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ABSTRACT

We present a framework for deploying selection procedures
in a parallel and distributed environment to identify the
stochastic systems with optimal expected response when
the number of alternatives is large. The goal is to speed up
the process of identifying a good design with a specified
probability. We present a sequential selection procedure and
discuss the validity of dividing the entire set of alternative
designs into several groups that can be processed in a parallel
and distributed fashion. The surviving designs from each
group are then processed subsequently. An experimental
evaluation demonstrates the validity and efficiency of the
procedure.

1 INTRODUCTION

Parallel and distributed simulation (PADS) studies how a
network of several interconnected models work together to
support decision making by distributing the execution of
a discrete event simulation (DES) program over multiple
computers. Parallel DES programs are executed on multi-
processor computing platforms containing multiple central
processing units that interact frequently. Distributed DES
programs are executed on loosely coupled systems that may
be geographically distributed and require longer interaction
times. However, with new computing paradigms such as
clusters of workstations and grid computing, the distinc-
tion has become less clear. In both cases the execution
of a single simulation model, likely composed of several
simulation programs, is distributed over multiple processors
(computers) and can be executed concurrently. Hence, one
can reduce the execution time by up to a factor equal to the
number of processors that are used. Distributing the execu-
tion across multiple computers and utilizing the resources
of many computer systems is also beneficial in allowing
the execution of larger simulations where the capacity of
one computer may not be enough to carry out the simula-
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tion. A more detailed discussion of distributed and parallel
simulation can be found in Fujimoto (2000).

The objective of many simulation studies is to evaluate
alternative system designs or control policies of a complex
system, i.e., to find a system design that is the best, or
near the best, with respect to some measure or measures of
system performance that can not be obtained analytically.
Suppose that there are k ≥ 2 alternative system designs that
we want to compare, where design i has unknown mean
µi and unknown variance σ 2

i , where the variances may be
different for each design. We would like to compare these
alternatives and to control the probability that the selected
design satisfies the specified requirements. This class of
problems is known as ranking and selection (R&S) and has
been studied extensively in both simulation and statistics
literature. It is much easier to approximately rank relative
order and select a design that is within the indifference zone
(see Section 2.1) than to precisely estimate their performance
measures.

Let CS denote the event of “correct selection.” In a
stochastic simulation, a CS can never be guaranteed with
certainty. The probability of CS, denoted by P(CS), depends
on sample sizes and becomes higher as sample sizes become
larger. To obtain a pre-specified precision of the estimate
for a design decision, a large number of samples are often
required for each design alternative. Extensive literature
exist in R&S to determine the required sample sizes. For a
general overview of R&S, see Law and Kelton (2000), and
Swisher et al. (2003). Various schemes have been proposed
to enhance the effectiveness of R&S simulation experiments.
On the analysis side, statistical efficiency of R&S can be
improved by taking into account the difference of sample
means and using common random numbers (CRN), see Chen
and Kelton (2005). On the execution side, algorithms can
be developed so that executions are carried out sequentially
in a parallel and distributed environment. The objective
of this article is to introduce a platform for combining the
statistical efficiency of simulation optimization techniques
with the effectiveness of parallel and distributed execution
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algorithms. We propose to divide all design alternatives into
several groups and process them concurrently. Nelson et
al. (2001) also point out two contexts that processing R&S
in several groups might be useful: 1) exploratory studies in
which not all system designs of interest are initially known
or available; 2) Heuristic procedures that work with groups
of designs at each iteration.

A logical process (LP) is a distinct flow of control,
containing a combination of computation and operation.
The simulation of each design can be treated as a LP and
selection involves simulating a collection of LPs. Since
system designs are independent of each other, the simulation
of each system, i.e, LP, can be performed independently
in a parallel and distributed fashion. The main goal is to
compute the results of the simulation as quickly as possible
to improve the effectiveness of the simulation tool. Thus,
our immediate concern is capability rather than run-time
performance. Chen and Kelton (2005) show that if a better
alternative is found early in the process, it can be used
to eliminate inferior designs at an early stage during the
simulation process. When all alternatives are divided into
several non-overlapping groups, if the best sample mean of
all alternatives at any given moment is used to eliminate
only those inferior designs within the same group, the
overall efficiency may suffer. However, we will be able to
process R&S of several groups in parallel, i.e., the entire
R&S can be performed by a set of concurrently executing
processes. Thus, the duration of run time will be decreased.
Furthermore, it is possible to compute the best sample mean
of all alternative designs from all groups at any iteration
and use the best sample mean to eliminate inferior designs
in all groups. Even though the application of parallel
simulation technology has been limited, there has been
some work done in this area, for example, Luo et al. (2000)
deploy OCBA (Optimal Computation Budget Allocation)
to distribute simulation replications over the web for R&S
problems.

The rest of this article is organized as follows: In
Section 2, we provide the background of selection via all
pairwise comparisons. In Section 3, we present the basis of
performing selection in a parallel and distribution fashion.
In Sections 4, we show our experimental results. In Section
5, we give concluding remarks.

2 BACKGROUND

In this section, we introduce the necessary notation and
background:

Xij : the independent and normally distributed observa-
tions from the j th replication or batch of the ith

design,
r: the intermediate number of replications or batches

at a particular iteration,
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Ni: the total number of replications or batches for design
i,

ni: the intermediate number of replications or batches
for design i,

µi: the expected performance measure for design i, i.e.,
µi = E(Xij ),

X̄i(ni): the sample mean performance measure for design
i with ni samples, i.e.,

∑ni

j=1 Xij /ni ,

X̄i: the sample mean performance measure for design
i shorthand for X̄i(ni),

σ 2
i : the variance of the observed performance measure

of design i from one replication or batch, i.e.,
σ 2

i = Var(Xij ),
S2

i (ni): the sample variance of design i with ni replications
or batches, i.e., S2

i (ni) = ∑ni

j=1(Xij − X̄i)
2/(ni −

1).

2.1 Indifference zone

Simulation enables the comparison of various design alter-
natives before implementing any of the required physical
changes. Let µil be the lth smallest of the µi’s, so that
µi1 ≤ µi2 ≤ . . . ≤ µik . Our goal is to select a design with
the smallest expected response µi1 . However, in practice, if
the difference between µi1 and µi2 is very small, there may
be a negligible difference in mistakenly selecting design i2,
whose expected response is µi2 . The smallest “practically
significant” difference d∗ (a positive real number) between
the best and a satisfactory design is called the indifference
zone in statistics literature, and it represents the smallest dif-
ference that we care about. Therefore, we want a procedure
that avoids making a large number of replications or batches
to resolve differences less than d∗. We are indifferent to
the selection of either “good” design.

The indifference-zone approach selects a design i such
that µi − µi1 < d∗. Some literature refers to this event as
the probability of good selection (P(GS)) and use P(CS)
to indicate the probability of selecting design i1. In this
article, we do not distinguish the difference between the
two and use P(CS) to indicate the event in which we select
a good design. If the goal is to select a design with the
largest expected response, one can multiple the performance
measures with −1.

2.2 Null Hypothesis Tests

The conventional statistic for determining the significance
of a difference of means is by the null hypothesis test. When
testing the null hypothesis H0 : µil ≤ µi1 , the test statistic
that will be used to decide whether or not to reject the null
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hypothesis is

Til = X̄il (Nil ) − X̄i1(Ni1)

SX̄il
−X̄i1

,

where S2
X̄il

−X̄i1
= S2

il
(Nil )/Nil + S2

i1
(Ni1)/Ni1 . Let fil be

(S2
il
(Nil )/Nil + S2

i1
(Ni1)/Ni1)

2

(S2
il
(Nil )/Nil )

2/(Nil − 1) + (S2
i1
(Ni1)/Ni1)

2/(Ni1 − 1)

(1)

and let t1−α,f denote the 1−α quantile of the t distribution
with f degrees of freedom (df). We reject the null hypothesis
only if Til > t1−α,fil

, or similarly

X̄il (Nil ) − X̄i1(Ni1) > t1−α,fil
SX̄il

−X̄i1
= wil ,

where wil is the one-tailed 1 − α confidence interval (c.i.)
half width. By the property of c.i. half-width, wil ensures
P[µil −µi1 ≥ X̄il (Nil )−X̄i1(Ni1)−wil ] ≥ 1−α. Moreover,
for us not to reject the null hypothesis with 1−α confidence
that µil > µi1 , the lower endpoint of the one-tailed 1 − α

c.i. must be positive, i.e., X̄il (Nil ) − X̄i1(Ni1) − wil > 0.
For details on the duality of c.i. and hypothesis tests see
Rice (1995).

By symmetry of the normal distribution,

P[X̄il (Nil ) − X̄i1(Ni1) + wil ≥ µil − µi1 ] ≥ 1 − α. (2)

To achieve

P[X̄il (Nil ) − X̄i1(Ni1) > 0] ≥ 1 − α,

the sample sizes Ni should be large enough so that µil −µi1 >

wil . Note that the half-width wil depends on sample sizes,
sample variances, and confidence level. To achieve the pre-
specified precision, the half-width only needs to be smaller
than the difference between the true means or the indifference
amount, see Chen (2004). For example, if the number of
designs under consideration is k = 2 and µi1 + d∗ < µi2 ,
then sample sizes that achieve d∗ > wi2 will guarantee that
P[X̄i2(Ni2) > X̄i1(Ni1)] ≥ P ∗. We know that the sample
sizes determined by Rinott’s procedure guarantee

P(CS) = P[X̄i2(Nil ) − X̄i1(Ni1) > 0] ≥ P ∗,

and under the least favorable configuration, i.e., µi1 +d∗ =
µi2 ,

P[X̄i2(Ni2) − X̄i1(Ni1) ≥ (µi2 − µi1) − d∗ = 0] ≥ P ∗
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and

P[X̄i2(Ni2) − X̄i1(Ni1) ≥ (µi2 − µi1) − wi2 ≥ 0] ≥ P ∗.

Furthermore, we can achieve the pre-specified precision
by ensuring

P[X̄i2(Ni2) − X̄i1(Ni1) ≥ (µi2 − µi1) − di2 ] ≥ P ∗,

where di2 = max(d∗, µi2 − µi1). If µi2 − µi1 ≥ d∗, then
ξ = µi2 − µi1 − di2 = 0, and

P[X̄i2(Nil ) − X̄i1(Nil ) ≥ 0] ≥ P ∗.

If µi2 − µi1 < d∗, then ξ = µi2 − µi1 − di2 < 0, and

P[X̄i2(Ni2) − X̄i1(Ni1) ≥ ξ ] ≥ P ∗.

Therefore, P[X̄i2(Ni2) − X̄i1(Ni1) > 0] may be less than
P ∗. However, if we select design i2, it will be considered
a correct selection by definition.

2.3 Power of Hypothesis Tests

Calculations of power are an important part of planning
experiments in determining correct sample sizes. The power
of tests is the probability of rejecting the null hypothesis
when it is false, Rice (1995). Let �il = µil - µi1 , the power
of the null hypothesis test is

P

[
(X̄il (Nil ) − X̄i1(Ni1)) − �il

SX̄il
−X̄i1

> t1−α,fil
− �il

SX̄il
−X̄i1

]

= F(
�il

SX̄il
−X̄i1

− t1−α,fil
),

where F(x) is the cumulative distribution function of the t

distribution with fil df. The probability of having a correct
observed order can be obtained by setting α = 0.5 since
t0.5,fil

= 0. If the power of the test is Pt for each pairwise
comparison with the unknown best, then

P[X̄i1(Ni1) < X̄il (Nil )] = F(
�il

SX̄il
−X̄i1

)

= Pt = F(tPt ,fil
).

The power of the test depends on sample sizes, sample
variances, and the difference between the true means. The
allocated sample sizes should achieve

wil = tPt ,fil
SX̄il

−X̄i1
≤ �il .
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Furthermore, if

S2
il
(Nil )/Nil = S2

i1
(Ni1)/Ni1 = (

�il

tPt ,fil

)2/2, (3)

then the power of the test is Pt . Note that if we set Pt = 0.5,
then the precision of P[X̄i1(Ni1) < X̄il (Nil )] = 1 − α can
be achieved when

S2
il
(Nil )/Nil = S2

i1
(Ni1)/Ni1 = (

�il

t1−α,fil

)2/2.

This is consistent with the fact that if P[X̄2 − X̄1 < a] = Pt

and the one-tailed Pt c.i. half-width is w, then P[X̄2 −X̄1 <

a − w] = 0.5. Here Pt > 0.5, and a is a real number. See
Chen (2004) for more detail.

It can be shown that the optimal sample sizes that achieve
P[X̄i1(Ni1) < X̄i(Nil )] = 1−α is Ni1 = (z1−α/�il )

2(σi1 +
σil )σi1 and Nil = (z1−α/�il )

2(σi1 + σil )σil . However, it is
not clear what the optimal sample sizes will be when there
are k − 1 (k > 2) pairwise comparisons between design i1
and designs il �= i1. Nevertheless, Glynn and Juneja (2004)
have developed a framework for determining the optimal
sample sizes based on the large deviations theory.

2.4 A Sequentialized R&S Procedure

Most selection procedures require the input data to be i.i.d.
(independent and identically distributed) normal. Many per-
formance measures of interest are taken over some average
of a sample path or a batch of samples. Thus, many ap-
plications tend to have a normally distributed simulation
output. If the non-normality of the samples is a concern,
users can use batch means (see Law and Kelton 2000) to
obtain samples that are essentially i.i.d. normal.

Effective reduction of computation efforts while ob-
taining a good decision is crucial. Chen and Kelton (2005)
and Chen (2005) propose to sequentialize selection proce-
dures to eliminate the drawback of two-stage procedures and
to improve its efficiency. Rinott (1978) procedure and its
variants are derived based on P(CS)=P[X̄i1 < X̄il , for l =
2, 3, . . . , k] ≥ P ∗ and P[X̄i1 < X̄il ] ≥ (P ∗)1/(k−1), for
l = 2, 3, . . . , k. To further improve the efficiency of se-
quentialized selection procedure, Chen and Kelton (2005)
incorporate all pairwise comparisons at each iteration. Let
P = 1−(1−P ∗)/(k−1) and let the set I contain the compet-
ing designs. Inferior design j such that P[X̄j > X̄i] ≥ P of
some design i ∈ I will be excluded from further simulation
at each iteration.

For completeness, the related theorem and proposition
are listed here.

Theorem 1 (Chen 2004) For k competing designs
whose performance measure Xij are independent and nor-
mally distributed with means µ1, µ2, . . . , µk and unknown
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variances that need to be estimated by sample variances
S2

1 (r), S2
2 (r), . . . , S2

k (r), where r is the current sample size,
P(CS) will be at least P ∗ when the sample size for design
i is

Ni = max(r, �(htSi(r)/di)
2�), for i = 1, 2, . . . , k,

the critical value ht = √
2tP,r−1, P = 1−(1−p∗)/(k−1),

and di = max(d∗, µi − µi1).
Let X̄b = mini∈I X̄i at each iteration. Since the true

means µi are unknown, di is conservatively estimated by
d̂i = max(d∗, X̄i −U(X̄b)), where U(X̄b) is the upper one-
tailed P ∗ confidence limit of µb, i.e., P[µb ≤ U(X̄b)] ≥ P ∗.
The value of tP,r−1 can be approximated easily, see Hastings
(1955).

Proposition 1 (Chen and Kelton 2005) Let the set
I contain k competing designs whose performance measure
Xij are independent and normally distributed with unknown
means and unknown variances that need to be estimated
by sample means X̄1, X̄2, . . . , X̄k , and sample variances
S2

1 (n1), S
2
2 (n2), . . . , S

2
k (nk). If k − 1 designs are removed

(eliminated) sequentially from I with each eliminated design
j satisfies the equation that X̄j (r) > X̄i(r)+wij , i, j ∈ I ,
where r is the current sample size for each design, wij =
tP,r−1

√
S2

i (r)/r + S2
j (r)/r and P = 1 − (1 − p∗)/(k − 1),

then P[i1 ∈ I ] ≥ P ∗.

The Sequential Selection Procedure via All Pairwise
Comparisons (SAPC):

1. Initialize the set I to include all k designs. Let
Ni,l be the sample size allocated for design i and
X̄i,l be the sample mean of design i at the lth

iteration. Simulate n0 replications or batches for
each design i ∈ I . Set the iteration number l = 0,
and r = N1,l = N2,l = · · · = Nk,l = n0, Set
P = 1 − (1 − P ∗)/(k − 1) and specify the value
of the indifference amount d∗.

2. Perform all pairwise comparisons and delete infe-
rior design j from I ; i.e., X̄j > X̄i +wij , i, j ∈ I .
Note that wij is the one-tailed P c.i. half-width.

3. If wij < d∗ and X̄i > X̄j , remove design i from
I .

4. If there is more than one element (or the pre-
determined number of best designs) in I , go to
step 8.

5. Compute the critical value ht = √
2tP,r−1, where

tP,d denotes the P quantile of the t distribution
with d degrees of freedom.

6. Let X̄b,l = mini∈I X̄i,l . For all i ∈ I , compute
d̂i,l = max(d∗, X̄i,l − U(X̄b,l)), where U(X̄b,l) is
the upper one-tailed P ∗ confidence limit of µb at
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the lth iteration, and compute

δi,l+1 = �((htSi(r)/d̂i,l)
2 − r)+�.

7. Set l = l + 1. If δi,l = 0, set δi,l = 1. Set
the incremental sample size at the lth iteration
δl = mini∈I δi,l . For ∀i ∈ I , simulate additional
δl samples, set r = r + δl . Go to step 2.

8. Return the values b and X̄b(Nb), where X̄b(Nb) =
min X̄i(Ni), 1 ≤ i ≤ k and i was not eliminated
by all pairwise comparisons.

Instead of removing design i from further simulation
when δi,l = 0 we set δi,l = 1. Theoretically, the incremental
sample size for design i at iteration l δi,l = 0 when the
procedure has concluded that P[X̄i1 < X̄i] ≥ P or P[X̄i ≤
X̄i1 + d∗] ≥ P . However, since sample means are used to
estimate the required sample sizes, the sample sizes may
not be large enough. On the other hand, if the sample sizes
are in fact large enough, then design i will be eliminated by
all pairwise comparison, namely between designs i1 and i.
Recall that, if µil −µi1 > d∗, the sample sizes that achieve
P[X̄i1 < X̄il ] ≥ P also guarantees P[X̄il > X̄i1 +wil ] ≥ 0.5,
where wili1 is the one-tailed P c.i. half-width.

In the sequential selection procedure, all the alternatives
1 ≤ i ≤ k are initially included in the set I for R&S.
If all k − 1 designs were eliminated from I through the
two-sample-t test, then P[i1 ∈ I ] ≥ P ∗. On the other
hand, if some designs were eliminated from I because
wij < d∗, then the procedure can only guarantee P(CS)
≥ P ∗. The basic idea is that the procedure sequentially
removes k − 1 designs from I . If µi2 − µi1 ≥ d∗, then the
probability of wrongly removing design i1 is no more than
1 − P each time a design is removed. By the Bonferroni
inequality P[i1 ∈ I ] ≥ 1−∑k−1

i=1 (1−P) = P ∗. We use the
equation S2

i (r) = (
∑r

j X2
ij /r−X̄2

i )r/(r−1) to compute the
variance estimator so that we are only required to store the
triple (r,

∑r
j=1 Xij ,

∑r
j X2

ij ), instead of the entire sequences
(Xi1, Xi2, . . . , Xir ).

In general, we can improve the efficiency of selection
procedures with a pre-selection. The pre-selection approach
is a screening device that attempts to select a (random-size)
subset of the k alternative designs that contains the best one.
Inferior designs will be excluded from further consideration,
reducing the overall simulation effort. In this procedure,
design i having the total required sample size Ni = n0 can be
viewed as being excluded from further consideration. Thus,
the procedure has an intrinsic subset pre-selection built-in.
Our tests indicate this sequential procedure is significantly
faster than traditional two-stage procedures.

It is known that indifference-zone selection procedures
also guarantee that the coverage of multiple comparisons
with the best c.i.’s and multiple comparisons with a control,
design i1 being the control, c.i.’s with probability at least P ∗.
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These properties are still applicable for SAPC, however, the
c.i. half-width will be max(di, dj ) instead of the indifference
amount d∗, see Chen and Kelton (2003).

3 METHODOLOGIES

In this section, we present the basis of selection in a parallel
and distributed fashion. PADS attempts to decrease simu-
lation analysis time by distributing the simulation workload
among multiple computers (processors). A simulation pro-
gram operates on a model’s state variables by executing
a time-ordered sequence of simulation events. Each event
may change the state of the simulated system and schedule
one or more future events. In most discrete-event simula-
tion, the order in which events are executed is stored in the
event list and is determined by a next-event time advance
mechanism for the simulation clock (Law and Kelton 2000).
Events are executed in nondecreasing time-stamp order so
that the simulation clock always advances. A conventional
PADS decomposes a simulation model into communicating
LPs to perform different events. The PADS procedure maps
each LP to a processor and uses interprocessor communi-
cation to allow LP on different processors to communicate
with each other.

3.1 Inference From Indifference-Zone Selection

By design, indifference-zone selection procedures do not
guarantee the order of competitive designs when the dif-
ference between them is less than d∗. On the other
hand, indifference-zone selection procedures do guaran-
tee the order of competitive designs when the difference
between them is more than d∗. More specifically, if
µb − µi1 ≥ d∗, then indifference-zone selection proce-
dures guarantee P[X̄i1 < X̄b] ≥ (P ∗)1/(k−1). If µb > µi1 ,
the one-tailed 1 − α c.i. half-width wbi1 guarantees that
P[X̄b + wbi1 ≥ X̄i1 ] = P[X̄b − X̄i1 + wbi1 ≥ µi1 − µi1 ] ≥
P[X̄b −X̄i1 +wbi1 ≥ µb −µi1 ] ≥ 1−α. Moreover, since the
sample sizes determined by the selection procedure SAPC
ensures P(CS) ≥ P ∗, it ensures the one-tailed P c.i. half-
width wbi1 ≤ max(d∗, µb − µi1). If µb − µi1 ≥ d∗, then
µb−µi1 −wbi1 ≥ 0, so P[X̄b+d∗ ≥ X̄i1 ] ≥ P[X̄b ≥ X̄i1 ] ≥
P[X̄b ≥ X̄i1 + µb − µi1 − wbi1 ] ≥ P. If µb − µi1 < d∗,
then wbi1 < d∗, P[X̄b + d∗ ≥ X̄i1 ] ≥ P[X̄b − X̄i1 ≥
µb −µi1 − d∗] ≥ P[X̄b − X̄i1 ≥ µb −µi1 −wbi1 ] ≥ P. We
summarize the result as:

Theorem 2 For k competing designs whose Xij

are independent and normally distributed with unknown
means and unknown variances that need to be estimated
by sample means X̄1, X̄2, . . . , X̄k and sample variances
S2

1 (r), S2
2 (r), . . . , S2

k (r), where r is the current sample size.
The sample sizes determined by the indifference-zone selec-
tion procedure SAPC also guarantees P [X̄i1 ≤ X̄b +d∗] ≥
P .
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3.2 Parallel and Distributed Selection

The application of parallel and distributed simulation has
been limited. It is generally difficult to implement simulation
in a parallel and distributed environment because of the
sequential nature of most simulations. However, simulation-
based ranking and selection is well suited for parallel and
distributed simulation because the behavior of each system
can be simulated independently. For example, a network of
computers can be used to perform R&S problems, several
computers can be assigned to simulate the performance
of one or several systems, while a computer dedicated to
perform the comparisons between systems orchestrates the
overall simulation strategy.

To set up the procedure, let G1, G2, . . . , Gm be groups
of designs such that G1 ∪ G2 ∪ . . . Gm = {1, 2, . . . , k},
Gi ∩ Gj = φ for i �= j , ki = |Gi | ≥ 2 for all i, where
|I | denotes the cardinality of the set I. When we perform
selection in group e, the designs in Ge will be compared
to others in the same group. Without loss of generality,
assume i1 ∈ Gg for some 1 ≤ g ≤ m. For each group e, let
X̄e

b = mini∈Ge X̄i denote the best sample mean in group e. In
each group, designs q ∈ Ge such that X̄q ≤ X̄e

b +d∗ will be
considered as surviving designs. If we perform the selection
in each group e, then P [i1 surviving Gg selection] ≥ P , see
Theorem 1. Furthermore, if X̄i ≤ X̄

g
b +d∗ for all i ∈ Gg in

selection of group g, then P [i1 surviving Gg selection] =
1. Since the procedure has allocated substantial sample
sizes to those surviving designs, the additional samples in
subsequent selections will most likely be small.

The surviving designs are then grouped into a single
group or multiple groups depending on the number of sur-
viving designs. Note that the probability that design i1 is
among the set of surviving designs is at least P . To sim-
plify our discussion, we group the surviving designs into
a single group. Let k′ denote the number of surviving de-
signs and let the set I contain the k′ surviving designs. We
then select from all surviving designs in I . The subsequent
selection is essentially the same as described in Section
2.4, except that the initial sample sizes of each design are
not equal. Note that for each design i ∈ I , we have the
triple (ni,

∑ni

j=1 Xij ,
∑ni

j X2
ij ). We perform all pairwise

comparisons among these k′ designs to eliminate inferior
designs, i.e., design j having X̄j > X̄i + wij for some
i ∈ I will be excluded from further simulation. Because
the sample sizes ni and nj are likely to be different, we
use (1) to compute the df f of the critical constant tP,f .
In the case that ni = nj , we set df to ni − 1. Further-
more, if wij < d∗ and X̄i > X̄j for i, j ∈ I , remove i

from I . Let d̂i = max(d∗, X̄i − U(X̄b)) for i ∈ I , where
X̄b = mini∈I X̄i . Compute δi,l = �(htSi(ni)/d̂i)

2� − ni .
Since the sample sizes ni for i ∈ k′ may be different, we use
mini∈I ni−1 as the df to compute ht . If δi,l = 0, set δi,l = 1.
Let δl = mini∈I δi,l . Simulate additional δl replications or
728
batches for each design i ∈ I at iteration l. If µi2 −µi1 > d∗,
the probability of i1 being eliminated by some design i �= i1
is less than (1 −P ∗)/(k − 1). Hence, by the Bonferroni in-
equality, the probability that design i1 survives the selection
is larger than P ∗ = 1 − ∑k−1

i=1 (1 − P ∗)/(k − 1).
We can increase the efficiency of deploying the se-

lection procedure in a parallel and distributed environ-
ment by passing the best sample mean at each iteration
to all groups. Let X̄B be the best sample mean from all
groups, i.e., X̄B = min1≤e≤m X̄e

b, and pass the triple (nB ,∑nB

j=1 XBj ,
∑nB

j=1 X2
Bj ) to all groups. Since X̄B ≤ X̄e

b for
1 ≤ e ≤ m, the overall efficiency of selection may be im-
proved. Note that X̄e

b from different groups may be obtained
at different iteration with different sample sizes.

Another benefit of distributed simulation is the abil-
ity to integrate several different simulators, i.e., different
simulation software packages, into a single simulation en-
vironment. Since the underlying simulator used to generate
the simulation results has no impact on the final selection,
we can simulate alternative system designs with different
simulation packages. Ryde and Taylor (2003) point out that
due to the way many commercial off-the-shelf simulation
packages are designed, adding inter-operability could be
relatively straightforward. The ability to integrate different
simulators allows the simulation models to be executed and
developed concurrently.

SAPC offers a natural way of performing selection in
a parallel and distributed fashion, providing further gains in
simulation efficiency. Once the number of alternative de-
signs and number of groups have been determined, several
control computers, denoted �, can be used to orchestrate
the execution of simulation. These � computers will initi-
ate the execution of simulation and invoke a set of remote
computers, for example through remote method invocation,
to generate r samples of one or several system designs.
That is, each system is evaluated through distributed runs
of discrete simulation models. The simulation results can be
written to a shared file server or ftp (file transfer protocol)
to the computers � that are performing the R&S. Based
on the analysis, computers � send the required additional
sample size for each system design to the corresponding
computer. The communication between these computers
will repeat iteratively until simulation is complete. Deploy-
ing selection procedures in parallel and distributed environ-
ment requires little communication between processors and
overhead, making it practical and attractive.

3.3 The Framework

The use of networks of workstations interconnected through
LAN/WANs (Local Area Network/Wide Area Network) has
evolved into an effective and popular platform for parallel
and distributed computing. The advantages of these net-
work computing environments include 1) ready availability,
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2) low cost, and 3) incremental scalability. Furthermore,
network computing environments retain their ability to serve
as a general-purpose computing platform and to run com-
mercially available software products, see Carothers et al.
(1997).

One difficulty associated with PADS is time manage-
ment when ensuring that the execution of the distributed
simulation, i.e., LP, is properly synchronized. Communica-
tion must be sent between processors when corresponding
parts of the model interact logically. As a result, issues con-
cerning the sub model’s ability to proceed at its own pace
arise because generally PADS LP can schedule further events
not only for itself but also for other LPs. Therefore, events
cannot be executed in a straightforward time-stamp manner.
As pointed out earlier, for the R&S procedure to perform
correctly, it only needs the triple (ni,

∑ni

j=1 Xij ,
∑ni

j X2
ij )

from each design. Thus, time management does not com-
plicate processing R&S in parallel. In this case, each LP is
viewed as an independent and autonomous discrete event
simulator. This means that each LP maintains its local state
information corresponding to the entities it is simulating
and a list of events that have been scheduled for this LP.
Furthermore, each LP only schedules additional events for
itself but not for other LPs. Hence, it is straightforward to
implement R&S in a parallel and distributed fashion.

For a generic framework of implementing distributed
simulation, see Taylor et al. (1999). They discuss the use of
a generic runtime infrastructure for distributed simulation,
which is an execution environment capable of supporting a
broad range of simulation types. The World Wide Web or
the Internet is a loose coupling of thousands of networks
and millions of computers around the globe. The Internet
has become one of the most important information sources
and communication platforms in industry. An inherent
characteristic of the Internet is its distributed nature, hence,
it provides an excellent basis for distributed simulation.

4 EMPIRICAL EXPERIMENTS

In this section, we list the empirical results of SAPC and
running SAPC under a parallel and distributed environment,
denoted NPDS. Furthermore, NPDSs denotes performing
selection separately within each group, i.e., the best sample
mean from other groups is not used to eliminate inferior
designs in the current group. Instead of using stochastic
systems to simulate examples, which offer less control over
the factors that affect the performance of a procedure, we use
various normally distributed random variables to represent
the system performance measures.

In the experiment, there are 10 alternative designs un-
der consideration, and each Xij ∼ N(µi, (

√
10)2), where

N(µ, σ 2) denotes the normal distribution with mean µ and
variance σ 2. See Table 2 for the values of µi . We divide
these designs into two non-overlapping groups: group 1
72
Table 1: P̂ (CS) and Sample Sizes
P ∗ = 0.90 P ∗ = 0.95

Procedure P̂ (CS) T P̂ (CS) T

SAPC 0.9567 535 0.9801 746
NPDS 0.9638 653 0.9852 889
NPDSs 0.9613 866 0.9827 1204

Table 2: Detailed Sample Sizes of NPDS
Design µ Sample Within Sample Select
1 0 108 0.9944 116 0.9638
2 1 89 0.4306 90 0.0074
3 1 89 0.4231 89 0.0078
4 1 89 0.4260 89 0.0068
5 2 54 0.0094 54 0.0
6 1 55 0.4634 63 0.0141
7 2 41 0.0119 41 0.0000
8 2 41 0.0131 41 0.0000
9 2 40 0.0123 40 0.0001
10 3 25 0.0002 25 0.0

contains designs 1 through 5, group 2 contains designs 6
though 10. The indifference amount d∗ is set to 1.0 in
all cases. We set the initial replication n0 = 10 and the
minimal probability of CS P ∗ = 0.90 and P ∗ = 0.95. Fur-
thermore, 10,000 independent experiments are performed
to estimate the actual P(CS) by P̂ (CS): the proportion of
the 10,000 experiments in which we obtained the correct
selection: design 1.

Table 1 lists the experimental results. The SAPC, NPDS,
and NPDSs rows list the results of each procedure. The
P̂ (CS) column lists the proportion of correct selection. The
T column lists the average of the total simulation replications
(T = ∑10000

R=1
∑k

i=1 NR,i/10000, NR,i is the total number of
replications or batches for design i in the Rth independent
run) used in each procedure. The observed P(CS)’s are
greater than the specified nominal levels of 0.90 and 0.95.
The sample sizes allocated by NPDS are slightly greater
than those allocated by SAPC since the best sample mean
may come from a group that has completed the simulation
run and is no longer improving its precision. However,
NPDS can perform selection in parallel and may result in
a shorter run time, especially when the best sample means
in each group is about the same.

Table 2 lists the results when the best sample mean is
available to all groups when P ∗ = 0.90. The µ column
lists the true mean of design i. The Within column lists the
proportion that X̄i ≤ X̄B +d∗, where X̄B = min1≤i≤k X̄i is
the best sample mean of all groups. The Select column lists
the proportion that the particular design has the best sample
mean. The first Sample column lists the resulting sample
sizes from the subdivided groups. The second Sample
column lists the final sample sizes. The procedure allocates
less samples to inferior designs whose sample means are far
9
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Table 3: Detailed Sample Sizes of NPDSs

Design µ Sample Within Sample Select
1 0 101 0.9968 109 0.9613
2 1 87 0.4182 87 0.0074
3 1 87 0.4199 87 0.0080
4 1 87 0.4147 87 0.0066
5 2 62 0.0073 62 0.0001
6 1 101 0.9960 107 0.0164
7 2 87 0.4149 87 0.0001
8 2 87 0.4180 87 0.0
9 2 86 0.4062 86 0.0001
10 3 62 0.0076 62 0.0

in excess of the best sample mean. The allocated sample
size of design 6 (designs 7,8,9) in group 2 is less than those
of designs 2, 3, 4 (design 5) in group 1 even though their
true means are the same. This is because the number of
alternatives in group 2 under consideration is reduced to
one much earlier than in group 1.

Table 3 lists the results when the best sample mean
is available only to the group containing this particular
design when P ∗ = 0.90. The Within column under NPDS
without sharing lists the proportion that particular design
has sample mean within the best sample mean in the same
group (instead of the best sample mean of all groups) plus
the indifference amount. All other fields are as defined in
Table 2. The detailed results for P ∗ = 0.95 are similar.
The allocated sample sizes for designs in the second group,
i.e., designs 6 through 10, are significantly increased when
the best sample mean of group 1 is not used to eliminate
inferior designs at current group. When the selection in
each group is performed separately, the resulting sample
sizes and Within from each group are similar because the
means within each group have similar configuration.

5 CONCLUSIONS

Parallel and distributed simulation reduces execution time for
time-consuming applications, such as ranking and selection
of stochastic systems. We have presented a framework for
deploying selection procedures in a parallel and distributed
environment. All the alternative designs are subdivided into
several groups and the entire selection is performed by a
set of concurrently executing processes. Thus, we may be
able to shorten the run time. The procedure incorporates
all pairwise comparisons to eliminate inferior designs at
each iteration, which may reduce the overall computational
effort. The proposed procedure takes into account the
difference of sample means when determining the sample
sizes and is suitable even when the number of designs under
consideration is large. Furthermore, the proposed procedure
is derived based on the Bonferroni inequality, so one can
use CRN with the proposed procedure directly without any
further assumptions.
7

While ordinal optimization (Ho 1992) is developed to
evaluate thousands of alternative designs in its design of
experiment, traditional R&S procedures only have the capa-
bility to evaluate a small number (less than 20) of alternative
designs. When we take into account the different of sam-
ples means in determining the required sample sizes, we
have increased the capability of R&S procedures to eval-
uate more designs. We can further increase the capability
of R&S procedures by deploying them in a parallel and
distributed environment. Since we have provided ways for
the R&S statistics to deal with a much larger number of al-
ternative designs, the proposed R&S procedure may be used
to complement other existing techniques for optimization
and search problems as well.

We have shown that the proposed procedure is versa-
tile and easy to apply. The procedure preserves the simple
structure of indifference-zone selection while increasing ef-
ficiency in both statistical and execution aspects, i.e., taking
into account sample means and executed in a PADS en-
vironment. The simplicity of these methods should make
them attractive to simulation practitioners and software de-
velopers.

ACKNOWLEDGMENTS

The author thanks Pamela Ting for her useful comments.

REFERENCES

Carothers, C. D., B. Topol, R. M. Fujimoto, J. T. Stasko,
V. Sunderam. 1997. Visualizing Parallel Simulations
in Network Computing Environments: A Case Study.
Proceedings of the 1997 Winter Simulation Conference,
ed. S.A. Andradóttir, K.J. Healy, D.H. Withers, and B.L.
Nelson, 110-117. Piscataway, New Jersey: Institute of
Electrical and Electronics Engineers.

Chen, E. J. 2004. Using Ordinal Optimization Approach to
Improve Efficency of Selection Procedures. Journal of
Discrete Event Dynamic Systems 14(2): 153-170.

Chen, E. J. 2005. Some Insights of Indifference-Zone
Selection via All-Pairwise Comparisons. Proceedings
of the 2005 Summer Computer Simulation Conference,
ed. A. G. Bruzzone, E. Williams, 118-124. San Diego,
California: The Society for Modeling and Simulation
International.

Chen, E. J., and W. D. Kelton. 2003. Inferences From
Indifference-Zone Selection Procedures. Proceedings
of the 2003 Winter Simulation Conference, ed. S. Chick,
P. J. Sánchez, D. Ferrin, and D. J. Morrice, 456-464.
Piscataway, New Jersey: Institute of Electrical and
Electronics Engineers.

Chen, E. J., and W. D. Kelton. 2005. Sequential Se-
lection Procedures: Using Sample Means to Improve
30



Chen
Efficiency. European Journal of Operational Research
166(1): 133-153.

Fujimoto, R. M. 2000. Parallel and Distributed Simulation
Systems. Wiley Interscience.

Glynn, P. W. and S. Juneja. 2004. A Large Deviations
Perspective on Ordinal Optimization. In Proceedings
of the 2004 Winter Simulation Conference, ed. R. G.
Ingalls, M. D. Rossetti, J. S. Smith, and B. A. Pe-
ters, 577-585. Piscataway, New Jersey: Institute of
Electrical and Electronics Engineers.

Hastings, C. Jr. 1955. Approximations for Digital Com-
puters. Princeton Univ. Press, Princeton, New Jersey.

Ho, Y. C., R. S. Sreenivas, and P. Vakili. 1992. Ordinal
Optimization of DEDS. Journal of Discrete Event
Dynamic Systems 2: 61–68.

Law, A. M and W. D. Kelton. 2000. Simulation Modeling
and Analysis. Third ed. New York: McGraw-Hill.

Luo, Y-C, C. H. Chen, E. Yücesan and I. Lee. 2000.
Distributed Web-Based Simulation Optimization. Pro-
ceedings of the 2000 Winter Simulation Conference, ed.
J.A. Joines, R. Barton, P. Fishwick, and K. Kang, 1785–
1793. Piscataway, New Jersey: Institute of Electrical
and Electronics Engineers.

Nelson, B. L, J. Swann, D. Goldsman, and W. Song. 2001.
Simple Procedures for Selecting the Best Simulated
System when the Number of Alternative is Large. Op-
erations Research 49: 950-963.

Rice, J. A., 1995. Mathematical Statistics and Data Anal-
ysis. Second ed. Belmont, California: Duxbury Press.

Rinott, Y., 1978. On Two-stage Selection Procedures and
Related Probability Inequalities. Communications in
Statistics A7: 799-811.

Ryde, M. D., and S. J. E. Taylor. 2003. Issues Using COTS
Simulation Software Packages for the Interoperation of
Models. Proceedings of the 2003 Winter Simulation
Conference, ed. S.A. Andradóttir, K.J. Healy, D.H.
Withers, and B.L. Nelson, 772-777. Piscataway, New
Jersey: Institute of Electrical and Electronics Engineers.

Swisher, J. R., S. H. Jacobson, and E. Yücesan. 2003.
Discrete-Event Simulation Optimization using Ranking,
Selection, and Multiple Comparison Procedures: A
Survey. ACM Transactions on Modeling and Computer
Simulation 13(2): 134-154.

Taylor, S. J. E., J. Saville, and R. Sudra. 1999. Developing
interest management techniques in distributed interac-
tive simulation using Java. Proceedings of the 1999
Winter Simulation Conference, 518-523. Piscataway,
New Jersey: Institute of Electrical and Electronics En-
gineers.

AUTHOR BIOGRAPHY

E. JACK CHEN is a Senior Staff Specialist with BASF
Corporation. He received a Ph.D. from the University of
731
Cincinnati. His research interests are in the area of computer
simulation. His email address is <chenej@basf.com>.


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print



