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ABSTRACT

An experimental performance evaluation of ASAP3 is pre-
sented, including several queueing systems with characteris-
tics typically encountered in practical applications of steady-
state simulation analysis procedures. Based on the method
of nonoverlapping batch means, ASAP3 is a sequential pro-
cedure designed to produce a confidence-interval estimator
of a steady-state mean response that satisfies user-specified
precision and coverage-probability requirements. ASAP3 is
compared with its predecessor ASAP and the batch means
procedure of Law and Carson (LC) in the following test
problems: (a) queue waiting times in the M/M/1/LIFO,
M/H2/1, and M/M/1 queues with 80% server utilization;
and (b) response (sojourn) times in a central server model
of a computer system. Regarding conformance to the given
precision and coverage-probability requirements, ASAP3
compared favorably with the ASAP and LC procedures.
Regarding the average sample sizes needed to satisfy pro-
gressively more stringent precision requirements, ASAP3’s
efficiency was reasonable for the given test problems.

1 INTRODUCTION

In discrete-event simulation, we are often interested in es-
timating the steady-state mean µX of a stochastic output
process {Xj : j = 1, 2, . . .} generated by a single, prolonged
simulation run. Assuming the target process is stationary
and given a time series of length n that is part of a single re-
alization of this process, we see that a natural point estimator
of µX is the sample mean, given by X(n) = n−1 ∑n

j=1 Xj .
We also require some indication of the precision of this
point estimator; and typically we construct a confidence
interval (CI) for µX with a user-specified probability 1 −α

of covering the point µX, where 0 < α < 1. The CI for µX
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should satisfy two criteria: (i) it is approximately valid—
that is, its coverage probability is sufficiently close to the
nominal level 1−α; and (ii) it has sufficient precision—that
is, it is narrow enough to be meaningful in the context of
the application at hand.

In the simulation analysis method of nonoverlapping
batch means (NBM), the sequence of simulation-generated
outputs {Xj : j = 1, . . . , n} is divided into k adjacent
nonoverlapping batches, each of size m. For simplicity, we
assume that n is a multiple of m so that n = km. The
sample mean for the j th batch is

Yj (m) = 1

m

mj∑
i=m(j−1)+1

Xi for j = 1, . . . , k; (1)

and the grand mean of the individual batch means,

Y = Y (m, k) = 1

k

k∑
j=1

Yj (m) , (2)

is used as a point estimator for µX (note that Y (m, k) =
X(n)). We construct a CI estimator for µX that is centered
on a point estimator like (2), where in practice we may
exclude some initial batches to eliminate the effects of
initialization bias.

If the batch size m is sufficiently large so that the batch
means {Yj (m) : j = 1, . . . , k} are approximately inde-
pendent and identically distributed (i.i.d.) normal random
variables with mean µX, then we can apply classical re-
sults concerning Student’s t-distribution (see, for example,
Alexopoulos and Goldsman 2004) to compute a confidence
interval for µX from the batch means. If the original
simulation-generated process {Xj : j = 1, . . . , n} is sta-
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tionary and weakly dependent as specified, for example, in
Theorem 1 of Steiger and Wilson (2001), then it follows that
as m → ∞ with k fixed so that n → ∞, an asymptotically
valid 100(1 − α)% CI for µX is

Y (m, k) ± t1−α/2,k−1
Sm,k√

k
, (3)

where t1−α/2,k−1 denotes the 1 − α/2 quantile of Student’s
t-distribution with k − 1 degrees of freedom, and

S2
m,k = 1

k − 1

k∑
j=1

[
Yj (m) − Y (m, k)

]2

is the sample variance of the k batch means for batches of
size m.

Conventional NBM procedures such as ABATCH and
LBATCH (Fishman and Yarberry 1997, Fishman 1998) and
the procedure of Law and Carson (1979) are based on
(3); and they are designed to determine the batch size, m,
and the number of batches, k, that are required to satisfy
approximately the assumption of i.i.d. normal batch means.
If this assumption is satisfied exactly, then we will obtain
a CI whose actual coverage probability is exactly equal to
the nominal level 1 − α.

By contrast, the more recent NBM procedures ASAP
(Steiger 1999; Steiger and Wilson 1999, 2000, 2002a,
2002b) and ASAP2 (Steiger et al. 2002) are designed to de-
termine a batch size and an initial warm-up period sufficient
to ensure that batch means computed beyond the warm-up
period are approximately multivariate normal with iden-
tically distributed marginals (that is, they approximate a
stationary Gaussian process) but are not necessarily inde-
pendent. If the resulting batch means are correlated, then
the classical NBM t-ratio underlying (3) does not possess
Student’s t-distribution with k − 1 degrees of freedom so
that an appropriate modification of (3) is required to yield
an approximately valid CI for µX.

Both ASAP and ASAP2 are designed to adjust (3) so as
to account for any correlations among the batch means that
those procedures finally deliver; and the required correlation
adjustment is based on an inverse Cornish-Fisher expansion
for the classical NBM t-ratio. There is substantial experi-
mental evidence that when ASAP or ASAP2 is applied with a
user-specified absolute- or relative-precision requirement for
the final delivered confidence interval, either procedure out-
performs conventional NBM procedures such as ABATCH
and LBATCH in a large class of steady-state simulation
models (Steiger and Wilson 2002a, Steiger et al. 2002).
However, when either ASAP or ASAP2 is applied without
a precision requirement, the delivered confidence intervals
may exhibit excessive variability in some applications—
that is, the variance and coefficient of variation of the CI
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half-lengths may be unacceptably large (Steiger and Wilson
2002a; Steiger et al. 2002; Lada, Wilson, and Steiger 2003).

In this article we examine the performance of ASAP3, a
refinement of ASAP and ASAP2 that retains the advantages
of its predecessors but is specifically designed to prevent
excessive CI variability even in the absence of a precision
requirement. While Steiger et al. (2005a) summarize the
performance of ASAP3 when it is applied to problems
constituting a kind of “torture test” designed to elicit worst-
case behavior, in this article we report the performance
of ASAP3 in selected queueing-system simulations whose
characteristics are more nearly typical of a broad class
of steady-state simulation applications. In particular the
following test processes are used: (a) queue waiting times
in the M/M/1/LIFO, M/H2/1, and M/M/1 queues with
80% server utilization; and (b) response (sojourn) times in
a central server model of a computer system. Except for
the M/M/1 queue waiting times, Steiger (1999) finds that
both ASAP and the Law and Carson (LC) procedure exhibit
problematic behavior in all these test processes; hence in this
article we limit our experimental performance evaluation to
a comparison of ASAP, ASAP3, and the LC procedure.

This paper is organized as follows. In §2 we provide a
brief overview of ASAP3. In §3 we summarize some of the
results of our experimental performance evaluation, and in §4
we summarize the results of an empirical efficiency analysis
of ASAP3. Finally in §5 we present our main conclusions.
Full details of the ASAP3 algorithm are available in Steiger
et al. (2005a); see also Steiger et al. (2004). For complete
details on the performance evaluation summarized in this
article, see Steiger, Lada, and Wilson (2005b).

2 OVERVIEW OF ASAP3

Figure 1 displays a high-level flow chart of ASAP3. The
procedure operates as follows. The series of simulation
outputs is divided initially into k = 256 batches, each
of a user-specified size m (where the default initial batch
size m = 16); and the corresponding batch means are
computed as in (1). The first four batches are ignored to
reduce the potential effects of initialization bias, and the
remaining k′ = k − 4 = 252 batch means are organized
into adjacent nonoverlapping groups, where each group
consists of four consecutive batch means. We select every
other group of four consecutive batch means to form a
sample of 32 four-dimensional vectors that we will test for
stationary multivariate normality. If this test is failed, then
the batch size m is increased by the factor

√
2; additional

data are obtained; and the process of computing 256 batch
means with the new batch size and testing for multivariate
normality proceeds as outlined above using all accumulated
data. ASAP3 iteratively performs this sequence of steps,
systematically decreasing the significance level δ for the
multivariate normality test on successive iterations until
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Figure 1: High-level Flow Chart of ASAP3
that test is finally passed. (See §3.1 of Steiger et al. 2005a
for further explanation of this issue.)

Upon accepting the hypothesis of stationary multivari-
ate normality of the batch means, we fit a first-order au-
toregressive (that is, AR(1)) time series model to the 252
batch means that remain after skipping the first group of
four batch means. Adapting the notation of Box, Jenkins,
and Reinsel (1994) to the nomenclature used here, we let{
Ỹj−4 ≡ Yj (m) − µX : j = 5, . . . , k

}
denote the corre-

sponding deviations of the truncated batch means from the
unknown steady-state mean µX. The �th observation of
such an AR(1) process can be expressed as

Ỹ� = ϕỸ�−1 + a� for � = 1, 2, . . . , (4)

where the autoregressive parameter ϕ ∈ (−1, 1) and {a�}
are i.i.d. normal residuals with mean 0 and variance σ 2

a .
After fitting the AR(1) model (4) to the truncated batch

means {Yj (m) : j = 5, . . . , k}, we apply a normalizing arc
sine transformation to the autoregressive parameter estimator
ϕ̂ so as to test the null hypothesis that the correlation between
adjacent batch means (that is, ϕ) is at most 0.8 versus the
alternative hypothesis that ϕ > 0.8. We have found that the
condition ϕ > 0.8 is associated with excessive variability
in the CIs delivered by ASAP and ASAP2; for further
explanation of this phenomenon, see §3.2 of Steiger et al.
2005a. If the null hypothesis is rejected, then the batch
count is retained; the batch size m is increased by a factor
projected to reduce the lag-one correlation between batch
means to the threshold 0.8; additional data are obtained;
and the process of computing batch means, fitting an AR(1)
model, and testing the autoregressive parameter estimator
proceeds as outlined above. ASAP3 iteratively performs
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the sequence of steps described in this paragraph until we
finally obtain a batch size m for which we accept the null
hypothesis of nonexcessive correlation between adjacent
batch means.

Next ASAP3 constructs a CI for µX that has been
adjusted to account for the remaining (nonexcessive) cor-
relations between the k′ batch means for batches of the
current size m. The correlation adjustment uses an inverse
Cornish-Fisher expansion (Stuart and Ord 1994) for the
classical NBM t-ratio

t = [
Y (m, k′) − µX

] /√
S2

m,k′
/
k′; (5)

and the terms of this expansion are computed from the
parameter estimates ϕ̂ and σ̂ 2

a that are obtained by fitting
the AR(1) model (4) to the current set of k′ truncated
batch means. Based on this approach, a correlation-adjusted
100(1 − α)% CI for µX is

Y (m, k′) ± (6)[(
1
2

+ κ̂2

2
− κ̂4

8

)
z1−α/2 + κ̂4

24
z3

1−α/2

] √
V̂ar[Y (m)]

k′ ,

where: z1−α/2 denotes the 1 −α/2 quantile of the standard
normal distribution; κ̂2 and κ̂4 respectively denote estima-
tors of the second and fourth cumulants of the t-ratio (5);
V̂ar[Y (m)] denotes an estimator of the variance of the batch
means; and the statistics κ̂2, κ̂4, and V̂ar[Y (m)] are computed
from ϕ̂ and σ̂ 2

a as detailed in Steiger et al. (2005a).
If additional observations of the target process must

be generated by the user’s simulation model before a CI
can be delivered that has the form (6) and the required
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precision, then ASAP3 estimates a new, larger sample size
based on the ratio of the current iteration’s CI half-length
to the desired CI half-length as detailed in §3.4 of Steiger
et al. (2005a). Then ASAP3 must be called again with
the additional data; and this cycle of simulation followed
by analysis may be repeated several times before ASAP3
finally delivers a CI with the required precision.

Subsequent iterations of ASAP3 that are performed
to satisfy the user-specified precision requirement do not
repeat the test of the overall set of batch means for stationary
multivariate normality; but on every iteration of ASAP3,
we fit an AR(1) process to the latest set of batch means, test
the hypothesis that ϕ ≤ 0.8, and if necessary increase the
batch size by the updated factor that is currently projected to
reduce the lag-one correlation between batch means to the
threshold 0.8. Thus each additional iteration of ASAP3 that
is performed solely to satisfy the precision requirement will
involve the following operations: (i) obtaining additional
simulation-generated data; (ii) recomputing the batch means
with a new batch size or computing additional batch means
of the same size; (iii) retesting the hypothesis that ϕ ≤ 0.8
with progressively larger batch sizes until that hypothesis is
accepted; and (iv) reconstructing the CI for µX and testing
that CI for conformance to the user’s precision requirement,
if necessary computing the total sample size required for the
next iteration of ASAP3. Successive iterations of ASAP3
involving operations (i)–(iv) above are performed until the
precision requirement is met.

ASAP3 requires the following user-supplied inputs:

• a simulation-generated output process {Xj : j =
1, . . . , n} from which the steady-state expected
response µX is to be estimated;

• the desired CI coverage probability 1 − α, where
0 < α < 1; and

• an absolute or relative precision requirement spec-
ifying the final confidence-interval half-length in
terms of (i) a maximum acceptable half-length H ∗
(for an absolute precision requirement); or (ii) a
maximum acceptable fraction r∗ of the magni-
tude of the CI midpoint (for a relative precision
requirement).

ASAP3 delivers the following outputs:

• a nominal 100(1 − α)% CI for µX that satisfies
the specified absolute or relative precision require-
ment, provided no additional simulation-generated
observations are required; or

• a larger total sample size n to be supplied to ASAP3
when it is executed again.

A formal algorithmic statement of ASAP3 along with
a detail description of the algorithm is given in Steiger et
al. (2004, 2005a). A stand-alone Windows-based version of
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ASAP3 and a user’s manual are available online via Steiger
et al. (2003).

3 EXPERIMENTAL PERFORMANCE
EVALUATION

In Steiger et al. (2004, 2005a) we compared the performance
of ASAP3 with that of ABATCH (Fishman and Yarberry
1997, Fishman 1998) and ASAP2 (Steiger et al. 2002) in
a suite of test problems that were deliberately selected to
provide extreme examples of correlated simulation output
processes, some of which also exhibit substantial initializa-
tion bias or marked nonnormality—namely,

1. the M/M/1 queue waiting time process with a
steady-state server utilization of 0.9 and an empty-
and-idle initial condition;

2. the AR(1) process with autoregressive parameter
value of 0.995, steady-state mean of 100, and initial
condition of zero; and

3. the Autoregressive-to-Pareto (ARTOP) process ob-
tained from a standardized, stationary version of
process 2 above by inversion so that the result-
ing process has marginal distributions with finite
mean and variance but with infinite skewness and
kurtosis.

In this article we examine the performance of ASAP3 on
test problems that are more nearly typical of practical appli-
cations, and we compare the performance of ASAP3 with
that of ASAP and the LC procedure.

Steiger (1999) identifies three queueing systems for
which estimation of the steady-state mean sojourn or queue-
ing times are particularly problematic for both ASAP and
the LC procedure: the Central Server Model 3 of Law and
Carson (1979); the M/M/1/LIFO queue with server uti-
lization 0.8; and the M/H2/1 queueing system with server
utilization 0.8. Although they are analytically tractable,
these systems exemplify the output-analysis problems aris-
ing in a broad class of steady-state simulation applications;
thus they facilitate a direct comparison of the performance
of ASAP3 with that of the LC procedure as well as a
demonstration of the performance improvements achieved
by ASAP3 over the original ASAP algorithm.

The following subsections summarize the results for
the three simulation systems listed above, as well as the
results for queue waiting times for the M/M/1 queueing
system with server utilization 0.8. For each system, 400
replications of ASAP3 were performed for nominal 90%
and 95% CIs. For the ASAP and LC procedures, the
available experimental results for the four selected systems
only include 100 replications of nominal 90% CIs. The
coverage estimators for ASAP3’s CIs have a standard error
of approximately 1.5% for nominal 90% CIs and a standard
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error of approximately 1% for nominal 95% CIs. The
coverage estimators for ASAP’s and Law and Carson’s
nominal 90% CIs have a standard error of 3%.

3.1 Central Server Model 3 of Law and Carson (1979)

Central Server Model 3 of Law and Carson (1979) is one
of four computer-system models used by Steiger (1999) to
evaluate the performance of ASAP and the LC procedure.
This model consists of a CPU (the central server) and two
peripheral units so that there are M = 3 service centers in
this system. The system has a fixed number jobs, N = 8,
in it. When a job is finished at the CPU, it leaves the
system with probability p1 (in this case p1 = 0.0) and is
immediately replaced with another job at the CPU queue.
If the job does not leave the system, then it is routed to a
peripheral unit. The probability that the job is routed to unit
i from the CPU is pi , i = 2, . . . , M; and we take p1 = 0.9
and p2 = 0.1 in this example. After getting service at one
of the peripheral units at rate µi (so that the corresponding
service time is exponentially distributed with mean 1/µi),
the job leaves the system and is immediately replaced by a
job joining the CPU queue. Law and Carson (1979) used
the service rates µ1 = 1, µ2 = 0.45, and µ3 = 0.05 in
this system. The process of interest is the response time of
a job, i.e., the time between its arrival at the CPU queue
and its departure from the system; and the corresponding
steady-state expected value is 18.279. The system’s initial
condition consisted of 5, 1, and 2 customers at service
centers 1, 2, and 3, respectively.

Out of a suite of twenty test problems used to evaluate
the performance of the original ASAP algorithm, Steiger
(1999) reports that the Central Server Model 3 was the
only test problem for which the LC procedure significantly
outperformed ASAP. Table 1 shows that the undercoverage
problems experienced withASAP were largely eliminated by
ASAP3. The coverages for the ASAP3 and LC procedures
were comparable for this system; however ASAP3 required
significantly larger sample sizes on average. Asymptotically,
ASAP3 performed very well, delivering confidence intervals
that were close to the nominal level.

3.2 M/M/1/LIFO Queue

In the following discussion, we let M and H2 denote,
respectively, the exponential and hyperexponential distribu-
tions with coefficients of variation 1 and 2. In this section
we present results for the queue waiting time process in
the M/M/1/LIFO queue with server utilization τ = 0.8
and last-in-first-out (LIFO) queueing discipline. The mean
interarrival time is 1, and no customers are present at time
zero. The steady-state mean waiting time in the queue for
this system is 3.20.
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Table 1: Performance of Batch Means Procedures for the
Queue Waiting Time Process in Central Server Model
3 of Law and Carson (1979) Based on Independent
Replications of Nominal 90% and 95% CIs

Precision Nominal 90% CIs 95% CIs
Requirement ASAP ASAP3 LC ASAP3

NO PRECISION
# replications 100 400 100 400
avg. sample size 2,277 18,447 1,152 18,447
coverage 78.0% 87.0% 87.0% 92.3%
avg. rel. precision 0.074 0.032 0.097 0.038
avg. CI half length 1.350 0.581 0.694
var. CI half length 0.135 0.033 0.047
±15% PRECISION
# replications 100 400 100 400
avg. sample size 2,277 18,447 1,152 18,447
coverage 78.0% 87.0% 87.0% 92.3%
avg. rel. precision 0.074 0.032 0.097 0.038
avg. CI half length 1.350 0.581 0.694
var. CI half length 0.135 0.033 0.047
±7.5% PRECISION
# replications 100 400 100 400
avg. sample size 3,389 18,447 3,740 18,460
coverage 79.0% 87.0% 88.0% 92.3%
avg. rel. precision 0.058 0.032 0.059 0.038
avg. CI half length 1.050 0.581 0.692
var. CI half length 0.028 0.033 0.044
±1.00% PRECISION
# replications 400 400
avg. sample size 164,176 231,861
coverage 87.3% 95.5%
avg. rel. precision 0.010 0.010
avg. CI half length 0.176 0.177
var. CI half length 5.9E-5 5.3E-5

For the M/M/1/LIFO queue waiting time process,
Steiger (1999) and Law and Carson (1979) report under-
coverage for the cases of no precision and 15% precision;
and Table 2 shows that ASAP3 outperformed ASAP and
the LC procedure in these cases.

3.3 M/H2/1 Queue

In this section we report results for the M/H2/1 queueing
system with hyperexponential service times and a server
utilization τ = 0.8. The mean interarrival time is 1, and no
customers are present at time zero. The steady-state mean
waiting time in the queue for this system is 8.0. Table 3
summarizes the results we obtained by applying ASAP3
and the LC procedure to the queue waiting times generated
by this system

From Table 3 we concluded that ASAP3 significantly
outperformed ASAP in virtually every respect. In the no
precision case, ASAP delivered nominal 90% CIs whose
empirical coverage was only 76%; moreover the variance
of the CI half-length was 43.7. By contrast in the no
precision case ASAP3 delivered nominal 90% CIs with
empirical coverage of 87.8%; and the variance of the CI
half-length was 0.5962. Moreover in the no precision case,
the LC procedure delivered 88% CI coverage but required
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Table 2: Performance of Batch Means Procedures for
the M/M/1/LIFO Queue Waiting Time Process Based
on Independent Replications of Nominal 90% and 95%
CIs

Precision Nominal 90% CIs 95% CIs
Requirement ASAP ASAP3 LC ASAP3

NO PRECISION
# replications 100 400 100 400
avg. sample size 5,025 53,958 3,120 53,958
coverage 72.0% 87.0% 64.0% 92.5%
avg. rel. precision 0.210 0.082 0.236 0.098
avg. CI half length 0.652 0.261 0.312
var. CI half length 0.074 0.106 0.008
±15% PRECISION
# replications 100 400 100 400
avg. sample size 14,317 54,017 13,944 54,265
coverage 77.0% 86.8% 76.0% 92.8%
avg. rel. precision 0.119 0.081 0.131 0.096
avg. CI half length 0.372 0.260 0.308
var. CI half length 0.004 0.004 0.005
±7.5% PRECISION
# replications 100 400 100 400
avg. sample size 57,539 68,325 74,624 90,911
coverage 82.0% 87.5% 84.0% 92.5%
avg. rel. precision 0.062 0.069 0.064 0.071
avg. CI half length 0.196 0.219 0.226
var. CI half length 6.0E-4 5.1E-4 2.9E-4
±3.75% PRECISION
# replications 400 400
avg. sample size 258,228 371,072
coverage 90.8% 95.5%
avg. rel. precision 0.036 0.036
avg. CI half length 0.115 0.115
var. CI half length 3.2E-5 4.1E-5

an average sample size of 86,144 while ASAP3 required
an average sample size of 42,022. At the 15% and 7.5%
precision levels, all three procedures delivered acceptable
coverage; and although within each precision level both
ASAP3 and the LC procedure required comparable average
sample sizes, ASAP’s average sample sizes were nearly
twice as large as for ASAP3 and the LC procedure.

3.4 M/M/1 Queue

Table 4 summarizes our results for the M/M/1 queueing
system with exponential service times, a server utilization
τ = 0.8, and a first-in-first-out queueing discipline. The
mean interarrival time is 1, and no customers are present at
time zero. The steady-state mean waiting time in the queue
for this system is 3.2.

From Table 4 we concluded that in comparison with
ASAP, ASAP3 delivered improved small-sample perfor-
mance, with a reduction in the variance of the CI half-length
from 5.21 to 0.031 in the no precision case. Furthermore,
while all three methods delivered comparable results in
terms of CI coverage and average relative precision for the
±7.5% precision case, ASAP3’s average required sample
size of 72,060 was 47% smaller than the average sample
size of 136,491 required by ASAP.
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Table 3: Performance of Batch Means Procedures for the
M/H2/1 Queue Waiting Time Process with Traffic In-
tensity τ = 0.8 Based on Independent Replications of
Nominal 90% and 95% CIs

Precision Nominal 90% CIs 95% CIs
Requirement ASAP ASAP3 LC ASAP3

NO PRECISION
# replications 100 400 100 400
avg. sample size 16,716 42,022 86,144 42,022
coverage 76.0% 87.8% 88.0% 91.8%
avg. rel. precision 0.539 0.2026 0.106 0.2447
avg. CI half-length 4.760 1.614 1.9500
var. CI half-length 43.730 0.5962 0.9084
±15% PRECISION
# replications 100 400 100 400
avg. sample size 148,820 76,214 86,144 96,706
coverage 88.0% 88.0% 88.0% 93.3%
avg. rel. precision 0.102 0.1308 0.106 0.1354
avg. CI half-length 0.802 1.0329 1.0687
var. CI half-length 0.055 0.0273 0.0165
±7.5% PRECISION
# replications 100 400 100 400
avg. sample size 405,854 228,482 229,632 309,560
coverage 93.0% 90.0% 90.0% 94.5%
avg. rel. precision 0.053 0.07054 0.067 0.07084
avg. CI half-length 0.421 0.5623 0.5647
var. CI half-length 0.021 2.0E−3 1.8E−3
±3.75% PRECISION
# replications 400 400
avg. sample size 798,234 1,115,986
coverage 90.0% 94.7%
avg. rel. precision 0.0359 0.0360
avg. CI half-length 0.2867 0.2878
var. CI half-length 2.5E−4 2.1E−4

4 EFFICIENCY ANALYSIS

If we have the “ideal” situation in which the target output
process {Xj : j = 1, 2, . . .} is stationary and Gaussian with
the known steady-state variance parameter (SSVP)

γ
X

≡ lim
n→∞ nVar

[
X(n)

] =
∞∑

�=−∞
Cov(Xj , Xj+�), (7)

and if the series on the far right-hand side of (7) is absolutely
convergent so that γ

X
is well defined, then the nominal

100(1 − α)% CI for µX,

X(n) ± z1−α/2

√
γ

X

/
n, (8)

is asymptotically valid in the sense that

lim
n→∞ Pr

{
µX ∈ X(n) ± z1−α/2

√
γ

X

/
n

}
= 1 − α. (9)

It follows from (7)–(9) that in this ideal situation, an efficient
procedure (in the sense of Chow and Robbins (1965) and
Nádas (1969)) for computing a 100(1 − α)% CI for µX
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Table 4: Performance of Batch Means Procedures for the
M/M/1 Queue Waiting Time Process with Traffic Intensity
τ = 0.8 Based on Independent Replications of Nominal
90% and 95% CIs

Precision Nominal 90% CIs 95% CIs
Requirement ASAP ASAP3 LC ASAP3

NO PRECISION
# replications 100 400 100 400
avg. sample size 8,482 41,326 32,960 41,326
coverage 85.0% 88.8% 85.0% 93.3%
avg. rel. precision 0.286 0.110 0.096 0.132
avg. CI half-length 1.310 0.348 0.417
var. CI half-length 5.210 0.031 0.046

±15% PRECISION
# replications 100 400 100 400
avg. sample size 38,911 43,796 32,960 46,106
coverage 87.0% 88.5% 85.0% 93.0%
avg. rel. precision 0.112 0.098 0.096 0.110
avg. CI half-length 0.441 0.310 0.349
var. CI half-length 0.009 0.009 0.007

±7.5% PRECISION
# replications 100 400 100 400
avg. sample size 136,491 72,060 75,648 97,643
coverage 90.0% 86.8% 87.0% 93.3%
avg. rel. precision 0.056 0.070 0.065 0.071
avg. CI half-length 0.222 0.220 0.224
var. CI half-length 0.002 4.2E−4 2.8E−4

±3.75% PRECISION
# replications 400 400
avg. sample size 256,186 365,353
coverage 89.5% 93%
avg. rel. precision 0.036 0.036
avg. CI half-length 0.114 0.115
var. CI half-length 4.1E−5 4.0E−5

with relative precision r∗ will require a sample size of

n∗ = n∗(r∗) = z2
1−α/2γX

/(
r∗µX

)2; (10)

and as r∗ → 0, the resulting confidence interval,

X
[
n∗(r∗)]±z1−α/2

√
γ

X

/
n∗(r∗), will have a coverage prob-

ability that approaches the limiting value 1 − α. In the
preceding sections of this article, the experimental evidence
suggested that the CIs generated by ASAP3 were asymp-
totically valid to a reasonable approximation in the sense
that some degree of convergence to the coverage probability
1 − α was achieved in nearly all cases as we considered
progressively smaller values of the relative precision r∗.

To complement the preceding experimental results, in
this section we perform an empirical efficiency analysis of
ASAP3 on the test problems for which γ

X
can be evaluated

exactly (or at least to the limits of machine accuracy); and
we will take n∗ = n∗(r∗) as a benchmark sample size to
compare with n̄ = n̄

(
r∗), the average sample size required

by ASAP3 to deliver CIs with relative precision r∗. In
particular we use the sample-size ratio n̄

/
n∗ to gauge the

efficiency of ASAP3 in the given test problems.
Tables 5 and 6 give the values of n∗ for the M/H2/1

and M/M/1 queueing systems. In the Appendix of Steiger
787
et al. (2005b), we summarize the numerical methods used
to evaluate the SSVP for each test problem reported in
Tables 5 and 6.

Table 5: Comparison of the Average Sample Size n̄ Re-
quired by ASAP3 with the Theoretical n∗ Required for
Efficiently Computing a Valid 90% CI for µ with Relative
Precision r∗

ASAP3
Output Process r∗ n∗ n̄ n̄/n∗

M/M/1 Queue Waiting Times 15% 53,306 103,742 1.946
τ = 0.9, µX = 9, γ

X
= 35,901 7.5% 213,222 287,568 1.349

(Steiger et al., 2005a) 3.75% 852,886 969,011 1.136

M/M/1 Queue Waiting Times 15% 14,853 43,796 2.949
τ = 0.8, µX = 3.2, 7.5% 59,412 72,060 1.213
γ
X

= 1,264.64 3.75% 237,650 256,186 1.078

M/H2/1 Queue Waiting Times 15% 45,486 76,214 1.676
τ = 0.8, µX = 8, 7.5% 181,942 228,482 1.256
γ
X

= 24,204.8 3.75% 727,765 798,234 1.097

Table 6: Comparison of the Average Sample Size n̄ Re-
quired by ASAP3 with the Theoretical n∗ Required for
Efficiently Computing a Valid 95% CI for µ with Relative
Precision r∗

ASAP3
Output Process r∗ n∗ n̄ n̄/n∗

M/M/1 Queue Waiting Times 15% 75,675 140,052 1.851
τ = 0.9, µX = 9, γ

X
= 35,901 7.5% 302,670 382,958 1.265

(Steiger et al., 2005a) 3.75% 1,210,797 1,341,522 1.108

M/M/1 Queue Waiting Times 15% 21,086 46,106 2.187
τ = 0.8, µX = 3.2, 7.5% 84,344 97,643 1.158
γ
X

= 1,264.64 3.75% 337,376 365,353 1.083

M/H2/1 Queue Waiting Times 15% 64,574 96,706 1.498
τ = 0.8, µX = 8, 7.5% 258,293 309,560 1.198
γ
X

= 24,204.8 3.75% 1,033,169 1,115,986 1.080

From Tables 5 and 6 we concluded that for progressively
smaller values of r∗, the ratio n̄

/
n∗ tended to 1. Since

Tables 5 and 6 are based on test processes that exhibit
pronounced effects due to initialization bias, nonnormality,
and stochastic dependence (correlation), it is not surprising
that the ratio n̄

/
n∗ may be substantially larger than 1 in

some cases simply because of the large warm-up period and
batch size that may be required to achieve some semblance
of the “ideal” situation in which the truncated batch means
constitute a stationary Gaussian process. All in all, we
judged ASAP3’s required sample sizes to be reasonable for
the test problems used in this study.

5 CONCLUSIONS

The undercoverage problem encountered with ASAP was
virtually eliminated in the design of ASAP2 and ASAP3
by the elimination of the test for independence of the batch
means from the latter two procedures. Both ASAP2 and
ASAP3 test only for stationary multivariate normality of
the batch means and always deliver a CI adjusted for cor-
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relation, if any, among the final batch means. Excessive
variabilities seen with ASAP in the final sample sizes, and
to some extent in the final CI half-lengths, were partially
resolved in ASAP2 by decreasing the significance level of
the test for stationary multivariate normality on each iter-
ation of that test. Moreover, the means and variances of
the final CI half-lengths delivered by ASAP3 were greatly
reduced in comparison with the corresponding quantities
delivered by ASAP and ASAP2; and ASAP3 has achieved
this performance improvement by progressively increasing
the batch size until we can conclude that the correlation be-
tween adjacent batch means does not significantly exceed
0.8 in the sense that a one-sided upper 99% confidence
interval for this correlation lies entirely below 0.8.

ASAP3 is primarily designed for use in conjunction with
a user-specified absolute or relative precision requirement
on the final CI; and when it is used in this way, ASAP3
generally delivers CIs whose coverage probability is close to
the nominal level. On the basis of all the experimentation
we have performed with the procedure, ASAP3 appears
to deliver CIs whose coverage probability is reasonably
close to the nominal level even in the absence of a precision
requirement; but in such cases there is of course no guarantee
that the resulting CIs will be narrow enough to be useful
in practice. Although ASAP3 does not provide a definitive
resolution of all problems associated with the batch means
method for steady-state simulation output analysis, many
of the undesirable behaviors of its predecessors ASAP and
ASAP2 have been eliminated; and there is good evidence
to show that ASAP3’s performance in practice compares
favorably with other well-known batch means procedures.
We believe the basic approach of ASAP3 has the potential
to lead to new developments in the method of batch means.

Additional experimental results, follow-up papers
and revised software, will be available on the website
<www.ie.ncsu.edu/jwilson>.
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