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ABSTRACT 

This paper describes on-going research, where we compare, 
via simulation experiments, a stochastic system to a stan-
dard.  We are particularly interested in a subset of standards 
we call limit standards.  A limit standard is a maximum or 
minimum benchmark derived from requirements, another 
model, or the actual system.  The problem is to determine if 
a system meets the limit standard at customer-defined prob-
abilities.  Then, for those systems that meet the limit stan-
dard, identify which system is the “best,” or results in the 
lowest probability of reaching the standard.  Current com-
parison methods are based on expected value and cannot 
solve this type of problem.  We outline a two-step approach, 
using methods from acceptance sampling and ordered statis-
tics, to solve this problem. 

1 INTRODUCTION 

A “standard” is an identified benchmark or source to which 
the output of a simulation is compared (Nelson and Golds-
man 2001, Law and Kelton 2000).  The most desired stan-
dard for comparison is the actual system.  Many times, how-
ever, this standard is not available, and the analyst must look 
to other sources.  These can range from the use of another 
simulation replication to the use of system requirements. 

Current methods of comparing a simulation output to a 
standard only consider expected performance.  (Nelson and 
Goldsman 2001, Law and Kelton 2000).  The mean of the 
observations in an experiment is compared to the standard.  
Therefore, the standard must be defined as an expected 
value (mean) in order for these methods to provide a statis-
tically valid conclusion.  Miller, et al (2002) consider se-
lecting the best system based on the number of times the 
observations within a system exceed the observations 
within other systems. 

A limit standard is defined as a discrete maximum or 
minimum value, which the customer desires to not violate.  
Limit standards are present in many operational, economic, 
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and design models.  If the standard under investigation is a 
limit standard, use of the current comparison methods will 
result in the analyst making an incorrect conclusion about 
the model. 

For example, when developing a model of parking pat-
terns at a university, a limit standard is the number of park-
ing spaces available.  It is not possible to exceed this stan-
dard, although attempts to do so are always made by 
students. 

The goals of this comparison are to determine if a sys-
tem meets the limit standard and, if a group of systems 
meet the standard, to determine the “best” system.  In other 
words, we want to find the system that meets the standard 
while providing the maximum probability of not exceeding 
the standard.  In this paper, we define a “system” as a spe-
cific combination of input and process random variables in 
a model. 

Returning to the parking model, the number of com-
muter students, faculty and staff vehicles authorized to 
park on campus exceeds the number of available parking 
spaces.  From a resource allocation standpoint, it is not 
possible to have a parking space for every authorized vehi-
cle.  It is equally undesirable to regularly reach the limit 
standard.  Therefore, the goal is to find the combination of 
vehicle arrivals and parking durations that result in the 
“best”, or highest, probability of not reaching full capacity. 

We identify a solution to the limit standard problem, 
using concepts from ordered statistics and acceptance sam-
pling. 

2 PROBLEM DEFINITION 

For the purpose of brevity, we will only define the problem 
for a maximum limit standard, using a two-step approach.  
The problem and procedure for a minimum standard is the 
same as the maximum limit standard, but with reversal of 
sign in some equations. 
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The first step involves selecting systems which meet 
the standard.  The second step determines, from the sys-
tems that meet the standard, which system is the "best." 

Let ωi denote the ith system under investigation, 
where i = 0, 1, …, k.  Let ω0 denote the standard system.  
The other systems will be referred to as the alternative sys-
tems.  Define Xij as the jth observation of interest from the 
ith system, for j = 1, 2, …, n.  For the standard system, 
there is only one observation of interest, which is the limit 
standard.  The limit standard is defined as a known stan-
dard, meaning it is a discrete value with no variation. (Nel-
son and Goldsman 2001)  Let T denote this limit standard. 

It is assumed that the number of observations for each 
alternative system, ni, remains constant. While there is 
nothing to prevent a difference in ni between systems, this 
assumption is used to provide a very simple selection and 
ordering procedure.  For example, instead of the simple or-
dering method described in the second step, using different 
values of ni would require the use of Equations (8) for each 
system and Equation (9) when comparing each system.  
Therefore, the rest of this paper will simply refer to the 
number of observations in a system as n.  Also, in this pa-
per, it is assumed that Xi1, Xi2, …, Xin are independent and 
identically distributed (IID). 

Define di as the number of observations that exceed 
the standard in system i.  In other words, 
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where bj = 1 when Xij > T and bj = 0 otherwise. 
 

Define c as the number of observations in a sample of 
size n that are allowed to exceed the standard.  The value 
of c is dependent on several factors and is discussed in the 
next section. 

Compliance to the standard is then determined for 
each alternative system using the following rule: 
 
 If di < c, accept ωi . 
 
In other words, 
 
 Pr [ωi meets standard] > 1 – α, given di < c. (2) 
 

In (2), α is defined as a Type I error, or the probability 
of rejecting the system when the number of observations 
exceeding the standard are c or less. 

A rejection of (2) invokes the possibility of a Type II 
error, meaning ωi is rejected when it should have been se-
lected.  That is, 
 
 Pr [ωi meets standard] < β, given di > c. (3) 
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If no alternative system meets the limit standard, then 
the standard system should be accepted, or 
 
 Pr [selecting ω0] > 1 – α when di > c (4) 
 
for i = 1, 2, …, k. 

In other words, if an alternative system is not selected, 
the standard system should be selected as the "best" system 
with probability 1 – α. (Nelson and Goldsman 2001) 

If only one alternative system meets the standard after 
this first step, that system is designated the "best" system.  
However, if more than one alternative system meets the 
standard, we must proceed to the second step. 

Each remaining system is then ordered, based on its 
probability of acceptance, or the probability of not exceed-
ing the standard.  To simplify the ordering, we only need to 
consider the number of “failed” observations in each sys-
tem, or 

 
 d(1) < d(2) < … < d(m), (5) 
 
where m = number of remaining systems. 

The ordered systems are designated ω(i), which indi-
cates the ith "best" system based on the probability of ac-
ceptance (Pa) of the system. 

In the event of a tie, or d(i) = d(i+1), order those systems 
based on the one-tailed t-statistic for the system, or 
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where )(iX  is the sample mean for the system and s(i) is 
the sample standard deviation for the system. 

Define δ as a percent t-statistic indifference-zone se-
lected by the customer.  The system with the largest t-
statistic is designated the "best" of those systems if 

 
 )1()1()( δ+≥ +ii tt . (7) 

 
Otherwise, it is possible for any of those systems to be 

considered the "best". 
Alternative system ω(1) is designated the "best" sys-

tem.  This designation indicates that ω(1) has the smallest 
probability of exceeding the standard.  Note that it is pos-
sible for other alternative systems (such as ω(2)) to have a 
Pa very close to that of ω(1).  However, for a sufficiently 
large sample size n, the ordering system specified above 
assures that ω(1) will be as good as or better than these 
other systems in meeting the limit standard. 
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3 PROCEDURE 

For each system of n observations, we are interested in 
only one characteristic of each observation – whether or 
not the observation exceeds the standard.  We can therefore 
treat this characteristic as a binomial distribution, irregard-
less of the underlying distribution of each observation. 
(Conover 1980) 

This is the principle applied to acceptance sampling.  
The distribution of the measurement and the severity of the 
defect (how much the defect was out of tolerance) is not 
considered.  The lot (or system) is accepted or rejected 
based on the sample size and the number of defectives ob-
served in the sample.  Some quality control analysts prefer 
to use a Poisson distribution.  However, because we are as-
suming the samples come from a very large ‘lot’ (essen-
tially of infinite size), “the binomial distribution is the ex-
act probability distribution for calculating the probability 
of lot acceptance.” (Montgomery 2001) 

The analyst must establish a critical region α and a 
proportion p1 of defectives that is acceptable at Pa = 1 – α.  
If the sample size is known, these values can be used to 
identify c, where Pr[Y > c] = α and Y is a binomial random 
variable with parameters p1 and n. (Conover 1980) 

However, when conducting simulation experiments, 
we usually do not know the acceptable sample size, or 
number of necessary replications, in advance of conducting 
experiments.  Several methods to determine n for simula-
tion experiments have been previously defined. (Law and 
Kelton 2000, Nelson and Goldsman 2001)  Most of these 
methods require a two-stage approach using the sample 
mean and standard deviation.  We recommend a method 
from acceptance sampling, using two points from a Type-B 
Operational Characteristic (OC) curve to determine n and 
c. (Montgomery 2001)  One point has already been defined 
above as (p1, 1 – α).  The analyst must now establish a 
second point, corresponding to a critical region β and a 
proportion p2 of defectives that is acceptable at Pa = β. 

For example, in the parking problem above, we may 
wish to accept a system, with Pa = 0.95, if the proportion 
of defectives is p1 = 0.01.  We wish to accept the system, 
with Pa = 0.10, if the proportion of defectives is p2 = 0.02. 

The selection of α, p1, β, and p2 are critical to the 
comparison.  Logically, there is very little interest in hav-
ing observations exceed a limit standard.  Therefore, these 
values should be kept very small.  However, to maintain 
smaller values requires very large sample sizes.  Also, the 
separation between p1 and p2 should be very small – typi-
cally no more than one or two units of significant meas-
urement.  A large separation will result in a large indiffer-
ence zone. 
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Once these points are established, n and c can be de-
termined by solving two simultaneous Binomial cumula-
tive distribution functions (cdf). 
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(Montgomery 2001). 
 Solving these equations requires the use of a spread-
sheet, which can produce several combinations of n and c.  
It is noted that n and c must be positive integers and that    
n > c > 0. 
 Using the values from the parking example above, the 
combinations of c and n shown in Table 1 can be used. 

 
Table 1: Combinations of c and n for p1 = 0.01,α = 0.05, p2 
= 0.02, β = 0.10. 

c n 
0 299 
1 473 
2 628 
3 773 
4 913 
5 1049 

 
 In other words, at least 299 observations are required.  
If none of the observations exceed the standard, then that 
system meets the standard.  If the analyst is willing to ac-
cept some observations exceeding the standard, then larger 
of values of n are required. 
 The null hypothesis to test is that the parameter ρ, de-
fined as the proportion of defectives in the system, is less 
than or equal to p1.  The alternate hypothesis is that ρ is 
greater than p1. 
 
 H0: ρ < p1 
 H1: ρ > p1 
 

The test statistic is d, the number of defectives in a 
system of n observations.  If d < c, then accept H0; else, re-
ject H0.  If we accept H0, we are confident, with probability    
Pa > 1 – α, that ρ is less than or equal to p1. 

If only one system is accepted, that system is consid-
ered the “best.”  If no systems are accepted, then the ana-
lyst must consider a change to the standard (with customer 
approval), a change in α, p1, β, and p2, or a re-evaluation of 
model assumptions. 

If more than one system is accepted, analysis proceeds 
to Step 2 below. 
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4 STEP TWO - SELECTING THE “BEST” 

After executing the above procedures, what remains are 
systems which have a proportion of defectives less than or 
equal to p1.  Any of these systems can be used, and the 
standard will be met.  Step two is to determine which of 
these systems is the “best”, or has the highest Pa. 

Since the Binomial cdf was used to establish the crite-
ria for the critical region, it must be used to determine 
which of the remaining systems has the highest Pa.  For 
each system, the probability of acceptance is determined 
by 
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for i = 1, 2, …, m. 
 As n and p1 are the same for each system, we only 
need to be concerned with the number of defectives, di, in 
each system.  As d gets smaller, Pa gets larger.  Therefore, 
the ordering system shown in (5) simplifies the calcula-
tions for this step. 
 In the event of a tie, where two or more systems have 
the same number of defectives, there must be a statistically 
valid method of determining the “best” from among these 
systems.  So far, we have not considered the severity of the 
defective observations.  We would expect that systems 
with observations significantly higher (or lower, for a 
minimum limit standard) than the standard are not as desir-
able as systems with observations close to the standard. 
 We suggest the use of the t-statistic for breaking ties, 
but are investigating other methods.  For large n, a lower t-
statistic usually indicates a higher probability the system 
will produce observations that will exceed the standard.  
There are, however, several concerns with this method.  
First, use of the t-statistic assumes the observations are 
from a normally-distributed population.  Second, since 
these systems already meet the standard, the difference in 
the ρ and t-statistic between these systems will be small.  
As a result, we have the possibility of a system not selected 
being as good as the system selected.  We include an indif-
ference-zone variable to reduce this possibility.  We con-
tinue to research several indifference-zone procedures. 

5 PARKING EXAMPLE 

Using Arena®, we modeled the parking patterns of faculty, 
staff and commuter students at Longwood University.  
(Kelton, et al 2004)  The characteristic of interest was the 
maximum number of vehicles in the parking model, either 
parked or looking for a parking space, in a 10-hour day.  
Specifically, we were interested in the number of times 
(days) the maximum number of spaces was exceeded.  
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Each system, or model, consisted of a set of arrival rates 
and durations for each type of driver. 

Twenty systems were investigated. For each system, 
the arrival rates and durations of faculty and commuter 
students were (manually!) modified to reflect expected dif-
ferences in course schedules.  For example, one system re-
flected 300-level courses in the late morning and 400-level 
courses in the afternoon, since most of the commuter stu-
dents are seniors taking 300- and 400-level courses. The 
arrival rates and durations for staff members were not 
changed, since the working hours for staff members are 
usually not affected by changes in course schedule. 

The number of parking spaces was set at 687.  We also 
used p1 = 0.03, α = 0.10, p2 = 0.04 β = 0.10 and δ = 0.01.  
From (8), we selected n = 265 (days) and c = 4. 

Of the twenty systems, six met the criteria established 
above, and are listed in Table 2. 

 
Table 2: Systems Where d < c = 4 

System d mean s.d. 
3 4 680.91 3.54 
4 2 678.25 3.17 

10 3 677.89 3.66 
12 2 680.23 3.06 
18 2 678.62 2.99 
19 3 680.11 2.96 

 
The three systems with d = 2 provide us with a   

Pa > 0.987.  Of these, System 18 had the largest t-statistic 
of 2.80.  However, System 4 was a close second with a t-
statistic of 2.76.  Using the rule defined in (7), System 18 
is designated the "best" of the systems in meeting the limit 
statistic. Ten additional replications of Systems 4 and 18 
were conducted, using different random number streams 
for each replication set.  The results indicate that both sys-
tems maintain similar statistics, with System 18 as the 
"best" in eight of the ten replications. 

6 CONTINUED RESEARCH 

We continue to research many aspects of comparison to a 
limit standard. 

• As always, a model is only as good as its input 
data.  We continue to gather more data on traffic 
patterns to refine the models. 

• Except when conducting additional replications of 
Systems 4 and 18, we used Arena's ® default 
Common Random Number (CRN) stream.  
Miller, et al (2002) note that the use CRNs may 
result in a lack of independence across systems.  
We will investigate the impact in using CRNs.  

• The tie-breaking system described above provides 
a good indication of the “best” system from a 
group of systems determined to meet the standard.  
We indicate that errors are inherent in this ap-



Creasey, White, Marks, and Waller 

 

proach.  It is therefore possible for one system not 
selected as the “best” to exhibit characteristics 
similar to the selected system.  We will continue 
to research and refine the selection methods. 

• Develop a set of optimization algorithms, to de-
termine the optimal value of input and process 
variables that minimizes the probability of ex-
ceeding the standard. 

• Research the use of other quality control tech-
niques in the comparison of standards.  Specifi-
cally, we will look at sequential sampling meth-
ods to handle indifference zones.  This method 
may allow for a smaller number of observations 
necessary to determine acceptance. 

• Research the use of optimization techniques from 
the multi-armed bandit problem to quickly elimi-
nate systems that will not meet the standard.  (Lai 
and Robbins 1985)  These techniques may also 
reduce the necessary sample size. 
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