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ABSTRACT

Kim and Nelson (2005) developed two indifference-zone
procedures for steady-state simulation where the goal is to
find the system with the largest or smallest expected steady-
state performance measure. One of the procedures, called
KN ++, updates a variance estimate as more observations
become available and is proven to be asymptotically valid
when there is no dependence across systems (for example,
there is no use of common random numbers). Their pro-
cedure exhibits significant improvement over other existing
procedures for use in steady-state simulation. In this paper,
we first present a modification of KN ++ that is asymp-
totically valid with the use of common random numbers.
Then, we study how well KN ++ works when data within
a system are independent and identically distributed, but
data between systems may be positively correlated. Specific
applications include the finding-the-best problem when (i)
the data are normal, and (ii) the data are Bernoulli.

1 INTRODUCTION

In simulation, there are at least four types of “ranking-and-
selection” comparison problems that are typically encoun-
tered: finding the best system from a set of competitors,
comparison with a standard, Bernoulli selection, and multi-
nomial selection (Goldsman and Nelson 1998).

For the finding-the-best problem, we wish to find the
scenario with the largest or smallest expected performance
measure among a number of simulated alternatives. This
problem has received significant attention from the simula-
tion community, and procedures developed for this goal are
sometimes divided into two categories depending on whether
a terminating or steady-state simulation is applicable given
the nature of the process being simulated.

In terminating simulations, we usually have well-
defined initial conditions and stopping times for each repli-
cation. An example of such a system is a branch office of
a bank that opens every morning at 9:00 a.m. completely
825
empty and empties out as soon as the last customer who
entered before the closing time of 4:00 p.m. has finished
being served. With terminating simulations, we often take
within-replication averages as basic observations and these
within-replication averages are typically independent and
identically distributed (i.i.d.) normal random variables. A
number of statistically valid procedures have been devel-
oped for the goal of finding the scenario with the largest
or smallest expected performance measure among a num-
ber of simulated systems, assuming that basic observations
are i.i.d. normal. Recent literature includes Nelson et al.
(2001), Boesel et al. (2003), and Kim and Nelson (2001). In
particular, procedure KN (Kim and Nelson 2001) has been
shown to be highly efficient compared to other procedures
in terms of the number of observations required to reach a
decision.

On the other hand, for steady-state simulations, there
are no clear start-up or terminating conditions. An example
of such a situation would be a model of a manufactur-
ing facility which operates 24 hours a day and we are
interested in the long-run performance of a given statistic.
Any procedure developed assuming i.i.d. normality can be
used ‘as is’ for steady-state simulation if one is willing to
make multiple replications or use batch means. However,
Kim and Nelson (2005) argue that for several reasons, the
multiple-replication design approach or simply taking batch
means from a single-replication design are not desirable for
steady-state simulation; but without the multiple replications
or batching, individual raw observations are usually corre-
lated serially (e.g., the wait times of a series of customers)
and therefore problematic. Kim and Nelson (2005) present
two asymptotically valid procedures — KN + and KN ++
— that take stationary (and dependent) data from the single
replication as basic observations. More precisely, suppose
the output data from the single replication satisfy a Func-
tional Central Limit Theorem (FCLT, Billingsley 1968) and
the data are independent across systems—e.g., there is no use
of common random numbers (CRN). Then the procedures
find the best or near-best system with a probability of correct
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selection (PCS) of at least a pre-specified constant, as the
“indifference-zone” (IZ) parameter—the minimum “prac-
tical” difference between systems worth detecting—goes
to zero. Procedure KN ++ shows significant improvement
over other existing procedures for steady-state simulation.

In this paper, we first modify KN ++ so that it is
still asymptotically valid when CRN is employed. Then,
we study the small-sample behavior of KN ++ for specific
i.i.d. data types and compare its performance with existing
specialized procedures for the data type with or without
CRN. Specifically, we test the performance of KN ++ on
the finding-the-best problem when data are i.i.d. normal.
Of course, i.i.d. normal data are a special case of stationary
data, and so they satisfy a FCLT. Therefore, KN ++ still
guarantees asymptotic validity, but the exact validity for a
small sample has not yet been established. We will compare
the performance of KN ++ with KN , which is statistically
valid for small samples.

We also study the performance of KN ++ for the
Bernoulli selection problem. In the Bernoulli problem,
the goal is to find the system with the largest probability of
‘success’. This problem can be considered a finding-the-best
problem where data are 0-1 since the success probability is
the same as the expectation for Bernoulli distributed data.
Bernoulli data are also satisfy the FCLT. Therefore, the
procedure is still asymptotically valid, but the exact validity
(for small samples) is not guaranteed.

The remainder of the paper is organized as follows. In
Section 2, we define notation and give some background.
Section 3 compares the performance of KN and KN ++ for
i.i.d. normal data. Section 4 compares the performance of
KN ++ on Bernoulli distributed data with that of a number
of existing procedures. We present conclusions in Section 5.

2 BACKGROUND

This section provides the full description of KN ++ assuming
that data are i.i.d.—with and without CRN.

We assume that we want to find the system with the
largest expected value. Let Xij be the j th output obser-
vation from system i. For steady-state simulation with
a single replication, Xi1, Xi2, . . . are stationary (and de-
pendent) data collected after a warm-up period. For a
terminating simulation or the Bernoulli selection problem,
we assume that Xi1, Xi2, . . . are i.i.d. data. System i has
the expected (possibly, long-run) value μi = E[Xij ]. In
the Bernoulli selection problem, μi = pi ≡ Pr{Xij = 1}.
For steady-state data, we define the asymptotic variance
constant v2 ≡ limr→∞ rVar(X̄(r)), where X̄(r) is a sample
average of r observations. In the special case that the data
are i.i.d., the variance constant is simply σ 2

i = Var[Xij ];
and the usual sample variance estimator S2

i (r) based on r

observations is used to estimate σ 2
i . For general steady-state
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simulation data, more-sophisticated variance estimators will
be necessary.

Without loss of generality, we can assume that μ1 ≤
μ2 ≤ · · · ≤ μk . Then KN ++ guarantees

Pr{Select system k} ≥ 1 − α provided μk ≥ μk−1 + δ.

KN ++ is distinguished from other procedures in the
sense that it contains a recalculation of the variance esti-
mate at various update points where a certain “continuation
region” for sequential sampling is redefined. First, we need
to define a batching sequence (mr, br), where br is the
number of batches and mr is the batch size at stage r of
sampling. For the asymptotic validity of KN ++ to hold,
a variance estimator of the differences between systems i

and �—denoted by mrV
2
il (r)—must have the strong consis-

tency property, i.e., mrV
2
il (r) → v2

i� with probability one as
mr → ∞ and br → ∞, where v2

i� is the asymptotic variance
constant of the differences between systems i and �. For
additional discussion on variance estimators with the strong
consistency property, see Damerdji (1994, 1995), Damerdji
and Goldsman (1995) and Chien et al. (1997). Kim and
Nelson (2005) study the performance of KN ++ using vari-
ous variance estimators along with several different batching
sequences that ensure the strong consistency of the cho-
sen variance estimators. Although KN ++ shows significant
improvement over KN + in many respects, there is, unfortu-
nately, no convenient way to update the variance estimates
without saving raw data for general batching sequences and
general variance estimators. Therefore, updating variances
might require saving all the past raw data—which can be
a problem due to limited memory space when the number
of systems is large and when the procedure does not stop
for a great deal of time.

Since we are only interested in i.i.d. data in the current
paper, we will not deal with complicated variance estimators
or batching sequences. The usual sample variance S2 is
strongly consistent without batching (i.e., if the batch size
is set to one) as long as the number of observations r goes
to infinity. Also, one can easily update S2(r) on the fly
without saving data (see Damerdji et al. 1997). The upshot
is that for i.i.d. data, procedure KN ++ can be given as
follows:

KN ++ Procedure

Setup: Specify the desired confidence level 1/k < 1 −
α < 1, IZ parameter δ > 0, and first-stage sample
size n0 ≥ 2. Set d = n0 − 1. Calculate the
constants η and c as described below.

Initialization: Let I = {1, 2, . . . , k} be the set of sys-
tems still in contention, and let h2 = 2cη(n0 − 1).
Obtain n0 observations Xij , j = 1, 2, . . . , n0, from
each system i = 1, 2, . . . , k.
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For all i �= �, compute the estimator S2
i�(n0), the

sample variance of the difference between systems
i and �, based on n0 observations.

Update: If we have reached the next update point, then
for all i �= � (i, � ∈ I ), compute η with d = r − 1,
the constant h2 = 2cη(r − 1), and the estima-
tor S2

i�(r), the sample variance of the difference
between systems i and � based on r observations.
Go to Screening.

Screening: Set I old = I . Let

I =
{
i : i ∈ Iold and

X̄i (r) ≥ X̄�(r) − Wi�(r), ∀� ∈ Iold, � �= i
}

,

where

Wi�(r) = max

{
0,

δ

2cr

(
h2S2

i�(r)

δ2 − r

)}
.

Stopping Rule: If |I | = 1, then stop and select the
system whose index is in I as the best.
Otherwise, take one additional observation Xi,r+1
from each system i ∈ I , set r = r + 1, and go to
Update.

Constants: The constant c may be any nonnegative
integer. The constant η is the solution to the
equation

c∑
�=1

(−1)�+1
(

1 − 1

2
I(� = c)

)(
1 + 2η(2c − �)�

c

)− d
2 = β,

where I is the indicator function, β = 1 − (1 −
α)1/(k−1) if the systems are simulated indepen-
dently, and β = α/(k − 1) if CRN is employed.
The constant c = 1 is suggested for use if the
experimenter has no prior knowledge about the
experiment.
The proof of the asymptotic validity of procedure
KN ++ for the stationary case without CRN is
given in Kim and Nelson (2005); the analogous
proof for CRN is given in Malone (2005).

3 NORMAL DATA

We now apply KN ++ to i.i.d. normal data and compare its
performance with that of KN .

3.1 Experimental Setup for I.I.D. Normal Data

We chose the first-stage sample size to be n0 = 10. The
number of systems in each experiment varies over k =
2, 5, 10, 25, 100.

The IZ parameter, δ, was set to δ = σ1/
√

n0, where
σ 2

1 is the variance of an observation from the best system.
Thus, δ is the standard deviation of the first-stage sample
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mean of the best system. A sample variance S2(r) will be
updated every 10 observations.

Two configurations of the true means were used: The
slippage configuration (SC) and monotonically decreasing
means (MDM) configuration. In the SC, μ1 was set to
δ, while μ2 = μ3 = · · · = μk = 0. This is a difficult
configuration for procedures that try to eliminate systems
because all of the inferior systems are close to the best. To
investigate the effectiveness of the procedures in eliminating
non-competitive systems, we also carried out experimenta-
tion with the MDM, where the means of all systems were
spaced evenly apart: μi = μ1−δ(i−1), for i = 2, 3, . . . , k.

For each configuration of the means, we examined the
effects of equal and unequal variances. In the equal-variance
configuration, σi was set to 1. In the unequal-variance
configuration, the variance of the best system was set either
higher or lower than the variances of the other systems. In
the MDM, experiments were run with the variances either
directly proportional or inversely proportional to the mean
of each system. Specifically, we took σ 2

i = |μi − δ| + 1 to
examine the effects of increasing variance (INC) as the mean
increases, and σ 2

i = 1/(|μi − δ|+ 1) to examine the effects
of decreasing variances (DEC) as the mean increases. In
addition, some experiments were run with means in the SC,
but with the variances of all systems either monotonically
decreasing or monotonically increasing (similar to the MDM
configuration).

When CRN was employed we assumed that the cor-
relation between all pairs of systems was ρ, and values of
ρ = 0.02, 0.25, 0.5, 0.75 were tested.

Thus, we tested a total of six configurations: SC with
equal variances, MDM with equal variances, MDM with
increasing variances, MDM with decreasing variances, SC
with increasing variances and SC with decreasing variances.
For each configuration, 1000 macroreplications (complete
repetitions) of the entire experiment were performed. In
all experiments, the nominal probability of correct selection
was set at 1−α = 0.95. To compare the performance of the
different procedures we recorded the total number of basic
observations required by each procedure on each replication
and reported the sample averages over all replications along
with each procedure’s attained PCS.

3.2 Results with I.I.D. Normal Data

Illustrative results are given in Tables 1–4. Each table
displays P̂CS, the Monte Carlo estimate of the probability
of a correct selection, or ̂E(N), the Monte Carlo estimate
of the expected total number of observations.
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Table 1: Monte Carlo P̂CS results for k = 5
in the SC when data are i.i.d. normal.

INC Var DEC Var
ρ KN KN ++ KN KN ++
0 0.96 0.949 0.968 0.958

0.02 0.959 0.947 0.959 0.953
0.25 0.958 0.946 0.953 0.961
0.50 0.960 0.949 0.964 0.963
0.75 0.965 0.952 0.975 0.967

Table 2: Monte Carlo P̂CS results for k = 25
in the SC when data are i.i.d. normal.

INC Var DEC Var
ρ KN KN ++ KN KN ++
0 0.956 0.952 0.981 0.979

0.02 0.966 0.938 0.982 0.980
0.25 0.965 0.946 0.982 0.980
0.50 0.965 0.948 0.991 0.982
0.75 0.965 0.945 0.984 0.982

Tables 1 and 2 show the estimated PCS in the SC
configuration when the numbers of systems are 5 and 25,
respectively. The values of the PCS shown in Tables 1
and 2 are often lower for KN ++ than for KN , particularly
in the SC increasing variance cases. Also, there are some
cases for which KN ++ does not quite appear to satisfy
the PCS requirement—possibly because KN ++ is only
asymptotically valid. In such cases, the discrepancies are
small, e.g., the smallest estimated PCS we observed was
0.938. In addition, it turns out that for larger k with the MDM
configuration, KN ++ easily satisfies the PCS requirement.

Tables 3 and 4 show the average total number of ob-
servations for k = 25 when SC and MDM configurations
are, respectively, employed. We see that if there is no
correlation between the simulated systems, then procedure
KN ++ always requires significantly fewer observations than
KN while still attaining and often exceeding the desired
PCS. For example, when k = 25 in the SC with increasing
variance, the expected number of observations needed in
order to reach a solution is 11,014 if KN is employed, but
only 5,906 when KN ++ is used. The results also show
that the savings in observations realized by using KN ++,
while always significant, are even more pronounced when
the selection problem is “difficult.”

We see that when CRN is used, both procedures are
able to reach a solution much sooner than if the systems
are simulated independently. Further, KN ++ uniformly
requires fewer observations than does KN over all values
of ρ tested.

Thus, whenever the nature of the experiment permits,
CRN should be considered. Moreover, we find that KN ++
is superior to KN in terms of minimizing the total number of
828
Table 3: Monte Carlo ̂E(N) results for k = 25
in the SC when data are i.i.d. normal.

INC Var DEC Var
ρ KN KN ++ KN KN ++
0 11014.1 5905.5 1140.8 738.4

0.02 10895.4 5802.0 1125.6 726.4
0.25 8853.8 4499.1 896.7 598.2
0.50 6634.9 3034.7 647.4 458.3
0.75 4158.2 1574.0 414.3 328.9

Table 4: Monte Carlo ̂E(N) results for k = 25
in the MDM configuration when data are i.i.d.
normal.

INC Var DEC Var
ρ KN KN ++ KN KN ++
0 1443.5 912.2 582.6 436.9

0.02 1443.5 896.0 595.3 433.4
0.25 1151.5 719.9 495.6 382.9
0.50 838.5 535.8 399.9 331.0
0.75 517.4 355.0 307.7 282.3

bservations over all scenarios tested. So although KN ++
r i.i.d. normal data does not have exact statistical validity,

ur results show the procedure is capable of efficiently
lecting a winner at the cost of only a small loss in the

CS.

BERNOULLI DATA

e have seen that the idea of updating variance estimates
as the potential to improve the efficiency of existing proce-
ures for i.i.d. normal data. We now move to the selection
roblem where basic observations are Bernoulli distributed,
d where we wish to select that Bernoulli alternative having
e largest success parameter. Some classical IZ selection

rocedures designed specifically for Bernoulli data include
obel and Huyett (1957), Bechhofer and Kulkarni (1982),
echhofer et al. (1968), and Paulson (1993). Can we do
etter with our asymptotic procedure, originally designed
r normal data?

The procedure due to Paulson (1993), denoted by BP, is
milar to our KN ++ in the sense that it is fully sequential
d eliminates clearly inferior systems at each stage of
mpling. However, it uses another type of IZ known as
e odds ratio formulation, i.e., the ratio of the odds of
ccess for the best system to the odds of success for the
cond-best system. Thus, we wish to select the best system
henever pk/(1−pk)

pk−1/(1−pk−1)
≥ θ , where pk and pk−1 are the

robabilities of success for the best and second-best systems
spectively, and θ is the user-specified odds ratio.

Since BP usually requires the fewest observations to
tisfy a common PCS constraint among these IZ procedures
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under study, it will be the procedure used for performance
comparisons.

BP Procedure

Setup: For the given k, specify the odds ratio θ and
desired confidence level 1 − α.

Sampling: At the mth stage of experimentation (m ≥ 1),
take a random Bernoulli observation, Xim, from
each of the systems i ∈ Rm, where Rm is the set
of all systems that have not yet been eliminated
from contention.

Stopping rule: Let Yim = ∑m
j=1 Xij (i = 1, 2, . . . , k)

and let ei (i = 1, 2, . . . , k, with ei initialized to
∞) denote the stage at which system i was elimi-
nated. Define nim = min(m, ei) as the number of
observations taken from system i through the mth
stage of experimentation. For each system still in
contention, let

gi(m) =
k∑

j=1

θ
Yj,njm

−Yi,njm ,

where j �= i, j = 1, 2, . . . , k, and i ∈ Rm. After
the mth stage of experimentation, eliminate from
further consideration and sampling any system still
in contention (i ∈ Rm) for which

gi(m) >
k − 1

α
,

and set ei = m for such i.
Stop at the first value of m for which only one
system remains in contention.

Terminal decision rule: Select the one remaining sys-
tem as the best.

In order to use KN ++ for Bernoulli selection, a minor
modification is required. Due to the nature of the underlying
Bernoulli random variables in this problem, it is possible that
the first n0 observations will all be either zero or one; and
then we will obtain S2 = 0, which causes the procedure to
stop immediately and possibly leads to an incorrect decision.
To avoid this problem, we need to modify the Initialization
step of KN ++ as follows:

Initialization: Let I = {1, 2, . . . , k} be the set of sys-
tems still in contention, and let h2 = 2cη(n0 − 1).
Obtain n0 observations Xij , j = 1, 2, . . . , n0, from
each system i = 1, 2, . . . , k.
For all i �= �, compute the estimator S2

i�(n0),
the sample variance of the difference between
systems i and �, based on n0 observations.
If all variance estimates are > 0, set the
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observation counter r = n0 and continue to
Screening. Otherwise, take 10 more observations
and recalculate the variance estimates. Con-
tinue to do so until nonzero estimates are obtained.

We now describe the experimental setup.

4.1 Experimental Setup for Bernoulli Data

The goal here is to test the performance of KN ++ with CRN.
Of course, in practice, the experimenter will not be able
to induce a specified amount of correlation, but for Monte
Carlo testing purposes we consider “toy” problems for which
we can induce the same level of correlation between all the
systems and then test the performance implications. In any
case, we generate correlated multivariate Bernoulli data via
the NORTA (NORmal To Anything) method proposed by
Cario and Nelson (1997).

We test the procedure under two primary configurations
of the underlying success probabilities. The first is an
“unfavorable” slippage configuration (SC) of the competing
systems’ pi-values. For purposes of procedure evaluation
we assume that k is the best system and that under the
SC, pk = p and pk−1 = pk−2 = · · · = p1 = p − δ. The
second configuration is a “more favorable” configuration
(MFC) of the pi-values in which pk = p, pk−1 = p −
δ, and pk−2 = · · · = p1 = p − 2δ. In the MFC, all
systems are still fairly competitive with the best system, but
the main competition is between the best and second-best
systems. This configuration will represent a situation where
the experimenter feels that all systems are viable options
for the best (highly competitive with each other) but is
potentially more likely to occur in practice than the very
restrictive SC.

To compare our results to those of Paulson’s procedure,
his odds ratio IZ is easily converted into a difference (given
pk) using

θ = pk/(1 − pk)

(pk − δ)/(1 − pk − δ)
.

In order to determine which value of n0 should be
used, we tested performance for a selection of n0 values
and examined the resulting PCS estimates as well as how
our estimates of E(N) compared to those of Paulson’s
procedure BP. We ran comparisons for various probability
configurations, k = 2, 3, 4, 5, and ρ = 0.05, 0.1, 0.15, 0.2,
0.25, 0.5. Table 5 gives an example of the results for k = 3,
δ = 0.06, and 1 − α = 0.95, under a SC in which the best
pk = 0.85.

These results indicate that a good choice of n0 is 10.
This value almost always results in the lowest number of
total observations. However, some of the PCS values are
lower than the desired 0.95, particularly for larger values of
ρ. This undercoverage is probably related to the fact that our
9
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Table 5: Monte Carlo evaluation of n0 values
for k = 3, δ = 0.06, and 1 − α = 0.95, for
i.i.d. Bernoulli data in the SC with pk =
0.85.

n0 ρ P̂CS ̂E(N) BP ̂E(N)

10 0.05 0.949 475 501
10 0.10 0.948 451
10 0.15 0.944 426
10 0.20 0.943 398
10 0.25 0.938 374
10 0.50 0.913 245
20 0.05 0.948 476
20 0.10 0.947 450
20 0.15 0.943 425
20 0.20 0.941 399
20 0.25 0.939 373
20 0.50 0.914 245
30 0.05 0.950 478
30 0.10 0.948 451
30 0.15 0.947 427
30 0.20 0.944 400
30 0.25 0.942 374
30 0.50 0.916 248

procedure is only asymptotically guaranteed to meet the PCS
constraint; and furthermore, we are dealing with Bernoulli
data here instead of normal data. In addition, as ρ increases,
the Xij values become more and more alike (particularly
when the true differences between the systems are small),
making it harder to obtain good variance estimates.

The PCS values increase as n0 increases since we have
more observations upon which to base our initial variance
estimates. However, the gain in PCS with increased n0 is
not very significant since the procedure updates the variance
estimate anyway every 10 observations (in fact, our PCS
values never drop below 0.90 and are often very close to the
nominal 0.95). Thus, the choice n0 = 10 is reasonable from
a PCS perspective and typically yields low E(N) values.
If the experimenter wants a more certain PCS guarantee,
e.g., when δ is small, a larger value of n0 (30, for instance)
can always be used.

Each experiment was run for 100,000 replications and
results were compared to Paulson’s under the same k, pk ,
and IZ for 1 − α = 0.95. We test values of δ = 0.03, 0.06,
and 0.09, under the SC and MFC for all values of k ≤ 5
and ρ = 0 (no CRN), 0.05, 0.1, 0.15, 0.2, 0.25, and 0.5.
We consider two values of pk = 0.35 and 0.85. All results
are for n0 = 10.

4.2 Experimental Results for Bernoulli Data

A small portion of the results that illustrate some of the key
findings is shown in Tables 6 and 7. As before, P̂CS and
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̂E(N) denote the Monte Carlo estimates of the PCS and
expected value of total observations, respectively.

Table 6: Monte Carlo results for k = 2 and 1−α = 0.95,
for i.i.d. Bernoulli data in the SC with pk = 0.85.

δ ρ P̂CS ̂E(N) BP P̂CS BP ̂E(N)

0.03 0.00 0.951 893 0.954 850
0.03 0.05 0.951 856
0.03 0.10 0.951 804
0.03 0.15 0.950 761
0.03 0.20 0.949 713
0.03 0.25 0.947 669
0.03 0.50 0.937 430
0.06 0.00 0.946 238 0.963 250
0.06 0.05 0.944 225
0.06 0.10 0.943 213
0.06 0.15 0.942 201
0.06 0.20 0.941 187
0.06 0.25 0.937 176
0.06 0.50 0.923 116

Table 7: Monte Carlo results for k = 4 and 1 − α =
0.95, for i.i.d. Bernoulli data in the SC and MFC with
pk = 0.85.

δ ρ Config. P̂CS ̂E(N) BP P̂CS BP ̂E(N)

0.03 0.00 SC 0.957 2871 0.956 2559
0.03 0.05 SC 0.958 2736
0.03 0.10 SC 0.955 2584
0.03 0.15 SC 0.957 2438
0.03 0.20 SC 0.954 2297
0.03 0.25 SC 0.953 2155
0.03 0.50 SC 0.946 1408
0.03 0.00 MFC 0.983 2277 0.983 1823
0.03 0.05 MFC 0.983 2169
0.03 0.10 MFC 0.983 2047
0.03 0.15 MFC 0.984 1934
0.03 0.20 MFC 0.983 1821
0.03 0.25 MFC 0.982 1711
0.03 0.50 MFC 0.979 1127
0.06 0.00 SC 0.953 767 0.959 731
0.06 0.05 SC 0.949 727
0.06 0.10 SC 0.948 690
0.06 0.15 SC 0.947 651
0.06 0.20 SC 0.943 613
0.06 0.25 SC 0.939 571
0.06 0.50 SC 0.907 373
0.06 0.00 MFC 0.982 623 0.986 518
0.06 0.05 MFC 0.981 593
0.06 0.10 MFC 0.980 561
0.06 0.15 MFC 0.979 529
0.06 0.20 MFC 0.978 498
0.06 0.25 MFC 0.976 465
0.06 0.50 MFC 0.961 308

When k = 2, procedure KN ++ beats Paulson’s pro-
cedure over all configurations as long as ρ ≥ 0.10. The
savings when more correlation can be induced can be sig-
nificant. For instance, with k = 2, pk = 0.85 and δ = 0.06,
even a ρ value of 0.15 produces considerable savings, with
an estimated number of observations of 201 versus 250 for
Paulson’s. In the case when k = 3, ρ ≥ 0.15 is sufficient to
produce E(N) values that are less than those of Paulson’s for
0
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all configurations. When k = 4, a ρ value of 0.20 provides
results better than Paulson’s for all configurations, though
a value of ρ ≥ 0.15 suffices when the selection problem is
difficult (say, in the SC). For k = 5, we require a ρ ≥ 0.25
to beat Paulson’s in the MFC case, though ρ = 0.15 is all
that is necessary under the SC.

We also performed a few tests for a “more-difficult”
problem, when δ = 0.01. Table 8 indicates that a value of
ρ ≥ 0.1 is sufficient to provide savings in E(N) when k =
2 or k = 3, at least in the SC.

All of our results have been compared to BP run without
the use of CRN, because Paulson’s procedure is designed to
be used with i.i.d. data. Nevertheless, if we were to arbitrarily
apply CRN to Paulson, that procedure actually becomes less
efficient in terms of E(N) as more correlation is induced
(see Table 9). This inefficiency renders as questionable
the use of Paulson in the presence of correlation between
systems.

Table 8: Monte Carlo results for δ = 0.01 and
1 − α = 0.95, for i.i.d. Bernoulli data in the SC
with pk = 0.85.

k ρ P̂CS ̂E(N) BP P̂CS BP ̂E(N)

2 0.0 0.952 7628 0.955 7289
2 0.1 0.951 6842
3 0.0 0.955 16029 0.954 14621
3 0.1 0.955 14426

Table 9: Performance of BP with use of
CRN, for 1 − α = 0.95.

k ρ pk BP P̂CS BP ̂E(N)

2 0.00 0.35 0.955 334.3
2 0.10 0.35 0.967 341.9
2 0.25 0.35 0.983 353.7
2 0.00 0.85 0.963 248.0
2 0.10 0.85 0.974 252.7
2 0.25 0.85 0.988 261.4

3 0.00 0.35 0.958 700.6
3 0.10 0.35 0.973 708.2
3 0.25 0.35 0.988 724.0
3 0.00 0.85 0.963 496.5
3 0.10 0.85 0.974 503.2
3 0.25 0.85 0.989 511.6

Therefore, the user can be fairly certain to achieve
savings in E(N) using our procedure when ρ ≥ 0.15 for
k ≤ 4 and ρ ≥ 0.25 for k = 5. Of course, the user will
not necessarily know how much correlation will be induced
in a real-world application; but then one could at least
calculate a rough estimate of the correlation based on an
initial sample. However, even if we cannot estimate the
correlation with any accuracy, our procedure is only slightly
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less efficient than Paulson’s when ρ is very small (0.05 to
0.1), particularly for k ≤ 3; so there is little risk in using
it and potentially large savings.

5 CONCLUSIONS

The modified KN ++ procedure exhibits significant savings
in observations for i.i.d. normal data compared to KN and
competitive performances for bernoulli data compared to
Bp in certain circumstances. For i.i.d. normal data, the idea
of updating the variance estimate seems very promising in
terms of producing savings in the number of observations.
However, KN ++ does not guarantee the PCS requirement.
Therefore, if the PCS requirement is a hard constraint, then
KN or some other statistically valid procedures would be
preferred. Otherwise, KN ++ should be a good substitute
of those procedures.

For the Bernoulli selection problem, there are cases
where KN ++ clearly defeats BP in terms of total number of
observations. Use of the modified KN ++ is recommended
when it is important to be able to detect small differences
between the best and second-best systems (δ ≤ 0.1) for the
case when k is small (say, k ≤ 5) or when all of the inferior
systems are considered to be highly competitive with the
best.
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