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ABSTRACT

Our problem is that of finding the best system—i.e., the
system with the largest or smallest primary performance
measure—among a finite number of simulated systems in
the presence of a stochastic constraint on a secondary per-
formance measure. In order to solve this problem, we first
find a set that contains only feasible or near-feasible systems
(Phase I) and then choose the best among those systems in
the set (Phase II). We present a statistically valid procedure
for Phase I and then propose another procedure that per-
forms Phases I and II sequentially to find the best feasible
system. Finally, we provide some experimental results for
the second procedure.

1 INTRODUCTION

Our goal is to select the best or near-best system from a set of
competing systems, where the term “best” is with respect
to a primary performance measure among the systems,
which we want to maximize or minimize. We also want
the selected system to satisfy a stochastic constraint on a
secondary performance measure.

Due to randomness in output data, one needs to be
careful when comparing a number of simulated systems.
Over the last decade, there have been fruitful efforts in
developing statistically valid ranking and selection (R&S)
procedures that find the best among a finite number of
simulated alternatives. Boesel et al. (2003), Nelson et
al. (2001), Kim and Nelson (2001, 2005), Goldsman et
al. (2000, 2002), Chen (1996), Chen et al. (1997, 2000),
Chick (1997), and Chick and Inoue (2001a, 2001b) have all
developed different types of statistically valid or heuristic
selection procedures that are useful in simulation when the
goal is to find a system with the minimum or maximum
expected performance measure among a finite number of
simulated systems. They showed that their procedures are
a great deal more efficient than classical R&S procedures
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such as that due to Rinott (1978). However, a limitation of
those procedures lies in the fact that they consider only one
performance measure. In reality, we often face constraints
on performance measures other than a primary performance
measure due to physical or managerial limits placed on a
system. When a stochastic constraint is present, existing
R&S procedures lose their statistical guarantee about a
correct selection, defeating the biggest advantage of using
R&S procedures over heuristic procedures.

There is not a rich literature on solving discrete opti-
mization problems with stochastic constraints using simula-
tion. Butler et al. (2001) combined multiple attribute utility
theory from economics with the Rinott (1978) procedure
to handle multiple performance measures. Their procedure
finds a system that gives the highest utility. But it does
not handle constraints, and finding an appropriate attribute
utility function itself is a very difficult problem. Sant-
ner and Tamhane (1984) proposed a two-stage procedure
that is specially designed to find a system with the largest
mean among those whose variances are smaller than a con-
stant when the data under consideration are independent
and identically distributed (IID) normal random variables.
This two-stage procedure handles only a special case of our
problem and can not be applied for a general stochastic
constraint. Another problem with these procedures is that
they become inefficient for 20 or more systems because
they adopt Rinott’s procedure—see Boesel et al. (2003)
who explain where the inefficiency comes from.

Fully-sequential procedures take only a single basic
observation from each alternative still in play at each stage
of sampling and apply a decision strategy at every stage
to eliminate apparently inferior alternatives early in the
experimentation process. For this reason, such procedures
are expected to reduce the overall simulation effort required
to find the best system. Paulson (1964) and Hartmann
(1988, 1991) presented fully sequential procedures in the
case of IID normal data with equal variances, and Kim
and Nelson (2001) extended their procedures in a direction
to be more appropriate for simulation environments where
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it makes sense to assume both unequal variances across
systems and dependence across systems due to the use of
common random numbers (CRN). In this paper, we propose
an efficient fully-sequential procedure that handles a general
stochastic constraint.

This paper is organized as follows: In Section 2, we
formulate the problem of interest. In Section 3, we present a
procedure that finds a set of systems that satisfy a stochastic
constraint. Then Section 4 gives a new procedure for the
finding-the-best problem with a constraint. We present
experimental results for the new procedure in Section 5,
and conclude the paper with Section 6.

2 PROBLEM

In this section, we formulate our problem and define nota-
tion for the paper. We assume that output data from each
system are IID normally distributed and that all systems
are simulated independently; CRN are not considered in
this paper. IID normality is plausible for example when the
basic observations are either within-replication averages or
batch means with a large batch size. Let Xij be an observa-
tion associated with a primary performance measure from
replication j of system i and Yij be an observation associ-
ated with a constraint (a secondary performance measure)
from replication j of system i. There are k systems. The
expected primary and secondary performance measures are
defined as xi = E[Xij ] and yi = E[Yij ], respectively. Then
our problem amounts to finding

argmaxi=1,...,k xi

s.t. yi ≤ Q,

where Q is a constant. (Of course, “greater than or equal
to” constraints can be transformed to “less than or equal to”
constraints by multiplying both sides by minus one.) We
allow for dependence between Xij and Yij because these
random variables are likely to be correlated in practice.
For instance, the throughput and downtime of a production
system are usually negatively correlated.

For stochastic systems, it is not always possible to guar-
antee that we identify all systems satisfying the stochastic
constraint. Instead we adopt an idea similar to that of the
indifference-zone approach of Bechhofer (1954) to find a
set of feasible or near-feasible systems. A decision maker
will be asked to specify a range around the constant Q, say
(Q�, Qu) with Q� < Qu. Then three regions are defined:

• yi ≤ Q�: This is the desirable region. Any system
in this range is feasible.

• Q� < yi < Qu: This is the acceptable region. It
is possible that a feasible system in this range is
declared infeasible and vice versa. We assume that
one is willing to accept a system in this range as the
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best if it is declared “feasible” and our procedure
chooses it as the best.

• yi ≥ Qu: This is the unacceptable region. A
system in this range is infeasible and should be
declined.

We can also define the following three sets for the constraint:

SD = the set of all desirable systems;
SA = the set of all acceptable systems;
SU = the set of all unacceptable systems.

For given Q� and Qu, we define q = (Q� + Qu)/2
and ε = (Qu − Q�)/2, respectively, and henceforth our
procedures will be presented in terms of q and ε rather
than Q� and Qu. Roughly speaking, q is a target value
that behaves as a cut-off point between acceptable and
unacceptable systems and ε is a tolerance level that specifies
how much we are willing to be below or above q.

In addition to q and ε, the decision maker needs to
choose the indifference-zone parameter δ for the primary
performance measure. This is the smallest absolute differ-
ence in the primary measure that the decision maker feels is
important to detect. Thus, only “practical difference” mat-
ters, and we are indifferent among systems whose primary
performance measures are within δ of the true best.

To solve the overall problem, we first identify a set of
systems that contains all desirable systems, possibly with
some acceptable systems (Phase I), and then we choose
the best among the systems in that set (Phase II). Both
steps need to be completed correctly with high probability.
A procedure that can be used in Phase I is presented in
Section 3. In Section 4, we propose procedure AGK, where
Phases I and II are performed sequentially—that is, Phase
I is performed first and then completes Phase II is applied
to the survivors from Phase I.

3 A PROCEDURE FOR FEASIBILITY
DETERMINATION

In this section, we provide a procedure for Phase I that
attempts to eliminate all unacceptable systems and to return a
set consisting of all the desirable systems, possibly including
some acceptable systems.
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First, we define some notation. Let i ∈ {1, 2, . . . , k}
and

n0 = initial first-stage sample size, n0 ≥ 2;
r = number of observations taken so far;

S2
i = the sample variance of Yij for

j = 1, 2, . . . , n0;
W(r;v,w,z) = max

{
0,

v

2

(wz

v2 − r
)}

,

for any v, w, z ∈ R; v, z �= 0.

For all sets A, let |A| denote the number of elements in
A. Now we give an algorithm that finds a set of feasible
systems.

Algorithm I: Feasibility Determination Procedure

Setup: Select n0 ≥ 2 and nominal probability of correct
selection (PCS) 1/k < 1−α1 < 1. For a constraint,
choose ε and q. Compute the constant

η1 = 1

2

{
2

[
1 − (1 − α1)

1
k

]− 2
n0−1 − 1

}
. (1)

Initialization: Let R = {1, 2, . . . , k} and F = ∅ be the
set of undetermined systems and the set of feasible
systems, respectively. Let h2 = 2η1(n0 − 1).
Obtain n0 observations Yij , j = 1, 2, . . . , n0, from
each system i. Compute S2

i .
Set the observation counter r = n0 and go to
Feasibility Check.

Feasibility Check: For each system i ∈ R, if

r∑
j=1

(Yij − q) ≤ −W(r; ε, h2, S2
i ),

then move i from R to F ; else if

r∑
j=1

(Yij − q) ≥ +W(r; ε, h2, S2
i ),

then eliminate i from R.
Stopping Rule: If |R| = 0, then return F as the set of

feasible systems.
Otherwise, take one additional observation Yi,r+1
from each system i ∈ R, set r = r + 1, and go to
Feasibility Check.

Remark: Algorithm I can be performed without simulating
systems simultaneously, so we can avoid the overhead of
switching between systems—which is a typical disadvantage
of fully-sequential procedures.
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With high probability, the returned set F will contain
all desirable systems, plus possibly some acceptable sys-
tems, but no unacceptable systems. This event defines a
correct selection (CS) for Algorithm I. More specifically,
the following result is proved in Andradóttir, et al. (2005).

Theorem 1 Suppose that Yij , j = 1, 2, . . . , are IID
normally distributed, and Yij and Y�j are independent for
i �= �. Then Algorithm I guarantees

Pr{CS} ≡ Pr{SD ⊆ F ⊆ (SD ∪ SA)} ≥ 1 − α1.

Algorithm I is closely related to the procedures for
comparison with a standard presented by Kim (2003, 2005).
The comparison with a standard problem often turns up in
the context of simulation (see Goldsman and Nelson 1998
for more details). In fact, the procedures due to Kim (2003,
2005) can be interpreted as special cases of Algorithm I.

4 A PROCEDURE FOR COMPARING
CONSTRAINED SYSTEMS

In this section, we present procedure AGK, where Phases
I and II are performed sequentially. In particular, Algo-
rithm I from Section 3 will be used in Phase I where we
determine the feasibility of each system. For Phase II of
AGK, we adopt the Sequential Selection with Memory
(SSM) procedure due to Pichitlamken and Nelson (2001)
and Pichitlamken et al. (2005). They extend the Kim and
Nelson (2001) procedure for use within an optimization-via-
simulation algorithm when simulation is costly and partial
or complete information on alternatives previously visited
is maintained. Since we assume that simulation is costly,
we want to obtain Xij as well as Yij when system i is
simulated in Phase I and then retain those partial data for
use in Phase II. However, saving Xij for later use in Phase
II brings up a memory space issue, especially when Phase
I is long and the number of survivors from Phase I is large.
Procedure SSM requires saving only sample means and
thus removes the memory space issue.

Before we present the new procedure, we need some
more notation in addition to that defined in Section 3. In
particular, let

S2
i� = sample variance of the difference Xij−X�j

between systems i and �, j = 1, 2, . . . , n0;
X̄i(r) = sample average of Xij , j = 1, 2, . . . , r.

The following AGK procedure simply applies Algo-
rithm I first to find a set of feasible systems (Phase I) and
then completes Phase II to find the best among the survivors
from completed Phase I.
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Algorithm II: Procedure AGK

Setup: Select the overall confidence level 1 − α and
choose α1 and α2, where α1 + α2 = α, for
Phases I and II. Choose ε and q. Also select
the indifference-zone parameter δ > 0 and first-
stage sample size n0 ≥ 2. Calculate η1 from
Equation (1).

Initialization for Phase I: Let R = {1, 2, . . . , k} and
F = ∅ be the set of undetermined systems and
the set of feasible systems, respectively. Let h2

1 =
2η1(n0 − 1).
Obtain n0 observations Xij and Yij , j =
1, 2, . . . , n0, from each system i = 1, 2, . . . , k.
For all i and � �= i, compute the estimators S2

i and
S2

i�.
For each system i, compute X̄i(n0) and set ni = n0,
the number of observations taken so far from system
i in Phase I.
Set the observation counter r = n0 and go to
Feasibility Check.

Feasibility Check: Same as in Algorithm I in Section 3.
Stopping Rule for Phase I: If |R| = 0, then

• if |F | = 0, stop and return “no feasible sys-
tem”;

• if |F | = 1, stop and return the system as the
best;

• if |F | > 1, go to Initialization for Phase II.

Otherwise, take one additional observation Xi,r+1
and Yi,r+1 for each i ∈ R. Set r = r + 1 and
ni = ni + 1 for each system i ∈ R. Then, update
X̄i(r) and go to Feasibility Check.

Initialization for Phase II: Set m = |F |. Compute

η2 = 1

2

{(
2α2

m − 1

)− 2
n0−1 − 1

}

and h2
2 = 2η2(n0 − 1).

Let R = F be the set of systems still in contention.
Set r = n0 and go to Comparison.

Comparison: Set Rold = R. Let

R =
{
i : i ∈ Rold and

r∑
j=1

Xij ≥
r∑

j=1

X�j − W(r; δ, h2
2, S

2
i�),

∀� ∈ Rold, � �= i
}
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where

Xij =
{

Xij if ni < r,

X̄i(ni) if ni ≥ r.

Stopping Rule for Phase II: If |R| = 1, then stop and
select the system whose index is in R as the best.
Otherwise, take one additional observation Xi,r+1
from each system i ∈ R with ni < r , and set
r = r + 1. Then go to Comparison.

The correct selection event for AGK is defined as the
event of selecting a system i such that xi > x[b] − δ and
i ∈ (SD ∪ SA), where [b] is the identity of the system
with the largest primary performance measure among the
systems in SD .

We have not yet been successful in proving the sta-
tistical validity of AGK, although our experiments support
its validity. However, Andradóttir et al. (2005) show that
if one takes m = k instead of |F | in the Initialization
for Phase II step of AGK, then the procedure becomes
statistically valid. However, this version of Algorithm II is
less efficient than AGK.

5 EXPERIMENTAL RESULTS

In this section we illustrate the performance of AGK based
on experiments in which we use bivariate normal random
variables for (Xij , Yij ). We can assume that the target
value q for the secondary measure is q = 0 without loss of
generality. For simplicity, we also assume that no system
is in the acceptable region. Therefore, all feasible systems
are in the desirable region and all infeasible systems are in
the unacceptable region. Let f be the number of feasible
systems and let system f be the best feasible system. For
replication j of system i = 1, 2, . . . , k, we assume that the
vector (Xij , Yij ) is bivariate normal with correlation ρ and
consider the following mean and variance configurations:

• We consider two mean configurations: The difficult
means (DM) configuration and the monotonically
increasing means (MIM) configuration. In the DM
configuration,

yi =
{ −ε, i = 1, 2, . . . , f,

ε, i = f + 1, . . . , k,

and

xi =
⎧⎨
⎩

0, i = 1, 2, . . . , f − 1,

δ, i = f,

(i − 1)δ, i = f + 1, . . . , k.

In DM, all feasible systems have yi exactly ε

smaller than q and all infeasible systems have yi
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exactly ε larger than q. Therefore, it is difficult
to distinguish between feasible and infeasible sys-
tems. In addition, all feasible systems have xi very
close to that of the true best feasible system, which
makes it difficult to detect inferior feasible systems.
All infeasible systems have much larger primary
performance measures xi than that of the true best
feasible system, which increases the chance for
an infeasible system that is mistakenly declared
feasible in Phase I to eliminate the true best feasi-
ble system. The DM configuration is used to test
the validity of our new procedure under difficult
circumstances.
To investigate the effectiveness of the procedures
in eliminating infeasible or non-competitive sys-
tems, we use the MIM configuration. In the MIM
configuration,

yi =
{ −(f − i + 1)ε, i = 1, 2, . . . , f,

(i − f )ε, i = f + 1, . . . , k,

and

xi = (i − 1)δ, i = 1, . . . , k.

In the MIM configuration, we only test the case
where infeasible systems have larger xi than fea-
sible systems. This is difficult, because if we fail
to eliminate any infeasible system in Phase I, then
the system is likely to be chosen as the best due to
its large xi , and this will increase the probability
of an incorrect selection.

• We test only one variance configuration, namely
constant variances. In particular, let σ 2

xi
= σ 2

yi
= 1

denote the variances of the observations associated
with the primary and secondary measures of system
i, respectively. We refer readers to Andradóttir et
al. (2005) for the performance of AGK with more
variance configurations.

We test cases in which k = 5, 15, 25, 101 and ρ =
−0.9, 0, 0.9. We set δ = 1/

√
n0 and ε = 1/

√
n0. In all

cases, we make 10,000 macro-replications. Our required
confidence level is 1 − α = 0.95.

Our main results are as follows:

• Effect of Correlation: Correlation between obser-
vations of the primary and secondary performance
measures seems to have very little effect on the
performance of the procedures. Table 1 shows the
estimated total number of replications (REP) and
estimated PCS when there are twenty-five systems
with thirteen feasible systems. As one can see, the
REP and PCS do not change that much under vari-
ous values of correlation ρ. We observed the same
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tendency for all configurations we tested. This is
expected because the derivation of AGK is based
on a Bonferroni-type inequality which dissolves
the effect of dependence—although the procedure
itself has not yet been proven to be statistically
valid. Due to this insensitivity of the procedure to
dependence, we will focus on the ρ = 0 case only
from now on.

Table 1: Average Total Number of Replications and
Estimated Probability of Correct Selection for DM
with ρ = −0.9, 0, 0.9, k = 25, and f = 13.

ρ = −0.9 ρ = 0 ρ = 0.9

REP PCS REP PCS REP PCS
4081 0.976 4063 0.973 3985 0.976

• Performance of AGK: Table 2 shows the average
total number of replications and estimated PCS
when the DM and MIM configurations are em-
ployed with f = 1+(k−1)/2, k = 5, 15, 25, 101.
The estimated PCS for the procedure is well over
0.95 for all DM configurations tested and is consid-
erably larger under the MIM configuration. This is
expected because it is much easier to detect infea-
sible and non-competitive systems under the MIM
configuration. Table 2 also shows that AGK ef-
fectively eliminates infeasible and non-competitive
systems under the MIM configuration.

Table 2: Total Number of Replications and
Estimated PCS for AGK when ρ = 0 and
f = 1 + (k − 1)/2

DM MIM
k REP PCS REP PCS

5 576 0.969 459 0.981
15 2233 0.971 1024 0.994
25 4063 0.973 1387 0.996
101 20566 0.974 3326 0.999

6 CONCLUSION

In this paper, we consider a simple optimization problem
with a single constraint. Our paper shows the possibility
that R&S procedures can be extended to solve more general
discrete optimization problems with multiple constraints.

One can perform Phases I and II simultaneously instead
of performing them sequentially as in AGK. We refer to a
procedure that performs Phase I and II simultaneously as
AGK+, and it is presented in Andradóttir et al. (2005) with
proof of statistical validity. That paper also contains the
full proof of Algorithm I, a statistically valid procedure that
runs Phases I and II sequentially, and extensive experimental
results.
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