The mean failure 
rate of each machine is 1.0. The mean base repair rate is 5.0. 
The mean depot repair rate is 5.0. The fraction of failures 
which are base repairable, α , is 0.5. The cost per spare Csb, 
is 20. The cost per repair channel at the base, Crb, is 8. The 
cost per repair channel at the depot, Crd is 10. The fraction of 
items worked on at the base which require depot repair, β , 
is 0.5. We consider five test cases with M= 5, 10, 20, 30 and 
40. The comparison between our approach and the analytical 
solution using the closed queuing network with the implicit 
enumeration is given in Table 4. The accuracy of our pro-
posed approach can clearly be noticed from the results pre-
sented in Table 1. 

5 CONCLUSIONS 

 In this paper, a novel PSO based approach is proposed to 
optimize the repairable-item inventory model with state-
dependent repair and failure rates as well as steady-state 
environment. The proposed method expands the original 
PSO algorithm to handle stochastic constraints and discrete  
86
variables. Computational results show that the proposed 
approach is efficient in determining the optimal choice of 
spares and repair channels for the multi-echelons repair-
able inventory system. 
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