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ABSTRACT 

In this paper, a new metaheuristic optimization approach is 
developed for the mixed integer decisions with constraints 
within a simulation model. Each decision variable is han-
dled by an optimizer that uses a machine learning tech-
nique.  At the beginning of each iteration, the decisions are 
selected randomly from their decision distributions. The 
performance evaluation is estimated during a short simula-
tion run. The optimizers modify their selection-
distributions for the decisions that prove to be “good” per-
formance judged against an advancing threshold value. 
Then, a new set of decisions is generated for the next run. 
When the average performance reaches a good compe-
tency, the threshold value is advanced to a higher level. 
Thus, the optimizers are forced to learn toward the optimal 
solution. In this paper, after brief explanation of the ap-
proach, we present an application to a challenging engi-
neering problem dealing with pressure-vessel design. 

1 INTRODUCTION 

We can often consider a simulation model as a complex 
random system in which a number decision variables or 
system parameters are to be set to their “optimal” values 
after obtaining the performance measures through a series 
of simulation runs. In simulation models, the optimization 
of the decisions is usually based on a metaheuristic using a 
search technique with a machine learning capability, such 
as Evolutionary Algorithms (Michalewicz, 1994), Simula-
tion Annealing (Gutjahr and Pflug, 1996), and Tabu Search 
(Glover, et al., 1996).  

In this paper, we propose a new machine learning 
technique called “optimizers with learning distributions” as 
the decision-making/learning components of simulation 
models. These optimizers employ an adaptive probabilistic 
search in the continuous domain guided by the perform-
ance evaluations and they learn the pattern of good deci-
sions in their selection distributions. This learning tech-
nique is inspired from of the learning automata theory 
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(LA) (Narendra and Thathachar, 1989). In formal mathe-
matical terms, the decision making problem in simulated 
environments can be stated as follows:  
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and P is a real-valued performance function, which depends 
on the decisions θ and a random variable ω , and J(θ)  is the 
expected value of this performance function. Note that an 
equality constraint can be represented by two inequality con-
straints equivalently. Hence, the model (1) is general.   
 Typically, the random performance function in (1) is 
not known explicitly and can only be estimated with running 
a simulation program. Formally, the optimizer learning tech-
nique can be characterized with the triple {θ, β, A} for de-
signs θ, performance estimation β, and a learning algorithm 
A. The search for the optimal decisions is conducted with the 
decision selection distribution P defined on the decision set 
θ. Initially, the distribution is usually constructed as a uni-
form distribution giving equal probability to every decision 
value. When an optimizer selects a decision θi randomly and 
applies it to a random simulation model with all the other 
optimizers, it receives a (normalized) performance estima-
tion βi from the model after a short run. On the basis of this 
estimation, the automaton modifies its decision selection dis-
tribution according to the learning algorithm A. We adapted 
a particular learning algorithm known as the “reward and 
inaction” (a LR-I automaton in the nomenclature of the LA 
theory) in conjunction with a new moving threshold level to 
simulation models. 

2 GLOBAL OPTIMIZATION OF  
OBJECTIVE FUNCTION 

First, we will consider the objective function and the 
boundary box constraints on the variables. In our imple-
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mentation of optimizers to the continuous decision do-
mains, every continuous decision component is first scaled 
over [0,1) interval and each digit after the decimal-point is 
represented by a discrete optimizer that has a selection dis-
tribution defined on 10 discrete values (0,1,…,9) to the de-
sired level of accuracy. Hence, several optimizers represent 
a continuous decision component. The simulation model 
provides a binary feedback (success or failure) for the ran-
domly selected decisions after comparing to a current 
threshold value. When found successful, the optimizers 
modify their respective selection-distributions as follows: 
At the simulation run n, if βi is 1, 

 
pi(n+1)=pi(n)+a[1-pi(n)] 
    

   pj (n+1) = (1 – a) pj (n)      ∀ j except i 
 

     otherwise,    pj (n+1) = pj (n) ,          ∀ j                    (2) 
 
where a  is small positive learning constant and P(n) is a 
distribution vector whose ith component is the selection-
distribution pi (n) for the optimizer i. For the integer vari-
ables, there is a single selection-distribution defined over 
the discrete values of the decision. Formally, the process 
{P(n) : n ≥ 0} describes a Markov process. The long-term 
convergence properties of the learning algorithm can be 
derived using this Markov property. The development and 
implementations to the simulation models of various forms 
of this machine learning technique can be found in (Ozden, 
1994; and Ozden and Ho 2003) for the discrete decision 
domain in (Ozden, 2005) for the continuous domain.  

Considering a minimization problem, we define a de-
cision set θ as successful if 
 

 Θ∈∀< θTθJ ,)(  (3) 
 
The estimation of performance for a selected decision set 
at the end of a run may deviate from the expected value 
due to the random nature of a simulation model. Therefore, 
sometimes it is possible to reward a mediocre decision set 
erroneously. However, the probabilistic nature of the deci-
sion-making is expected to correct these mistakes in the 
long run. Hence, if the estimated performance of a decision 
setθi is less than the threshold value T, the value β is set to 
1; otherwise to 0. Then, the optimizers update the selection 
distributions according to the formula (2). If the optimizers 
achieve a certain rate of success, with the current threshold 
value after a fixed number of runs, the threshold value it-
self is lowered to a new level as follows:   
 
 T ← γ T, where 0 < γ  < 1. (4) 
 

When the optimizers meet a certain convergence crite-
rion, the search is terminated. For some simulation prob-
lems, it is possible to continue until some decision set 
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achieves very high probability close to 1 as the optimal so-
lution. However, this may require many expensive simula-
tion runs and therefore it may not be feasible for large 
simulation problems. In this case, a less stringent conver-
gence criterion may be adopted. For example, the probabil-
ity of any decision set reaches a high level, such as 0.90. 
Alternately, the termination criteria may be based on the 
success rate of the decisions or the quality of the best solu-
tion discovered. 

3 HANDLING CONSTRAINTS 

There are few methods to deal with the constraints in (1) 
implicitly. The metaheuristics (Coello, 2002) frequently 
use these methods which are usually based on some form 
of the penalty and augmented lagrangean methods that in-
corporate the constraints in the objective function. Here, 
we will introduce another method that takes the advantage 
of the adaptive nature of our method in dealing with the 
objective function and the constraints. The method will 
promote feasible decision making gradually by advancing 
the frontiers of the inequality constraints toward the actual 
values along with the decreasing threshold value for the 
objective value as the approach learns the behavior of the 
problem at hand with experimentation. 
         In the beginning of our approach, the right-hand sides 
values (RHS) of the constraints are computed as the maxi-
mum or the average values using random sampling of the 
variables for a few times using the box-constraints on the 
decision variables. Whether the maximum or the average 
values are used actually depends how restrictive the bound-
ary constraints are. In any case, these relaxed values bi’s of 
the RHS are used for the inequality constraints until the 
threshold value of the objective value is to be advanced 
with the improved performance as explained above. Along 
with the threshold value, the current RHS of one of con-
straints is reduced toward zero in order according  
to the following formula: for the constraint i, 
 
 bi,new = r (γ ) bi (5) 
 
where r (γ ) is a reduction coefficient which is a function of 
the threshold reduction coefficient and is greater than 0 and 
less than 1.  

4 LOCAL OPTIMIZATION OF CONTINUOUS 
VARIABLES 

When the termination criterion is met by the global optimi-
zation, the best feasible solution is used to build the re-
stricted solution space around it by the local optimizer 
(LO). The LO also carries out a random search in this 
space that redefined after a certain probabilistic conver-
gence. More specifically, for each variable there are three 
possible values with some selection probabilities. Initially, 
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one of these values is the best value obtained in the global 
search, say xi’ for the variable θi and the other two values 
are defined around it as ( xi’± α xi’ ) where α is the step 
size as a percentage which is usually less than 0.1. Initially, 
all three points get equal selection probability of 1/3. The 
local search progresses in the same fashion as the global 
search by gradually increasing the probabilities of a feasi-
ble solution that beats the current threshold value that is 
itself advanced intermittently. When any local point 
reaches an aspiration probability level, say 0.9, then the 
search subspace is redefined again around this point with 
the equal probabilities. The step size α is also reduced in-
termittently when no progress is achieved for an extended 
period of time. The final result is produced when a termi-
nation criterion is reached in terms of number of iterations 
or the magnitude of the step size, or no progress for an ex-
tended period of time. 

5 APPLICATION TO AN ENGINEERING 
PROBLEM 

We have applied our probabilistic optimization approach to 
a number of random benchmark problems, but here we will 
go into details of one challenging problem that have also 
been used by many other researcher in the literature. The 
problem is an engineering problem of designing a pressure-
vessel with a cylindrical shape and a hemispherical end. 
The performance reports of the other metaheuristics are 
easily available for this same problem, (Coello, 2002). 
Here, we will apply approach to the deterministic as well 
as probabilistic version of this problem. The deterministic 
version of the problem can be stated as follows: 
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As with the other papers, the boundary conditions used  

on the variables in the application are 0≤ x1 ≤ 99, 0≤ x2 ≤ 
99, 10≤ x3 ≤ 200, and 10≤ x4 ≤ 200. The variables x1 and x2 
take on values only in the multiples of 0.0625, which is the 
thickness of a steel plate used. That is, they are integer 
variables. The variables x3 and x4 are continuous decisions. 
The probabilistic version of the problem is constructed 
with a random objective function as follows: 

 
 )()1()( XfwrXf +=

)
 (6) 
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where r is a uniformly distributed variable over the interval 
[-1, 1] ans w is a weight shich is set to 0.1 in our applica-
tion. 

In application of the approach of this paper to the de-
terministic pressure-vessel problem, we used a learning co-
efficient value of 0.0005 in (2), 0.85 for the parameter γ in 
(4), and r (γ ) = γ /1.75 in (5). The objective function of the 
pressure-vessel was evaluated 100,000 times before the al-
gorithm was terminated. In application of the approach to 
the probabilistic pressure-vessel problem with w=0.1 in 
(6), we used a learning coefficient value of 0.00001 in (2), 
with the same values of other parameters as in the determi-
nistic case. The objective function of the pressure-vessel 
was evaluated 200,000 times before the algorithm was 
terminated. In both cases, the problem was solved 10 times 
to obtain the performance statistics. The results are dis-
played in Table 1.  

First, the problem was solved as a completely continu-
ous problem. The rows 10 and 11 in Table 1  
Show that the results were better than all previous solu-
tions in the literature. Some of the approaches solved the 
problem as a continuous problem and rounded the first two 
variables to the closest integer values. Here, the problem 
was also solved as a mixed integer programming problem. 
The rows 12 and 13 display the results for the deterministic 
and random version of the problem, respectively. The re-
sults of row 12 are more appropriate to compared to the re-
sults of the other approaches in literature. As it can be ob-
served in the table, the performance of the approach of this 
paper turned out to be superior to the other approaches in 
all respects.  

For the random version of the pressure-vessel prob-
lem, the result was also good with respect to the other tech-
niques considering that 10% of the performance evaluation 
might be in error at every objective function evaluation; 
and especially, the low standard deviation is noteworthy to 
mention here. This version of the problem is actually the 
most significant for the simulation problems since we are 
proposing to use our approach in the random simulation 
environment for short batch-runs. 

6 CONCLUSION 

The probabilistic learning approach of this paper found 
very good solution for the pressure-vessel problem. For the 
future research, we will present application to a variety of 
the benchmark mathematical problems as well simulation 
models where the number of variables and constraints of 
different dimensions.  
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Table 1.1 Performance of a number of different Ap-
proaches to the Problem 
Approach Best Mean Worst S. D. 
1) Coello 
Evol. M. Obj 

6069.3 6263.8 6403.5 97.9 

2) Deb 
GenAS 

6410.4 NA NA NA 

3) Kannan 
Aug. Lagrange 

7198.0 NA NA NA 

4) Sandgren 
Branch&Boun 

8129.1 NA NA NA 

5) Coello 
CoEvol Pen. 

6288.7 6293.8 6308.1 7.4 

6) Homaifar 
GA stat. Pen 

6110.8 6656.3 7242.2 320.8 

7) Joines 
GA dyn. Pen. 

6213.7 6691.6 7445.7 322.8 

8)Michalewicz 
Annealing 

6127.4 6660.9 7380.5 330.8 

9) Bean 
Dual GA 

6110.8 6689.6 7411.3 330.5 

10)Ozden (con.; 
ss =10) 

5891.8 6021.4 6222.2 114.4 

11)Ozden(con. 
 w=0.1;ss= 10) 

5910.7 6015.5 6315.1 112.9 

12) Ozden(mix ; 
ss=10) 

6067.0 6185.2 6259.6 60.5 

13)Ozden(mix. 
;w=0.1; ss=10) 

6134.7 6308.9 6422.3 91.4 
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