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ABSTRACT 

The cycle-time distribution of manufacturing systems em-
ploying dispatching rules other than FIFO can be both 
highly skewed and have heavy tails.  Previous cycle-time 
quantile estimation work has suggested that the Cornish-
Fisher expansion can be used in conjunction with discrete-
event simulation to provide cycle-time quantile estimates 
for a variety of systems operating under FIFO dispatching 
without requiring excess data storage.  However, when the 
cycle-time distribution exhibits heavy skewness and kurto-
sis, the accuracy of quantile estimates obtained using the 
Cornish-Fisher expansion may degrade, sometimes se-
verely.  This paper demonstrates the degradation and moti-
vates the need for a modification to the Cornish-Fisher ex-
pansion for estimating quantiles under non-FIFO 
dispatching rules.  A solution approach combining a data 
transformation, the maximum (minimum)-transformation, 
with the Cornish-Fisher expansion is presented.  Results 
show that this provides significant improvements in accu-
racy over using the Cornish-Fisher expansion alone while 
still retaining the advantage of requiring minimal data stor-
age. 

1 INTRODUCTION 

An essential component of generating accurate lead time 
estimates, crucial for maintaining high levels of customer-
service, is producing accurate estimates of cycle-time 
quantiles.  Commonly, discrete-event simulation models of 
manufacturing systems are used to deliver estimates of the 
mean cycle-time.  However, in many systems, quoting the 
mean cycle-time as the customer delivery-date results in a 
high percentage of late deliveries.  As a result, it is prefer-
able to use estimates of cycle-time quantiles.  Quantiles 
provide the decision maker with greater detail about the 
cycle-time distribution than an estimate of the mean and 
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allow delivery-time quotes to be made with varying levels 
of confidence. 

Unfortunately, obtaining cycle-time quantile estimates 
from discrete-event simulation models is difficult, often 
requiring excessive data storage of individual observations, 
advance knowledge of which quantiles estimates are re-
quired, or exhibiting estimation accuracy dependent on the 
cycle-time distribution itself. A quantile estimation tech-
nique that addresses all three of these issues simultane-
ously is currently unavailable.  For example, Jain and 
Chlamtac (1984) give an algorithm for quantile estimation 
that does not require the storage of individual cycle-time 
observations.  Instead, it requires advance knowledge of 
which quantiles are to be estimated, and if estimates of 
several quantiles of the same variable are required, the ef-
ficiency and accuracy of the algorithm degrades.  Chen and 
Kelton (to appear), on the other hand, give a procedure that 
does not require prior knowledge of which quantiles are 
desired, but the approach has the drawback of requiring 
large sample sizes, especially for highly correlated sys-
tems.   Finally, McNeill et al. (2005) provide a quantile es-
timation technique that has both low-data storage require-
ments and no condition for knowing ahead of time which 
quantiles estimates are desired.  However, the accuracy of 
the technique is dependent on the distribution of the cycle-
time values; quantile estimates from distributions close to 
the normal distribution have the greatest accuracy.    

This paper builds on the work by McNeill et al. (2003, 
2005) and presents an improvement to their approach, ad-
dressing the dependence that the accuracy of their ap-
proach has on the shape of the cycle-time distribution.  
Mathematical and empirical results are given which sug-
gest that the proposed method has improved accuracy.  
Advantages and disadvantages of the approach are dis-
cussed, and directions for future work are suggested. 
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2 CORNISH-FISHER EXPANSION 

McNeill et al. (2003) show that the Cornish-Fisher expan-
sion can be used in conjunction with discrete-event simula-
tion to estimate cycle-time quantiles in a variety of single-
product manufacturing environments employing first-in-
first-out (FIFO) dispatching rules at all workstations.  The 
Cornish-Fisher expansion is an infinite series used to ap-
proximate normalized quantiles from any distribution, 
given a quantile from the standard normal distribution and 
the distribution’s moments (Cornish and Fisher, 1937).   
Equation (1) gives a truncated version of the expansion, 
including only the first four terms.  In this equation, zα is a 
quantile from the standard normal distribution, γ1 is the 
standardized central skewness, γ2 is the standardized cen-
tral excess kurtosis, σ is the standard deviation, μ is the 
mean, and Yα is the quantile approximation.  When sample 
moments are used in place of theoretical moments, Equa-
tion (1) becomes an estimator, and, consequently, it is im-
portant to have consistent, and ideally unbiased estimates 
of the first four sample moments. 
 

Yα=μ+σxα, where 
xα=zα+1/6(zα

2-1)γ1 +1/24(zα
3-3zα)γ2-1/36(2zα

3-5zα)γ1
2    (1) 

 
To use the Cornish-Fisher expansion in conjunction 

with discrete-event simulation to obtain cycle-time quantile 
estimates, McNeill et al. (2005) suggest that estimates of 
the sample moments be calculated during the simulation 
run and then plugged into Equation (1) to obtain the quan-
tile estimate.  Minimal data storage, necessary for sample 
moment calculation, is required, and upon completion of 
simulation runs, any quantile of the distribution can be cal-
culated without further simulation effort using Equation 
(1). 

A shortcoming of the technique, however, presents it-
self when dispatching rules other than FIFO are utilized.  
In such cases, the cycle-time distribution may deviate dras-
tically from the normal distribution.  For example, the 
shortest-processing-time-first (SPT) dispatching rule 
causes both the excess kurtosis and skewness values at a 
given design point to explode.  As jobs with short process-
ing times quickly flow through each station, jobs with long 
processing times at a given machine are required to wait 
much longer than they would under a FIFO dispatching 
policy.  As a result, an increased number of jobs have a 
very long cycle-time, resulting in a much heavier upper tail 
of the distribution.  Consequently, the cycle-time distribu-
tion is much more heavily skewed toward its upper tail, 
and the excess kurtosis value is severely inflated over it’s 
FIFO counterpart. 

Figures 1 and 2 illustrate the impact that dispatching 
rules can have on the cycle-time distribution of a simple 
system.  Both figures were generated from simulations of 
an  M/M/1 system at 90% utilization.  The histograms and 
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the moment estimates were calculated based on the first 
500,000 observations.  Figure 1 represents the system un-
der FIFO dispatching, while SPT was used to generate 
Figure 2.  Additionally, common random numbers (CRN) 
were employed between the two systems.  While a visual 
difference in the two histograms is present, the more dra-
matic impact of the implementation of SPT is on the mo-
ment estimates.  While the mean under SPT is lower than 
under FIFO, as expected (Pinedo, 1995), all three of the 
higher moment estimates are dramatically higher. 
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Figure 1: Cycle-time Histogram and Corresponding Mo-
ment-estimates for an M/M/1 System at 90% Utilization 
under a FIFO Dispatching Policy 
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Figure 2: Cycle-time Histogram and Corresponding Mo-
ment-estimates for an M/M/1 System at 90% Utilization 
under SPT Dispatching 
 

Furthermore, the higher moment estimates of the cy-
cle-time distribution under SPT have a large impact on the 
accuracy that the first four terms of the Cornish-Fisher ex-
pansion have in estimating cycle-time quantiles from the 
distribution.   This impact is illustrated in Figure 3.  To 
generate the figure, 30 replications of 1,000,000 observa-
tions each were made of an M/M/1 system at 90% utiliza-
tion.  From each replication, estimates of the first four 
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moments were obtained, and the average of the 30 esti-
mates for each moment were taken.  These average mo-
ment estimates were then used in conjunction with Equa-
tion (1) to obtain cycle time quantile estimates for 
quantiles between 0.01 and 0.99. The x-axis of Figure 3 
gives the quantile (0.01 to 0.99) being estimated while the 
y-axis gives the values of these quantiles estimated by us-
ing the average moment estimates with Equation (1).  Fig-
ure 3 clearly illustrates accuracy problems that arise when 
using the Cornish-Fisher expansion in estimating quantiles 
from this distribution.  Since the figure represents an esti-
mate of the cumulative distribution function (cdf), it should 
be non-decreasing; instead, because of the extremely large 
moment values,  it shows that the estimate of the 0.1 cycle-
time quantile is significantly larger than the estimates of 
the 0.9 cycle-time quantile. 
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Figure 3: Quantile Estimates of an M/M/1 System at 90% 
Utilization under SPT Generated using the Cornish-Fisher 
Expansion 

 
Experiments using the longest-processing-time-first 

(LPT) dispatching rule were also performed, and results 
similar to those shown in Figure 3 were found.  It is also 
anticipated that other dispatching rules will yield compara-
ble impacts on the cycle-time distribution and, therefore, 
on the  accuracy of the Cornish-Fisher expansion in esti-
mating cycle-time quantiles.   Consequently, a modifica-
tion to the approach suggested by McNeill et al. (2003, 
2005) is clearly necessary when dispatching rules other 
than FIFO are in place.  A combination of the maximum-
transformation, proposed by Heidelberger and Lewis 
(1984),  with the Cornish-Fisher approach is such a modi-
fication that shows promise in terms of an improvement in 
accuracy for non-normally distributed systems. 

3 THE MAXIMUM/MINIMUM 
TRANSFORMATION 

When applied to i.i.d. data, the maximum-transformation 
(or minimum transformation for quantiles less than 0.5) as 
proposed by Heidelberger and Lewis (1984) suggests that 
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for a sample of i.i.d. data, x1, x2, x3, …, xn , where n repre-
sents the number of independent observations from the x 
distribution, the p quantile (p > 0.5) can be estimated as the 
q = pv quantile of a sample of transformed data y1,y2,y3,y4, 
…, ym, where each yi value represents the maximum of a v 
number of xi values and m represents the total number of 
derived values from the y distribution.  For example, 
y1=max(x1, x2, …xv), y2=max(xv+1, xv+2, …, xv+v),  and so 
on.  The value of v depends on the quantile, p.  Heidelber-
ger and Lewis suggest using Equation (2) for determining 
v.  Equation (2) guarantees that, regardless of the quantile 
estimated from the xi samples, the quantile estimated from 
the yi values will be close to the median.  This is useful 
since the median of a sample distribution is generally con-
sidered to be easier to estimate than an extreme quantile 
from either tail of the distribution. 

 

 
ln(0.5)
ln( )

v
p

⎢ ⎥
= ⎢ ⎥
⎣ ⎦

 (2) 

 
Notice in Equation (2) that as the quantile from the xi 

sample distribution approaches 1, the value of v ap-
proaches infinity.  Moreover, as p tends towards 1/2, v 
tends towards 1.  When v =1, there is no difference in esti-
mating quantiles directly from the xi values or the yi values, 
since in this case each yi value is simply the “maximum” of 
a single xi value.  For reference, Table 1 gives five p val-
ues, and their resulting v values.  The v values are not de-
pendent on the underlying population of the xi samples.  
Table 5 shows, for example, that regardless of the true dis-
tribution from which the xi samples were drawn, to esti-
mate the 0.99 quantile, 68 xi values are required to generate 
a single yi value. 

 
Table 1: Number of xi Values (v) used to Generate Each yi 
Value Via the Maximum Operator for Various Quantiles 
(p) of the xi Distribution 

p v 
0.7 1 
0.8 3 
0.9 6 

0.95 13 
0.99 68 
0.999 392 

  

4 MAXIMUM/MINIMUM TRANSFORMATION 
WITH THE CORNISH-FISHER EXPANSION 

4.1 Exponential Distribution 

To understand the potential impact of combining the maxi-
mum (or minimum) transformation with the Cornish-Fisher 
expansion for estimating cycle-time quantiles, the theoretical 
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moments of the yi distribution were calculated when the xi 
distribution is exponentially distributed with a λ value of 1.   
Since quantile estimates obtained from the exponential dis-
tribution using the first four terms of the Cornish-Fisher ex-
pansion alone are known to degrade for quantiles lower than 
0.5, getting worse as the estimated quantiles get closer to the 
extreme lower tail (McNeill et al., 2005), the minimum 
transformation was used, and quantiles from the lower tail of 
the distribution were estimated.  Using the minimum trans-
formation, the p quantile of the xi values (p < 0.5) is esti-
mated as the q=1-(1-p)v quantile of the yi values.  Addition-
ally, when using the minimum transformation, the formula 
used to determine v is slightly different than for the maxi-
mum-transformation and is given in Equation (3).   
 

 
ln(1 0.5)
ln(1 )

v
p

⎢ ⎥−= ⎢ ⎥−⎣ ⎦
 (3) 

 
To use the Cornish-Fisher expansion with the mini-

mum transformation, calculation of the moments of the yi 
values was required.  The derivation of the CDF and the 
probability density function (PDF) are given below, fol-
lowed by the resulting raw moment values,    , shown in 
Equation (4).  In Equation (4), k indicates the kth moment.   
 
 Assume  xi~Exp(λ). Then 

 P(Y≤y) = P(x1≤y or x2≤y or … or xv ≤ y) 
 
P(Y ≤ y)=P(at least 1 xi value ≤ y for 1≤ i ≤ v) 

              P(Y ≤ y) = 1-P(zero xi values ≤ y for 1≤ i ≤ v)  
  P(zero xi values ≤ y)=(1-e-λy)v 

 CDF:  P(Y ≤ y) = 1-(1-e-λy)v  
  PDF:  vλ(e-λy)v 
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Using the moment values calculated from Equation (4) 

with the first four terms of the Cornish-Fisher expansion 
(Equation (1)), estimates of quantiles between 0.05 and 0.5  
of the xi distribution were made.  Estimated quantiles were 
compared with the theoretical values, and the percentage 
difference between the two values is reported on the y-axis 
of Figure 4. Since the moments are known, rather than es-
timated from data, any error is attributable to the Cornish-
Fisher expansion. The same quantile estimates were also 
made using the Cornish-Fisher expansion without first 
transforming the data, and the percentage difference be-
tween these values and the true quantiles from the expo-
nential distribution is also reported in Figure 4.  When the 
estimated quantile is above 0.3, the v value is 1, making 
the two estimation techniques equivalent. In the extreme 
lower tail, Figure 4 shows that the minimum transforma-
tion results in a significant gain in accuracy. 

kμ′
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Figure 4: Impact on Quantile Estimation Accuracy of 
Combining the Minimum-transformation with the Cornish-
Fisher Expansion when the xi Distribution is Exponentially 
Distributed with λ= 1 

4.2 Lognormal Distribution 

To further illustrate potential gains in accuracy when esti-
mating quantiles from distributions with high moment val-
ues, experimentation was done on i.i.d. data generated 
from a lognormal distribution.  With a C++ program, the 
0.8, 0.9, 0.99, and 0.99 quantiles were estimated from a 
lognormal (0.75,1)  distribution with a shape parameter of 
0.75 and a scale parameter of 1 using the described maxi-
mum-transformation.  This distribution was selected since 
its moment values are high (γ1 = 3.26 and γ2 = 23.54), caus-
ing the Cornish-Fisher expansion applied directly (i.e., no 
transformation) to have poor accuracy in estimating its 
quantiles. 

Random, i.i.d samples were drawn from the  distribu-
tion until there were 1000 yi values; the total number of  xi 
samples, N, to estimate a given quantile is N= v*1000.   
For instance, 6000 (=1000*6) random samples from each 
distribution were drawn to estimate the 0.9 quantile, while 
only 3000 were required to estimate the 0.8 quantile.  To 
estimate each quantile of each distribution, 5 independent 
samples of N xi values were drawn.  For each of the five 
independent samples of N values, estimates of the first four 
moments of the yi distribution were calculated.  Using 
these sample moment estimates in Equation (1), the p 
quantile from the xi sample distribution was estimated as 
the q=pv quantile of the yi distribution. Since the random 
samples were drawn from populations of known distribu-
tions, the theoretical quantiles from those distributions 
were also available.  Therefore, it was possible to calculate 
the relative percentage difference between the estimated 
and true quantile.  This value was calculated for each of the 
five independent replications performed for each quantile 
(0.8, 0.9, 0.99, and 0.999).  The average of these five per-
centage differences was recorded as the average percentage 
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error in estimating a given quantile from a given distribu-
tion using the maximum (minimum) - transformation in 
conjunction with the Cornish-Fisher expansion on i.i.d. 
data. 

In addition to knowing the theoretical quantiles from 
the test distributions, the theoretical moments were also 
obtainable.  Using these values, the “best case” perform-
ance of the Cornish-Fisher expansion without the use of the 
maximum-transformation was calculated by approximating 
each of the same quantiles using the theoretical moments 
of each distribution in Equation (1).  The quantile ap-
proximations obtained with the true moments were then 
compared with the true quantiles from the same distribu-
tions, and the relative percent difference between the two 
was recorded.  These results were considered “best case” 
as they reflect the level of accuracy that the Cornish-Fisher 
expansion could achieve in the absence of any sampling-
induced error.    

The “best case” results without the use of the maxi-
mum-transformation were then compared to the average 
percentage errors  obtained using the maximum-
transformation.  The direct difference between the two was 
calculated and is reported in Table 2.  A positive value in 
the “average % accuracy gain” column should be inter-
preted as indicating that, on the average, using the maxi-
mum-transformation resulted in an accuracy improvement 
over the best case results without the transformation.  For 
instance, in estimating the 0.8 quantile, the use of the 
maximum-transformation in conjunction with the Cornish-
Fisher expansion resulted in a 35% improvement in accu-
racy over using the theoretical moments directly in the 
Cornish-Fisher expansion without first using the transfor-
mation.  A negative sign in this same column indicates the 
reverse situation; in these cases, on the average, the maxi-
mum transformation resulted in a decrease in estimation 
accuracy.  To give a feel for the range, the maximum and 
minimum percent accuracy gains across the five simulated 
replications are also reported in Table 2. 

 
Table 2: Accuracy Gain in Estimating Quantiles from the 
Lognormal (0.75,1) Distribution using the Maximum-
transformation in Conjunction with the Cornish-Fisher Ex-
pansion over using the Cornish-Fisher Expansion Alone.   

Quantile Average % 
Accuracy 

Gain 

Minimum % 
Accuracy 

Gain 

Maximum % 
Accuracy 

Gain 
0.8 35% 21% 47% 
0.9 5% -29% 21% 

0.99 42% 38% 44% 
0.999 78% 77% 79% 

 
Table 2 clearly shows a marked increase in accuracy 

after using the maximum-transformation for the lognormal 
(0.75,1)  distribution.  Additionally, Table 2 shows that, 
with the exception of the 0.9 quantile,  as the estimated 
quantile gets closer to 1.0, the improvement in accuracy 
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increases.  This is likely explained by the fact that as the 
quantile being estimated gets closer to 1.0, the value of v 
also increases, making the impact of the maximum opera-
tor greater. 

5 DISCUSSION AND CONCLUSIONS 

The results highlight the potential benefits in terms of ac-
curacy of using the maximum (minimum) -transformation 
in conjunction with the Cornish-Fisher expansion to esti-
mate cycle-time quantiles.  The largest advantage over us-
ing the Cornish-Fisher expansion without the data trans-
formation is clearly the accuracy improvement, particularly 
for extreme quantiles and for distributions with high skew-
ness and kurtosis values.  These results are particularly of 
note since without the maximum-transformation, the first 
four terms of the Cornish-Fisher expansion do a poor job at 
estimating quantiles from these same distributions.  Fur-
thermore, assuming that the high skewness and excess kur-
tosis values contribute to the poor estimation performance 
of the expansion without the transformation, the expecta-
tion is that the same type of accuracy improvements will 
apply to cycle-time distributions from manufacturing set-
tings in which a dispatching rule other than FIFO (i.e., 
SPT) is employed.  Accuracy improvement through the use 
of the maximum-transformation operator would be ex-
tremely useful in such a system.   

With the clear advantages of the approach in terms of 
accuracy comes the disadvantage of estimating multiple 
quantiles from the same set of simulation runs.  Since the v 
value dictates the q quantile estimated from the yi sample 
distribution, and the v value depends directly on the p 
quantile desired from the original xi distribution, obtaining 
estimates of different p quantiles requires different v values 
(assuming the intent is to estimate the q=0.5 quantile from 
the yi distribution).  As a result, a priori knowledge of 
which quantile estimates are desired would be required so 
that separate sets of yi distributions can be maintained, each 
set of which is based on a different v value.  Alternatively, 
the v value for the highest quantile could be used for all 
quantiles, requiring only moment estimates from single yi 
distribution to be maintained, but requiring estimates of 
different q values from that yi distribution.  Provided that 
the Cornish-Fisher expansion estimates all quantiles from a 
distribution with equal accuracy, this would be a reason-
able solution.  However, it is known that the accuracy of 
the Cornish-Fisher expansion depends greatly on the quan-
tile being estimated for many systems (McNeill et al., 
2003), and, as a result, estimates of q for varying quantiles 
would also have varying amounts of error induced by the 
expansion itself.  (Of course, this variable estimation accu-
racy could also be exploited by selecting v so that q is al-
ways a quantile estimated by the Cornish-Fisher expansion 
with high accuracy). 

Finally, Figure 5 presents a taxonomy of four quantile 
estimation techniques (order statistics, maximum (mini-
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mum)-transformation, and the Cornish-Fisher expansion 
with and without the use of the maximum-transformation) 
in terms of their data storage requirements and ability to 
estimate multiple quantiles.  Although not previously dis-
cussed in this paper, order statistics are included in the 
comparison as they represent the most traditional quantile 
estimation technique. To generate an estimate of a cycle-
time quantile using order statistics all data points are 
stored, sorted, and the appropriate quantile is selected from 
the sorted values.   

Figure 5 shows that both order statistics and the 
maximum-transformation approach require storage of indi-
vidual observations from the sample distribution.  Note 
that only order statistics require storage of all observations.  
The maximum-transformation requires a storage size 
equivalent to 1/v the size required using only order statis-
tics, but the individual yi observations must still be saved 
and sorted to implement the procedure.  Both versions of 
the Cornish-Fisher expansion, on the other hand, provide 
the advantage of  requiring very little data storage.  Addi-
tionally, if multiple quantile estimates are desired, both the 
maximum-transformation alone and the maximum-
transformation with the Cornish-Fisher expansion require 
advance knowledge of which quantiles are to be estimated.  
Conversely, order statistics and the Cornish-Fisher expan-
sion without the maximum-transformation do not require 
any advance knowledge about which quantiles are desired.  
Using order statistics, however, some post-processing in 
the form of parsing the sorted list of observations may be 
required if desired quantiles are not specified in advance.  
The Cornish-Fisher expansion without the maximum-
transformation also provides the great benefit of being able 
to generate any quantile estimate (or a discrete estimate of 
the CDF of the distribution) without any previous knowl-
edge of which quantiles are desired.  Unfortunately, when 
the maximum-transformation is used in conjunction with 
the Cornish-Fisher expansion, Figure 5 shows that this 
benefit is lost, assuming the method is implemented as it 
has been described by this study.  If, however, a reasonable 
solution to the issue of obtaining multiple quantile esti-
mates without prior knowledge of which quantiles should 
be estimated can be found, the improved accuracy obtained 
by adding the maximum/minimum-transformation to the 
Cornish-Fisher expansion makes it an extremely attractive 
cycle-time quantile estimation technique. 
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Figure 5: Taxonomy of Quantile Estimation Techniques 

6 FUTURE WORK 

Results presented in this paper showed that when the 
skewness and kurtosis estimates of a distribution differ 
greatly from those of the normal distribution, the ability of 
the Cornish-Fisher expansion alone to accurately estimate 
quantiles from that distribution degrades substantially.  
Cycle-time distributions of systems under some dispatch-
ing rules clearly fall under this category.  Future work 
should include such results for a variety of dispatching 
rules, and these quantile estimates should be compared to 
estimates obtained from very long simulation runs.  Of 
note is the fact that the data transformation in this case 
would be applied to simulation-generated data, which is 
not i.i.d.  If, however, the cycle-time distribution generated 
from a simulation model is assumed to be made of station-
ary, dependent data, the maximum (or minimum) data 
transformation can still be performed, and Heidelberger 
and Lewis (1984) present a modification to the approach 
discussed previously for i.i.d. data.   

Additional future work should also include an investi-
gation of ways to harness the accuracy improvement that 
the combination of the maximum-transformation in con-
junction with the Cornish-Fisher expansion provides with-
out losing the benefit of not requiring which quantile esti-
mates are desired to be known ahead of time.  It is possible 
that the data transformation could be used to obtain esti-
mates of specific quantiles from the cycle-time distribu-
tion, and these estimates could then be used to parameter-
ize the Cornish-Fisher expansion so that it is customized 
for each distribution and able to better estimate quantiles 
from even extremely non-normal distributions. 
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