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ABSTRACT

We present two new variants of the simulated annealing algo-
rithm (with a decreasing cooling schedule) that are designed
for solving discrete simulation optimization problems. We
also provide conditions under which our methods converge
almost surely to the set of global optimal solutions, discuss
the implications of our results for both transient and steady-
state simulations, and provide some numerical results.

1 INTRODUCTION

Consider the following optimization problem

max
θ∈�

f (θ) = E[hθ (Xθ )], (1)

where f : � → R is the objective function, � is the
discrete feasible region, and for each θ ∈ �, Xθ is a
random element in some space Xθ and hθ : Xθ → R is
a deterministic function. Also let �∗ be the set of global
optimal solutions to the problem (1); i.e., �∗ = {θ ∈ � :
f (θ) ≥ f (θ ′) for all θ ′ ∈ �}. We are interested in solving
the problem (1) in situations where the objective function
value f (θ) at any θ ∈ � cannot be evaluated exactly,
but needs to be estimated, for example via a “black-box”
simulation procedure. This situation is common for discrete
simulation optimization problems. Note that the form of f in
(1) is general enough to include the settings where f is either
a transient or a steady-state simulation performance measure.
For some specific examples of optimization problems of the
form (1), the interested reader is referred to Fu (2002).

In recent years, there has been an increasing in-
terest in solving discrete simulation optimization prob-
lems. The recent work includes several new ran-
dom search methods, such as the simulated an-
nealing (SA) algorithms of Gelfand and Mitter (1989),
Fox and Heine (1995), Gutjahr and Pflug (1996), and
Alrefaei and Andradóttir (1999), the stochastic ruler meth-
ods of Yan and Mukai (1992) and Alrefaei and Andradóttir
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(2001, 2005), the stochastic comparison methods of
Andradóttir (1995, 1996, 1999) and Gong et al. (1999), the
nested partitions methods of Shi and Ólafsson (2000) and
Pichitlamken and Nelson (2003), the COMPASS method
of Hong and Nelson (2005), and the BEES methods of
Prudius and Andradóttir (2004, 2005a). For more detailed
overviews on the topic, including discussion of simula-
tion optimization techniques other than random search, the
reader is referred to Andradóttir (1998, 2006), Fu (2002),
and references therein.

In this paper we present two new variants of the SA
algorithm. Both of the proposed methods use a decreasing
cooling schedule as the means for controlling the proba-
bility of moving to seemingly inferior points and use the
state with the highest estimated objective function value
obtained from all the previous observations of the objective
function values as the estimate of the optimal solution. This
approach for estimating the optimal solution has been sug-
gested by Andradóttir (1999). The only difference between
our two variants of the SA algorithm is the way in which
we estimate the objective function values at the current and
candidate solutions in each iteration. In the first method,
only observations obtained in the current iteration are used,
while the second method utilizes all observations obtained
so far at these two points. We also discuss under what
conditions the proposed algorithms converge almost surely
to the set of global optimal solutions �∗ and discuss the
implications of our results for simulation optimization. Fi-
nally, we provide some numerical results which document
the performance of our methods. For a more comprehensive
development of our approaches, convergence proofs, and
additional numerical results, the interested reader is referred
to Prudius and Andradóttir (2005b).

The methods presented in this paper resemble the meth-
ods proposed and analyzed by Gelfand and Mitter (1989),
Fox and Heine (1995), and Gutjahr and Pflug (1996) in
that they are SA algorithms with a decreasing cool-
ing schedule. In terms of the estimator of the op-
timal solution, our methods resemble Algorithm 2 in
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Alrefaei and Andradóttir (1999) in that they use the state
with the highest estimated objective function value as the
estimator of the optimal solution. In our methods, we do not
require the number of observations collected at the current
and candidate solutions considered in a particular iteration to
increase at a specific rate as the number of iterations grows,
as is required in the method of Gelfand and Mitter (1989)
and Gutjahr and Pflug (1996). Hence, our methods require
less computation time per iteration as the number of iter-
ations becomes large. In one of our variants of the SA
algorithm, the number of observations generated per it-
eration is kept constant throughout the search (similar to
Algorithm 2 of Alrefaei and Andradóttir 1999) and in the
second variant, it can be adaptive (similar to the work of
Fox and Heine 1995). Also in our methods, we allow the
probability distribution that controls how a candidate solu-
tion is generated in the neighborhood of a current solution
to depend on the iteration number.

Our second variant of the SA algorithm (see Section 3)
is very similar to the SA algorithm of Fox and Heine (1995),
with the only difference being the estimator of the optimal
solution and hence the mode of convergence. In particular,
both approaches use all observations obtained so far of the
objective function value at each solution to estimate that
objective function value. The convergence analysis pre-
sented by Fox and Heine (1995) shows that the sequence
of current solutions generated by their variant of the SA
algorithm converges in probability to the set �∗ provided
that each feasible solution is sampled infinitely often with
probability one and the SA algorithm for deterministic opti-
mization converges in probability to the set �∗. Rather than
assuming that the sequence of current iterates samples each
solution infinitely often with probability one, we provide
conditions under which this happens. In fact, this is one of
the main contributions in Prudius and Andradóttir (2005b).

This paper is organized as follows. In Sections 2 and 3
we present our new variants of the SA algorithm, discuss the
conditions under which they converge to the set of global
optimal solutions �∗, and also discuss the implications of
these results for simulation optimization. In Section 4 we
provide some numerical results. Concluding remarks are
given in Section 5.

2 A SIMULATED ANNEALING ALGORITHM

In this section, we present one of the SA algorithms pro-
posed in Prudius and Andradóttir (2005b) and state its con-
vergence properties. This algorithm utilizes a decreasing
cooling schedule and the number of observations of the
objective function values taken at the current and candidate
solutions in each iteration is equal to a constant parameter
K . As the estimator of the optimal solution, we use the state
that has the highest estimated objective function value. For
each n ∈ N and θ, θ ′ ∈ �, let Qn(θ, θ ′) be the probability
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of generating the candidate solution θ ′ in iteration n when
the current solution is θ . We need the following definitions
and assumptions:

Assumption 1 � is a finite element set.
Assumption 2 We assume that Qn → Q as n →

∞, where Q is an |�|×|�| transition matrix of an irreducible
Markov chain (MC) and |A| is the cardinality of any set A.

Assumption 3 The cooling schedule {Tn} satisfies

Tn+1 ≤ Tn for all n ∈ N,

lim
n→∞ Tn = 0.

Now we state a variant of the SA algorithm. Note that
for all θ ∈ � and n ∈ N, Cn(θ) is the number of times a
solution θ has been simulated in the first n iterations, and
�n(θ) is the cumulative sum of all observations collected
at the solution θ in the first n iterations. For each n ∈ N,
θn is the current solution, θ ′

n is the candidate solution, and
θ∗
n is the estimator of the optimal solution in iteration n.

Finally, [x]+ = max{x, 0} for all x ∈ R.

Algorithm 1
Parameters: {Qn}, {Tn}, K .
Step 0: Choose a starting point θ0 ∈ �. For all θ ∈ �, let
�0(θ) = 0 and C0(θ) = 0. Let n = 0 and θ∗

n = θ0.
Step 1: Given θn = η, generate θ ′

n ∈ � such that P[θ ′
n =

η′|θn = η] = Qn(η, η′) for all η′ ∈ �.
Step 2: Given θn = η and θ ′

n = η′, generate independent,
identically distributed, and unbiased observations {Xi

η}Ki=1

of Xη and {Xi
η′ }Ki=1 of Xη′ , independent of any past obser-

vations. For θ = η, η′, let

�n+1(θ) = �n(θ) +
K∑

i=1

hθ (X
i
θ )

and Cn+1(θ) = Cn(θ)+K . Moreover, let Cn+1(θ) = Cn(θ)

and �n+1(θ) = �n(θ) for all θ ∈ �, θ 	= η, η′. Calculate
f̂n(θ) = ∑K

i=1 hθ (X
i
θ )/K for θ = η, η′.

Step 3: Given θn = η and θ ′
n = η′, generate Un ∼ U [0, 1]

(independently of all other random elements) and set

θn+1 =
{

θ ′
n if Un ≤ Gn(η, η′),

θn otherwise,

where

Gn(η, η′) = exp

[
−[f̂n(η) − f̂n(η

′)]+
Tn

]
.

Step 4: Let n = n + 1 and select θ∗
n ∈

arg maxθ∈� �n(θ)/Cn(θ) (use the convention 0/0 = −∞).
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Go to Step 1.

Before stating our main convergence result for Algo-
rithm 1, we need to give a few more definitions. For each
θ ∈ �, let N(θ) = {θ ′ ∈ � : Q(θ, θ ′) > 0}, which can
be interpreted as the set of limiting neighbors of θ . Let �̃

be the set of points that are local minima for the objec-
tive function f with respect to the neighborhood graph G

induced by N , i.e.,

�̃ = {
θ ∈ � : f (θ) ≤ f (θ ′), ∀θ ′ ∈ N(θ)

}
.

Observe that under Assumption 2, the condition �̃ = �

implies that f is constant on the feasible space �. Hence,
without loss of generality, we can assume that �̃ is a proper
subset of � because the optimization problem in (1) is
trivial otherwise.

For each θ ∈ �, let f̂ (θ) = ∑K
i=1 hθ (X

i
θ )/K , where

{Xi
θ }Ki=1 are independent and identically distributed random

elements with the distribution of Xθ . Also assume that
{f̂ (θ)}θ∈� are independent. Then define the maximum
relative depth of the objective function in the neighborhood
graph G as

L = max
θ∈�

max
θ ′∈N(θ)

E[f̂ (θ) − f̂ (θ ′)]+.

Let

r = max
θ∈�

max
θ ′∈�

d(θ, θ ′),

where d(θ, θ ′) is the distance of θ ′ from θ measured by the
length (number of edges) of the minimum length path from
θ to θ ′ in G subject to the condition that the path contains
at least one point in � \ �̃ 	= ∅. Note that if r ′ is defined
as r with the exception that the minimum length path need
not contain a point in � \ �̃ (so that r ′ can be viewed as
a true diameter of the graph G), then r ≤ 2r ′.

The following theorem has been proved by
Prudius and Andradóttir (2005b).

Theorem 1 Suppose that Assumptions 1, 2, and 3
hold and that the cooling schedule satisfies

∞∑
n=0

exp

(
− rL

Tn

)
= +∞. (2)

Then the sequence {θ∗
n } generated by Algorithm 1 converges

almost surely to the set �∗.
Also Prudius and Andradóttir (2005b) show that the

Markov chain {θn} generated by Algorithm 1 visits each
feasible solution infinitely often with probability one, pro-
vided that Assumptions 1 through 3 and equation (2) hold
and that �̃ is a proper subset of �. This result is interesting
from the following perspective. Suppose that the SA algo-
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rithm for deterministic optimization studied by Hajek (1988)
and Tsitsiklis (1989) (the same algorithm as Algorithm 1
with K = 1, Xθ being a degenerate random element, and
hθ (Xθ ) = f (θ) for all θ ∈ �) converges in probability
to the set �∗ (for conditions under which this happens
see Hajek 1988 and Tsitsiklis 1989). These two results to-
gether imply that as n gets large, the sequence {θn} tends
to spend more time at “good” solutions, but still it visits
every solution infinitely often.

3 A SIMULATED ANNEALING ALGORITHM
WITH AVERAGING

In this section, we present a modification of Algorithm 1,
state its convergence properties, and discuss the importance
of this result. The main differences between Algorithms 1
and 2 are the following. If θ is a candidate or a current
solution, then the number of observations collected at
θ in iteration n is Kn(θ), which can depend on all the
information gathered by the algorithm in the first n − 1
iterations. Moreover, the estimate of the objective function
value f̂n(θ) is the average of all observations collected
at θ so far. These modifications allow us to weaken the
assumption on the observations of the objective function
values from being independent, identically distributed,
and unbiased to just being strongly consistent, and still
maintain the convergence guarantee of Algorithm 1
(under the additional assumptions given in Assumptions
5 and 6). We are now ready to state the following algorithm:

Algorithm 2
Parameters: {Qn}, {Tn}, {Kn}.
Step 0: Identical to Step 0 of Algorithm 1.
Step 1: Identical to Step 1 of Algorithm 1.
Step 2: Given θn = η and θ ′

n = η′, generate additional

observations {Xi
η}Kn(η)

i=1 of Xη and {Xi
η′ }Kn(η′)

i=1 of Xη′ . For
θ = η, η′, let

�n+1(θ) = �n(θ) +
Kn(θ)∑
i=1

hθ (X
i
θ )

and Cn+1(θ) = Cn(θ) + Kn(θ). Moreover, let Cn+1(θ) =
Cn(θ) and �n+1(θ) = �n(θ) for all θ ∈ �, θ 	= η, η′.
Calculate f̂n(θ) = �n+1(θ)/Cn+1(θ) for θ = η, η′.
Step 3: Identical to Step 3 of Algorithm 1.
Step 4: Identical to Step 4 of Algorithm 1.

We need the following additional assumptions:
Assumption 4 For all n ∈ N and θ ∈ �, Kn(θ) is

strictly positive whenever Cn(θ) = 0. Moreover, for each
θ ∈ �, Cn(θ) → ∞ as n → ∞ provided that θ is sampled
infinitely often.
9
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Assumption 5 For all n ∈ N and θ ∈ �, f̂n(θ)

can take only finitely many values; i.e., we assume finite
precision in the knowledge of f̂n(θ).

Assumption 6 For each θ ∈ �, f̂n(θ) is a strongly
consistent estimator of f (θ) provided that θ is sampled
infinitely often.

Note that Assumption 4 is satisfied if Kn(θ) = K ∈ N
+

for all n ∈ N and θ ∈ �. Also, we do not consider As-
sumption 5 to be a serious restriction because most practical
applications of the SA algorithm are implemented on com-
puters which have finite precision. The same assumption
is used in Fox and Heine (1995).

Let L = maxθ∈� maxθ ′∈N(θ)[f (θ) − f (θ ′)]+.
The following theorem has been proved by
Prudius and Andradóttir (2005b).

Theorem 2 Suppose that Assumptions 1 through 6
hold and that the cooling schedule satisfies equation (2).
Then the sequence {θ∗

n } generated by Algorithm 2 converges
almost surely to the set �∗.

Prudius and Andradóttir (2005b) also show that the se-
quence {θn} generated by Algorithm 2 converges to the set
�∗ in probability provided that the conditions in Theorem 2
are satisfied and Algorithm 2 for deterministic optimization
converges in probability to the set �∗ (for conditions un-
der which this is true, see Hajek 1988 and Tsitsiklis 1989).
The main difference between this result and the result of
Fox and Heine (1995) is that we do not assume that Algo-
rithm 2 samples each solution infinitely often with proba-
bility one, but rather show that this happens under some
mild conditions.

We next discuss the implications of Theorem 2 for
simulation optimization. Note that Kn(θ) is allowed to
depend on the information gathered by the algorithm by
iteration n − 1. This is an extension of the previous work,
where Kn(θ) is usually controlled deterministically. This
extension might be useful, for instance, in situations where a
lot of observations have been collected at θ by iteration n−1
so that the variance of f̂n(θ) is small, and hence collecting
more observations at this point θ might not produce a
considerably better estimate of f (θ). In this situation, it
might be desirable to keep Kn(θ) small. The identification
of good strategies for choosing the parameters Kn(θ) is
beyond the scope of this work.

Another important implication of Theorem 2 is the
following. Algorithm 2 is convergent almost surely to �∗
even with strongly consistent estimators of f (θ); i.e., as long
as

∑n
i=1 hθ (X

i
θ )/n → f (θ) almost surely as n → ∞ for all

θ ∈ �. This is a particularly useful result for steady-state
simulation. In particular, Prudius and Andradóttir (2005b)
show that Algorithm 2 converges almost surely to �∗ when
f is a steady-state performance measure. For a more
detailed discussion on this, the interested reader is referred
to Prudius and Andradóttir (2005b).
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4 A NUMERICAL EXAMPLE

In this section, we present numerical results obtained by ap-
plyingAlgorithms 1 and 2 to solve the discrete simulation op-
timization problem (1) with � = {θ = (θ1, θ2) ∈ N

2 : 0 ≤
θ1, θ2 ≤ 49}, f (θ) = max{f1(θ), f2(θ), 0}, and hθ (Xθ ) =
f (θ) + Xθ , where f1(θ) = −(0.4θ1 − 5)2 − 2(0.4θ2 −
17.2)2 +7, f2(θ) = −(0.4θ1 −12)2 − (0.4θ2 −4)2 +4, and
Xθ is a normally distributed random variable with mean 0
and variance 50 for each θ ∈ �. This objective function
is of interest because it has two hills of different heights
(4 and 6.96), located relatively far apart (the hill of height
4 is centered at (30, 10) and the hill of height 6.96 is
centered at (12, 43) and (13, 43)), and separated by a flat
valley (of height 0). Note that the standard deviation of the
noise is roughly equal to the range of the objective func-
tion values. This makes the response surface highly noisy
and hence this problem is relatively difficult to solve. This
numerical problem was also used in the numerical studies
of Prudius and Andradóttir (2004, 2005a).

Now we describe the implementation details. We ap-
ply Algorithms 1 and 2 using two different neighborhood
structures. The first neighborhood structure is given by

N0(θ) = {(θ ′
1, θ

′
2) ∈ � \ {θ} : |θ ′

i − θi | ≤ 1 for i = 1, 2}.

For this neighborhood structure, for all θ ∈ � and n ∈ N,
we take Qn(θ, θ ′) = 1/|N0(θ)| for all θ ′ ∈ N0(θ) and
0 otherwise. This implementation of Algorithm 1(2) will
be referred to as the Local Algorithm 1(2). The second
neighborhood structure is given by N1(θ) = � \ {θ} for all
θ ∈ �. For this neighborhood structure, for all θ ∈ � and
n ∈ N, we take Qn(θ, θ ′) = 1/|N1(θ)| for all θ ′ ∈ N1(θ)

and Qn(θ, θ) = 0. This implementation of Algorithm 1(2)
will be referred to as the Global Algorithm 1(2).

The parameters for Algorithms 1 and 2 are selected
based on Theorems 1 and 2 above to guarantee the almost
sure convergence of each method. In particular, the cooling
schedule {Tn} for each optimization method is of the form
Tn = C/ log(n + 10) for all n ∈ N, where C is a positive
constant. The value of C is 565, 20, 312, and 14 for Local
Algorithm 1, Global Algorithm 1, Local Algorithm 2, and
GlobalAlgorithm 2, respectively (these values are reasonably
tight upper bounds on the product rL, see equation (2)).
The number K of objective function observations collected
at the current and candidate solutions is 10 for Local and
Global Algorithms 1, while the number Kn(θn) and Kn(θ

′
n)

of objective function observations collected at the current
and candidate solutions in iteration n is equal to 2 for
Local and Global Algorithms 2, independent of the past
information. We choose a relatively large value for K

because of the high variance of Xθ and smaller values for
Kn(θ), where n ∈ N and θ ∈ �, because the averaging in
Algorithm 2 reduces the impact of this large variance. The
0
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initial solution is selected randomly for all four algorithms.
The performance of the algorithms is compared based on
100 independent replications. We used common random
numbers in our experiment in the sense that the initial seeds
for the uniforms required for choosing the initial state in
Step 0 of the algorithms, generating the candidate solutions
in Step 1, estimating the objective function values in Step
2, and selecting θn+1 in Step 3 are the same. Figure 1
shows the average performance of the four approaches as
the simulation effort increases.
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Figure 1: Average Objective Function Value at the Esti-
mated Optimal Solution Versus the Number of Objective
Function Evaluations

It is obvious from Figure 1 that Global Algorithms
1 and 2 perform considerably better in this example than
their local counterparts. This can be explained by the
fact that an initial solution might be far away from the
subregions containing good solutions and it might take the
two local algorithms many iterations to identify a good
subregion. The reason why Global Algorithm 2 performs
worse than Global Algorithm 1 in the beginning of the search
is that Global Algorithm 2 collects only 2 observations of
the objective function values at the current and candidate
solutions (as opposed to 10 in Global Algorithm 1) and
hence, the objective function estimates are initially very
noisy. But as the search progresses, Global Algorithm 2
becomes more conservative in terms of moving to worse
points because better objective function estimates become
available and the temperature values are much lower (note
that the C value for Global Algorithm 2 is lower than the
C value for Global Algorithm 1 and that Global Algorithm
2 completes more iterations than Global Algorithm 1 for a
given amount of computer effort because K is greater than
Kn(θ) for all θ ∈ �). The above discussion suggests that
Global Algorithm 2 might perform better if Kn(θ) were
decreasing in n for each θ ; see also Section 3.
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5 CONCLUSION

In this paper, we have proposed two new variants of the SA
algorithm with a decreasing cooling schedule for solving
discrete simulation optimization problems. Our methods
differ from each other only in the way in which the estimates
of the objective function values at the current and candidate
solutions are obtained in each iteration. In the first method,
only observations obtained in the current iteration are used,
while the latter method utilizes all observations obtained
so far at these points. Our approaches are guaranteed to
converge almost surely to the set of global optimal solutions
under mild conditions. A numerical example has been
provided that documents the performance of our approaches.
More numerical studies are of course required to adequately
understand the behavior of the proposed methods and to
compare our approaches to competing methods.
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