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ABSTRACT

Selection procedures are used in many applications to select
the best of a finite set of alternatives, as in discrete optimiza-
tion with simulation. There are a wide variety of procedures,
which begs the question of which selection procedure to
select. This paper (a) summarizes the main structural ap-
proaches to deriving selection procedures, (b) describes an
innovative empirical testbed, and (c) summarizes results
from work in progress that provides the most exhaustive as-
sessment of selection procedures to date. The most efficient
and easiest to control procedures allocate samples with a
Bayesian model for uncertainty about the means, and use
a new expected opportunity cost-based stopping rule.

1 INTRODUCTION

Ranking and selection procedures seek to identify the
best of a finite set of alternatives, where best is de-
termined with respect to the largest sampling mean,
and the mean is inferred through statistical sampling.
Procedures are used in commercial simulation products
like ARENA (Kelton et al. 1998) and in combination
with optimization tools like evolutionary algorithms or
discrete optimization via simulation (Boesel et al. 2003,
Branke and Schmidt 2004), among other areas.

There are three main approaches to the selection prob-
lem: the indifference zone (IZ, Kim and Nelson 2005),
the expected value of information procedure (VIP,
Chick and Inoue 2001), and the optimal computing bud-
get allocation (OCBA, Chen 1996) approaches. The ap-
proaches are distinguished by their assumptions about how
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the evidence for correct selection is described. Recent WSC
Proceedings describe many developments for the three main
approaches, including many variations for the sampling as-
sumptions, approximations, stopping rules and parameters
that combine to define a procedure.

Few papers present a thorough assessment of how those
variations compare with each other. Special cases of the VIP
outperform specific IZ and OCBA procedures (in a compar-
ison of two-stage procedures), and specific sequential VIP
and OCBA procedures are more efficient than two-stage
procedures (Inoue et al. 1999). He et al. (2005) derived
an OCBA-type procedure, OCBALL, that uses an expected
opportunity cost (EOC) loss function inspired by the VIP
approach. They showed that the original OCBA procedure,
the new OCBALL and the VIP-based LL performed bet-
ter than some other procedures in several empirical tests.
Branke et al. (2005) provides the most exhaustive compar-
ison of a wide variety of procedures (some new, some old),
with new stopping rules that improve the performance of
both VIP and OCBA procedures, tested over a large battery
of selection problem instances.

This paper summarizes some findings from work in
progress (Branke et al. 2005), and includes some observa-
tions that arose during our study but are not included in that
paper. The goal is to understand the strengths and weak-
nesses of each approach. The focus here is on ranking and
selection, but the results are intended to find techniques for
approaching very large numbers of different system designs.

For each of the three main approaches, we selected
“state of the art”, highly sequential procedures (the IZ
procedure KN++ of Goldsman et al. 2002; the LL and 0-1
of Chick and Inoue 2001; the OCBA of Chen et al. 2005
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and the OCBALL of He et al. 2005), in conjunction with
new and old allocation and stopping rules. We assess:

• Efficiency: The mean evidence for correct selection
as a function of the mean number of samples.

• Controllability: The ease of setting a procedure’s
parameters to achieve a targeted evidence level.

• Robustness: The sensitivity of a procedure’s ef-
fectiveness to the underlying problem structure.

We focus on jointly independent and normally distributed
simulation output with unknown variances.

The results indicate that a Bayesian EOC-based stopping
rule is the most controllable and robust of the stopping
rules we considered, and is typically the most efficient.
It is certainly more efficient than stopping rules used in
the original formulations of both the VIP and OCBA. The
KN++ can be more efficient in some special cases, but
it is typically somewhat less efficient and it appears to be
very difficult to control. Probability of good selection rules
can be more efficient when problem instances are sampled
randomly, but are also difficult to control. Among all tested
procedures, the LL, OCBA and OCBALL, modified with
new stopping rules, are the most effective. The 0-1 and
Equal allocations are the least effective.

2 ASSUMPTIONS, NOTATION, PROCEDURES

The best of k simulated systems is to be identified, where
“best” means the largest output mean. Let Xij be a random
variable whose realization xij is the output of the j-th
simulation replication of system i, for i = 1, . . . , k and
j = 1, 2, . . .. Let wi and σ2

i be the unknown mean and
variance of system i, and let w[1] ≤ w[2] ≤ . . . ≤ w[k]
be the ordered means. The ordering [·] is unknown, and
system [k] is to be identified with simulation. Vectors are
written in boldface, such as w = (w1, . . . , wk) and σ2 =
(σ2

1 , . . . , σ2
k). The procedures considered below are derived

from the assumption that simulation output is independent
and normally distributed, conditional on wi and σ2

i , for
i = 1, . . . , k,

{Xij : j = 1, 2, . . .} i.i.d.∼ Normal
(
wi, σ

2
i

)
.

A problem instance (“configuration”) is denoted by

χ = (w,σ2).

Although the normality assumption is not always valid,
it is often possible to batch outputs so that normality is
approximately satisfied. Let ni be the number of replications
for system i run so far. Let x̄i =

∑ni

j=1 xij/ni be the sample
mean and σ̂2

i =
∑ni

j=1(xij − x̄i)2/(ni − 1) be the sample
variance. Let x̄(1) ≤ x̄(2) ≤ . . . ≤ x̄(k) be the ordering of
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the sample means. The quantities ni, x̄i, σ̂
2
i and (i) may

change as more replications are observed. Each selection
procedure generates estimates ŵi of wi, for i = 1, . . . , k.
In procedures studied here, ŵi = x̄i, and a correct selection
is when the selected system, system D, has the same mean
as the best system, [k]. Usually D = (k) is selected as best.

The Student t distribution with mean μ, precision κ,
and ν degrees of freedom is denoted St (μ, κ, ν). The
variance is κ−1ν/(ν − 2) if ν > 2. The difference Zi −Zj

of independent t random variables Z� ∼ St (μ�, κ�, ν�) is
approximated below by a t distribution with mean μi −μj ,
scale (κ−1

i +κ−1
j )−1, and the Welch (1938) approximation

for the degrees of freedom νij . Let Φν() be the cdf of the
standard t distribution (μ = 0, κ = 1) and φν() be the pdf.

2.1 Evidence for Correct Selection

The procedures in Sections 2.2 to 2.4 below each run an initial
stage of sampling, then allocate additional replications se-
quentially until the evidence for correct selection is sufficient.
Loss functions are used here to measure selection quality.
The zero-one loss function, L0−1(D,w) = 11

{
wD �= w[k]

}
,

equals 1 if the best system is not correctly selected, and is
0 otherwise. The opportunity cost Loc(D,w) = w[k] −wD

is 0 if the best system is correctly selected, and is otherwise
the difference between the best and selected systems. The
opportunity cost makes more sense in business applications.

The IZ procedures take a frequentist perspective. The
frequentist probability of correct selection (PCSiz) is the
probability that the system selected as best (system D) is
the system with the highest mean (system [k]), conditional
on the problem instance. The probability is with respect to
the simulation output Xij that determines D,

PCSiz(χ) def= 1 − E [L0−1(D,w) |χ] . (1)

Indifference zone procedures attempt to guarantee a lower
bound on PCSiz, subject to the indifference-zone constraint
that the best system is at least δ∗ better than the others,

PCSiz(χ) ≥ 1 − α∗, for all χ s.t. w[k] ≥ w[k−1] + δ∗.
(2)

The frequentist EOC (Chick and Wu 2005) is

EOCiz(χ) def= E [Loc(D,w) |χ] . (3)

Bayesian approaches (VIP, OCBA) use the posterior
distribution of the unknown means to measure the quality
of a selection. Given the data E seen so far, the quantities

PCSBayes
def= 1 − E [L0−1(D,W) | E ]

EOCBayes
def= E [Loc(D,W) | E ] , (4)
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measure selection quality, the expectation taken over both
D and the posterior distribution of W. Assuming a non-
informative prior distribution for the unknown mean and
variance, the posterior marginal distribution for the unknown
means Wi given ni > 2 samples is St

(
x̄i, ni/σ̂2

i , νi

)
where

νi = ni −1 (Chick and Inoue 2001). Each of the Bayesian
procedures (VIP and OCBA) select the system with the best
posterior mean after sampling stops, D = (k).

Approximations in the form of bounds on the above
losses are useful to improve the speed of computing an
allocation. Slepian’s inequality states the posterior evidence
that system (k) is best satisfies

PCSBayes ≥
∏

j:(j) �=(k)

Pr
(
W(k) > W(j) | E

)
. (5)

The r.h.s. of Inequality (5) is approximately (Welch)

PCSSlep =
∏

j:(j) �=(k)

Φν(j)(k)(d
∗
jk). (6)

if d∗
jk is a normalized distance for systems (j) and (k),

d∗
jk = d(j)(k)λ

1/2
jk , (7)

d(j)(k) = (x̄(k) − x̄(j)) and λ−1
jk =

(
σ̂2

(j)

n(j)
+

σ̂2
(k)

n(k)

)
.

The term EOCBayes may be expensive to compute if k > 2.
Summing the losses from (k − 1) pairwise comparisons
between the current best and each other system gives
an easily computed upper bound (Chick and Inoue 2001,
Chick and Inoue 2002). Let f(j)(k)(·) be the posterior
pdf for the difference W(j) − W(k) given all data E (ap-
proximately St

(
−d(j)(k), λjk, ν(j)(k)

)
distributed), and set

Ψν [s] =
∫ ∞

u=s
(u − s)φν(u)du = ν+s2

ν−1 φν(s) − sΦν(−s).
Then EOCBayes ≤ EOCBonf , where

EOCBonf =
∑

j:(j) �=(k)

∫ ∞

w=0
w f(j)(k)(w) dw

≈
∑

j:(j) �=(k)

λ
−1/2
jk Ψν(j)(k)

[
d∗

jk

]
. (8)

Some IZ procedures satisfy frequentist probability of
good selection (PGSiz,δ∗ ≥ 1 − α∗, for selections within
δ∗ of the best) guarantees (Nelson and Banerjee 2001). We
propose the following PCS-related measure for VIP and
OCBA stopping rules to incorporate δ∗ to stop sampling if
all competitors for the best are “good enough”,

PGSSlep,δ∗ =
∏

j:(j) �=(k)

Φν(j)(k)(λ
1/2
jk (δ∗ + d(j)(k))).
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Chen and Kelton (2005) used max instead of +,

PCSSlep,δ∗ =
∏

j:(j) �=(k)

Φν(j)(k)(λ
1/2
jk max{δ∗, d(j)(k)}).

The VIP and OCBA will use these stopping rules below:

1. Sequential (S): Repeat sampling if
∑k

i=1 ni < B
for a given total budget B.

2. Repeat if PCSSlep,δ∗ < 1 − α∗ for a given δ∗, α∗.
3. Repeat if PGSSlep,δ∗ < 1 − α∗ for a given δ∗, α∗.
4. Repeat if EOCBonf > β∗, for an EOC target β∗.

We use PCSSlep to denote PCSSlep,0. The IZ requires
δ∗ > 0, but we allow δ∗ = 0 for the VIP and OCBA to allow
for a pure PCS-based stopping condition. All previously
published sequential VIP and OCBA work appears to have
used the S stopping rule, but the other stopping rules will
be shown to improve the efficiency of both approaches. Let
PICS = 1−PCS and PBSδ∗ = 1−PGSδ∗ measure evidence
for the probability of incorrect and bad selections.

2.2 Indifference Zone (IZ) Procedure

The IZ approach (Kim and Nelson 2005) seeks to guarantee
PCSiz ≥ 1 − α∗, whenever the best system is at least δ∗

better than the other systems. Early IZ procedures were
statistically conservative in the sense of excess sampling ex-
cept with very particular configurations of the means. The
KN family of procedures improves sampling efficiency
over a broad set of configurations (Kim and Nelson 2001).
While a PCS guarantee in the sense of Equation (2) was
not proven, an asymptotic guarantee as δ∗ → 0 was shown.
One member of the family, KN++ (Goldsman et al. 2002),
might be considered to be the state of the art for the IZ
approach. That procedure can handle correlation. Here
we specialize Procedure KN++ for independent replica-
tions. The procedure screens out some systems as runs
are made, and each non-eliminated system is simulated the
same number of times.

Procedure KN++ (independent samples)
1. Specify a confidence level 1 − α∗, an indifference-

zone parameter δ∗ > 0, a first-stage sample size
n0 > 2 per system, and a number ξ of samples
per noneliminated system per subsequent stage.

2. Initialize the set of noneliminated systems, I ←
{1, . . . , k}, set n ← 0, τ ← n0.

3. WHILE |I | > 1 DO another stage:

(a) Observe τ additional samples from system i,
independent of all other samples, for all i ∈ I .
Set n ← n + τ . Set τ ← ξ.

(b) Update: For all i ∈ I , set x̄i ←
∑n

j=1 xij/n

and σ̂2
i ←

∑n
j=1(xij − x̄i)2/(n−1). Set η ←
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1
2

{
[2(1 − (1 − α∗)1/(k−1))]−2/(n−1) − 1

}
and h2 ← 2η(n − 1).

(c) Screen: For all i, j ∈ I , i > j, set dij ← x̄j −
x̄i and εij ← max

{
0, δ∗

2n

(
h2(σ̂2

i +σ̂2
j )

δ∗2 − n
)}

.

If dij > εij then I ← I\{i}. If dij < −εij

then I ← I\{j}.

4. Select the remaining system (D) as best.

2.3 Value of Information Procedure (VIP)

Two VIPs in Chick and Inoue (2001) allocate samples to
each alternative to maximize the expected value of in-
formation (EVI) subject to a sampling budget constraint.
Procedures 0-1(S) and LL(S) are sequential variations of
those procedures that improve PCSBayes and EOCBayes,
respectively. Allocations were derived with asymptotic ap-
proximations to the EVI. They allocate τ replications per
stage until a total of B replications are run. That stopping
rule allows for full control of the number of replications.
This section examines stopping rules that afford more effi-
ciency and a more direct comparison with IZ procedures.

Procedure 0-1.
1. Specify a first-stage sample size n0 > 2, a number

of samples τ > 0 to allocate per subsequent stage,
and stopping rule parameters (Section 2.1).

2. Take independent replications Xi1, . . . , Xin0 , and
initialize the number of replications ni ← n0 run
so far for each system, i = 1, . . . , k.

3. Determine the sample statistics x̄i ←
∑ni

j=1 xij/ni

and σ̂2
i ←

∑ni

j=1(xij − x̄i)2/(ni − 1), and the
sample mean ordering, so that x̄(1) ≤ . . . ≤ x̄(k).

4. WHILE stopping rule not satisfied DO:

(a) Initialize the set of systems considered for
additional replications, S ← {1, . . . , k}.

(b) For each (i) in S\{(k)}: If (k) ∈ S then set
λ−1

ik ← σ̂2
(i)/n(i) + σ̂2

(k)/n(k), and set ν(i)(k)

with Welch’s approximation. If (k) /∈ S then
set λik ← n(i)/σ̂2

(i) and ν(i)(k) ← n(i) − 1.

(c) Tentatively allocate τ(i) replications to systems
(i) ∈ S (set τ(j) ← 0 for (j) /∈ S):

τ(i) ←
τ +

∑
j∈S nj

∑
j∈S

(
σ̂2

j
γj

σ̂2
(i)γ(i)

)1/2 − n(i), where

γ(i) ←
{

λikd∗
ikφν(i)(k)(d

∗
ik) for (i) �= (k)∑

(j)∈S\{(k)} γ(j) for (i) = (k).

(d) IF any τ(i) < 0 THEN remove (i) from S
for all (i) with τ(i) ≤ 0; go to Step 4b ELSE

round the τi so
∑k

i=1 τi = τ ; go to Step 4e.
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(e) Run τi additional independent replications for
system i, for i = 1, . . . , k. Update ni ← ni +
τi; the sample statistics x̄i ←

∑ni

j=1 xij/ni

and σ̂2
i ←

∑ni

j=1(xij − x̄i)2/(ni −1), and the
sample mean ordering, x̄(1) ≤ . . . ≤ x̄(k).

5. Select system D = (k) as best.

Step 4b uses the Welch approximation, and the formulas
in Step 4c are derived in Chick and Inoue (2001) from opti-
mality conditions to improve a Bonferroni-like bound on the
EVI for asymptotically large τ . Step 4 requires the selec-
tion of a stopping rule. The resulting procedures are named
0-1(S), 0-1(PCSSlep,δ∗), 0-1(PGSSlep,δ∗), 0-1(EOCBonf ),
with the stopping rule in parentheses.

Procedure LL (for linear loss) is a variant of 0-1 where
sampling allocations seek to minimize EOCBonf . This
procedure can also use any of the stopping rules.

Procedure LL. Same as 0-1, except set γ(i) in Step 4c to

γ(i) ←
{

λ
1/2
ik

ν(i)(k)+λik(d∗
ik)2

ν(i)(k)−1 φν(i)(k)(d
∗
ik) for (i) �= (k)∑

(j)∈S\{(k)} γ(j) for (i) = (k).

2.4 OCBA Procedures

The OCBA (Chen 1996, Chen et al. 2005) assumes that
if τ replications are allocated for system i, but none are
allocated for the others, then the variance scales accordingly,

W̃i ∼ St
(
x̄i, (ni + τ)/σ̂2

i , ni − 1 + τ
)

W̃j ∼ St
(
x̄j , nj/σ̂2

j , nj − 1
)

for j �= i.

The usual OCBA assumes normal distributions to approxi-
mate the effect, but we use t distributions, for consistency
with a Bayesian assumption for the unknown variance.
Chen et al. (2005) found no notable difference in perfor-
mance when comparing a normal versus t distribution for
W̃i. Allocating an additional τ replications to system i, but
no replications to the others, leads to an estimated approx-
imate probability of correct selection (EAPCS) evaluated
with respect to W̃ = (W̃1, . . . , W̃k),

EAPCSi =
∏

j:(j) �=(k)

Pr
(
W̃(j) < W̃(k) | E

)
(9)

≈
∏

j:(j) �=(k)

(1 − Φν̃(j)(k)(λ̃
1/2
jk d(j)(k))) (10)

λ̃jk =

(
σ̂2

(k)

ñ(k)
+

σ̂2
(j)

ñ(j)

)−1

(11)

ñ(�) = n(�) + τ11 {(�) = i}.
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The OCBA uses these approximations to sequentially
allocate samples at each stage to systems that most increase
EAPCSi − PCSSlep. An innovation for the OCBA is the
use of the stopping rules from Section 2.3.

Procedure OCBA.
1. Specify a first-stage sample size n0 > 2, a number

q of systems to simulate per stage, a sampling
increment τ > 0 to allocate per subsequent stage,
and stopping rule parameters.

2. Do steps 2-3 of Procedure 0-1.
3. WHILE stopping rule not satisfied DO:

(a) Compute EAPCSi for i = 1, . . . , k.

(b) Set τi ← τ/q for the q systems with largest
EAPCSi −PCSSlep, set τj ← 0 for the others.

(c) Take τi additional observations for system i.

(d) For all i with τi > 0, update ni ← ni +τi, the
sample statistics x̄i ←

∑ni

j=1 xij/ni, σ̂2
i ←∑ni

j=1(xij −x̄i)2/(ni−1), and order statistics,
so that x̄(1) ≤ . . . ≤ x̄(k).

4. Select system D = (k) as best.

He et al. (2005) proposed an OCBA variation that ac-
counts for the expected opportunity cost. Define AEOC to
be the approximation to EOCBonf in the right hand side
of Equation (8). The OCBA-like approximation for EOC
(cf. Equation (9)) with respect to W̃ is

EEOCSi =
∑

j:(j) �=(k)

λ̃
−1/2
jk Ψν̃(j)(k)

[
λ̃

1/2
jk d(j)(k)

]
. (12)

Procedure OCBALL allocates replications to systems that
maximize the improvement in expected opportunity cost
(linear loss), AEOC − EEOCSi in Step 3b.

We consider two other variations on the allocations that
generalize the idea of EAPCSi to account for δ∗ using the
approximations at the end of Section 2.1

Procedure OCBAδ∗ allocates replications to systems
that maximize the improvement in EAPGSi,δ∗ −PGSSlep,δ∗

in Step 3b, with δ∗ > 0.
Procedure OCBAmax,δ∗ allocates replications to sys-

tems that maximize EAPCSi,δ∗ − PCSSlep,δ∗ in Step 3b,
with δ∗ > 0 (cf. Chen and Kelton 2005).

Each procedure can use any of the stopping rules. We
implemented a fully sequential OCBA (q = τ = 1).

3 NUMERICAL TESTS

Table 1 summarizes the procedures that we evaluated. The
naming convention is the type of allocation followed by the
stopping rule in parenthesis. There are no EOC analogs to
OCBAδ∗ and OCBAmax,δ∗ because EOC already accounts
for the size of the difference between the best and second best
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in the allocations. Procedure Equal allocates the same num-
ber of replications to each system. Branke et al. (2005) dif-
fers in that it derives another set of VIP allocations and tests
more configurations, but does not assess the OCBAmax,δ∗

allocation or the PCSSlep,δ∗ stopping rule.

3.1 Evaluation Criteria

Theory that compares the different approaches is hard to
develop due to the differing assumptions and approximations
of each. We turn here to empirical and practical perspectives.

The efficiency of a procedure is a frequentist measure of
evidence for correct selection (PCSiz, PGSiz,δ∗ and EOCiz)
introduced in Section 2.1, as a function of the average num-
ber of replications E[N ]. For each problem instance and
sampling allocation, the stopping rule parameters implic-
itly define efficiency curves in the (E[N ], log(1 − PCSiz))
plane. Efficiency curves for EOCiz and PGSiz,δ∗ are defined
similarly. “More efficient” procedures have curves that are
below those of other procedures.

Efficiency curves ignore the question of how to set
a procedure’s parameters to achieve a particular PCSiz or
EOCiz. As a practical matter, some deviation may oc-
cur between a stopping rule target and the actual value
achieved. The deviation between the desired and real-
ized performance is measured with target curves that plot
(log α∗, log(1−PCSiz)) for PCS-based targets 1 − α∗, and
(log β∗, log EOCiz) for EOC targets β∗. Curves that typi-
cally follow the line y = x for a broad class of problems
indicate that a procedure is “controllable”. If the curves
depend strongly on the problem instance or δ∗, it is hard
to obtain the desired level of evidence for correct selection
without additional knowledge of the problem structure.

Procedures that are both efficient and controllable over
a broad range of problem instances (robust) are desirable.

Figures were estimated by running 105 macro-
replications for each combination of problem instance,
sampling allocation, and stopping rule parameter value.
We used the Gnu Scientific Libary (gsl) for cal-
culating cdfs and for the Mersenne twister RNG
(Matsumoto and Nishimura 1998, with 2002 revised seed-
ing), and FILIB++ (Lerch et al. 2001) for interval arith-
metic. The interval arithmetic discerned whether the max-
imum EVI or EAPCSi were numerically unique (due to
numerical stability issues for the OCBA family and other
VIP procedures that were tested but not reported here).

3.2 Configurations

In a slippage configuration (SC) the means of all systems
except the best are tied for second best. We use the param-
eters δ, ρ to describe the configurations of the independent
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Table 1: Procedures Tested in Addition to Procedures KN++ and Equal

VIP OCBA OCBA for PGSSlep,δ∗ OCBA for PCSSlep,δ∗

PCS- 0-1(S) OCBA(S) OCBAδ∗(S) OCBAmax,δ∗(S)
based 0-1(PCSSlep,δ∗) OCBA(PCSSlep,δ∗) OCBAδ∗(PCSSlep,δ∗) OCBAmax,δ∗(PCSSlep)
alloc- 0-1(PGSSlep,δ∗) OCBA(PGSSlep,δ∗) OCBAδ∗(PGSSlep,δ∗) OCBAmax,δ∗(PGSSlep)
ations 0-1(EOCBonf ) OCBA(EOCBonf ) OCBAδ∗(EOCBonf ) OCBAmax,δ∗(EOCBonf )
EOC- LL(S) OCBALL(S)
based LL(PCSSlep,δ∗) OCBALL(PCSSlep,δ∗)
alloc- LL(PGSSlep,δ∗) OCBALL(PGSSlep,δ∗)
ations LL(EOCBonf ) OCBALL(EOCBonf )
outputs with Normal
(
wi, σ

2
i

)
distribution,

X1j ∼ Normal
(
0, σ2

1
)

Xij ∼ Normal
(
−δ, σ2

1/ρ
)

for i = 2, . . . , k

δ∗ = γδ.

All systems have the same variance if ρ = 1. The best system
has the largest variance if ρ > 1. We set σ2

1 = 2ρ/(1 + ρ)
so that Var[X1j − Xij] is constant for all ρ > 0. The
parameter γ allows the indifference zone parameter δ∗ to
differ from the difference in means δ.

In a monotone decreasing means (MDM) configuration
the means are equally spaced. Again ρ controls the variances,
γ relates δ∗ to the difference in means, and independent
outputs have a Normal

(
wi, σ

2
i

)
distribution,

Xij ∼ Normal
(
−(i − 1)δ, 2ρ2−i/(1 + ρ)

)
δ∗ = γδ.

Random problem instances (RPI) are more realistic
in the sense that problems faced in practice typically are
not the SC or MDM configuration. The RPI experiment
here samples configurations χ from normal-inverse gamma
family. If S ∼ InvGamma (α, β), then E[S] = β/(α −
1) and S−1 ∼ Gamma (α, β) with E[S−1] = αβ−1 and
Var[S−1] = αβ−2. A random χ is generated by sampling
the σ2

i independently, then sampling the Wi conditionally
independent, given σ2

i ,

p(σ2
i ) ∼ InvGamma (α, β) (13)

p(Wi |σ2
i ) ∼ Normal

(
μ0, σ

2
i /η

)
.

Increasing η makes the means more similar. We set β =
α − 1 > 0 to standardize the mean of the variances to be
1. Increasing α reduces the variability in the variances.
The noninformative prior distributions used to derive VIP
and OCBA procedures correspond to η → 0, so there is a
mismatch in the sampling distribution of χ and the prior
distributions assumed by the VIP and OCBA.

For the SC and MDM, we tested many combinations
of n0, number of systems k, spacings of the means, and
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degrees of heterogeneity in the variances. For the RPI we
tested k = 2, 5, 10; η = .707, 1, 1.414, 2; α = 2.5, 100.

4 RESULTS

The results below summarize work to date for
Branke et al. (2005), which will present a much more thor-
ough discussion and broader set of experiments. In addition,
we compare PCSSlep,δ∗ with PGSSlep,δ∗ , the OCBA’s use
of t vs. Gaussian distributions, and an alternative to Welch’s
approximation. Additional subscripts refer to specific pa-
rameter values (e.g. KN++δ∗ specifies δ∗). Graphs below
use n0 = 6.

For k = 2 systems and equal variance, the Equal alloca-
tion is optimal from both Bayesian and frequentist perspec-
tives (e.g. Gupta and Miescke 1994). Figure 1 compares
different stopping rules on SC or MDM (which are equiv-
alent for k = 2) with Equal. The EOCBonf stopping rule
is more efficient than the PCSSlep stopping rule, which is
more efficient than the S stopping rule, an order that could
be observed for all SC and MDM configurations (also for
k > 2, or when k = 2 and the variances are unequal,
and for PCSiz efficiency as well as EOCiz efficiency). As
KN++ also samples equally for k = 2, the efficiency of
its stopping rule can be directly compared with the other
stopping rules on the scenario of Figure 1. For low levels of
evidence for correct selection, KN++ was more efficient
than the Bayesian EOCBonf stopping rule, but EOCBonf

is more competitive for larger levels of PICSiz. In general,
KN++ tended to do better than in the graph for SC with
close means (δ < 0.5) and was worse than EOCBonf for
all PICSiz > 10−3 in tests with δ > 2−1/2.

For k = 2 and equal variance, allocation proce-
dures other than Equal naturally perform slightly worse.
However, as configurations diverge from this special case
(ρ �= 1, k > 2) the relative efficiency of KN++ and
Equal allocation became worse than that for LL(EOCBonf ),
OCBALL(EOCBonf ) and OCBA(EOCBonf ) (assuming
that δ∗ was set to the difference between the best and
second best). Figure 2 shows a typical phenomenon seen
for a variety of SC or MDM configurations. The effi-
ciency curve of KN++ with δ∗ = δ is worse than for
e.g. OCBA(EOCBonf ) or LL(EOCBonf ), however it be-
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Figure 1: Performance of Equal Allocation and
KN++ with δ∗ = δ (SC, k = 2, δ = 0.5, ρ = 1)

 0.001

 0.01

 0.1

 0.001  0.01  0.1

PI
C

S I
Z

α*

KN++0.7
KN++0.5
KN++0.4
KN++0.2
OCBA (PCSSlep)
LL (PCSSlep)

Figure 3: Sensitivity of KN++ w.r.t. δ∗ and α∗

(MDM, k = 5, δ = 0.5, ρ = 1)
comes competitive as δ∗ is decreased. Unfortunately, this
phenomenon depends on the problem configuration (it does
not hold for RPI, for example), and the correspondence
between the desired and obtained PICS varies widely de-
pending upon the relation of the difference δ between the best
two systems, and the δ∗ selected for the procedure. Figure 3
shows that as δ∗ gets smaller, KN++ samples much more
than necessary to obtain a given desired level of evidence
(curve below the diagonal on the target plot). This makes
it difficult to set α∗ to actually achieve a desired PICSiz
with KN++, as the target curves are highly sensitive to
the underlying (and typically unknown) configuration. One
samples much more than necessary if δ∗ 
 δ.
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Figure 2: Efficiency of Procedure KN++ Better
for Smaller δ∗ (MDM, k = 5, δ = 0.5, ρ = 1)

For the RPI configurations, it was necessary to choose
δ∗ > 0 for the PGSSlep,δ∗ and PCSSlep,δ∗ stopping rules
because there was a reasonable probability that the two best
systems had very similar means, in which case δ∗ = 0
resulted in excessive sampling. Therefore δ∗ = 0 is to
be avoided in practice. The EOCBonf rule does not suffer
from that problem, and it replaces the difficulty of specifying
two parameters, δ∗, α∗, with one parameter, β∗. EOCBonf

gave excellent control over the actual EOCiz received for
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Figure 4: PBSiz,δ∗ = 1 − PGSiz,δ∗ Efficiency for
Equal Allocation (RPI, k = 5, η = 1, α = 2.5)

the RPI. For MDM, the target plot for EOCBonf tended to
be parallel to the desired y = x, but was shifted high or low
depending upon δ, whereas PGSSlep,δ∗ could have different
slopes for different δ∗, not unlike KN++ in Figure 3

Figure 4 compares different stopping rules in combi-
nation with Equal allocation based on PGSiz,δ∗ efficiency.
The effect is quite dramatic, with PGSSlep,δ∗ stopping rule
and appropriate δ∗ performing best. Note that while this
is not surprising for PGSiz,δ∗ efficiency, also for EOCiz
efficiency there seems to exist a setting for δ∗ such that
PGSSlep,δ∗ outperforms the EOCBonf stopping rule (Fig-
ure 5). Whether that finding is of practical use remains to
be seen, as it is not yet clear how to set δ∗, and PGSSlep,δ∗

under-delivers EOC relative to β∗ = δ∗α∗ (Figure 6).
Another interesting fact to note in Figure 4 and Figure 5

is that the line for Equal allocation and Budget stopping
rule is curved, while it is straight for all SC and MDM
configurations. While this might at first sight appear to be
inconsistent with a hypothesis of exponential convergence
for ordinal comparisons, those convergence results are typ-
ically for a fixed configuration. For RPI, we observed that
the curvature was largely due to a long tail associated with
a large number of samples for some very “hard” configu-
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rations (the means of the best two systems are very close,
especially with large variances).

While the stopping rule has a very large influence on
efficiency, the LL, OCBALL and OCBA were more or less
equivalent, with the first two usually being somewhat better,
with 0-1 worse (it was derived with more approximations,
and it is hard to improve PCS for two very close competitors
in the RPI) and Equal worst. A typical plot is shown in
Figure 7 for the S stopping rule (which may be needed if
a simulation project has a strict time constraint).

Figure 8 compares three selection procedures with
flexible stopping rules, Equal(PGSSlep,δ∗),KN++, and
OCBAδ∗(PGSSlep,δ∗) as representative for the Bayesian
procedures. As is typical for the RPI problems tested,
OCBAδ∗ outperforms KN++ not only in terms of effi-
ciency, but also with respect to meeting the target (Figure 9).

Figure 10 compares OCBAδ∗ and OCBAmax,δ∗ with
both the PGSSlep,δ∗ and PCSSlep,δ∗ stopping rules. The
result is typical, namely that OCBAδ∗ is the better allocation
and PGSSlep,δ∗ is the better stopping rule.

We now turn to two implementation issues.
Chen et al. (2005) wrote that the efficiency of OCBA(S)
was not significantly different whether a t or a normal dis-
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tribution is used for EAPCSi (by substituting in the sample
variance for the unknown actual variance into a normal dis-
tribution version of EAPCSi), but did not publish results.
Figure 11 confirms those claims and generalizes to other
stopping rules. A normal distribution in the allocation is
denoted OCBAGaussian. On the other hand, using a normal
distribution for the stopping rule (PCSSlep,Gaussian) does
degrade performance. The probable cause is that absolute
values are important for stopping, but for allocation, relative
values for different systems are compared.

A refined estimator of the degrees of freedom that gave
good CI coverage for queueing experiments with small
numbers of observations (Wilson and Pritsker 1984) didn’t
improve upon Welch’s approximation for the SC in Fig-
ure 12. The associated target plot gave a small (statistically
significant) decrease in PCSiz for W&P relative to Welch.

5 DISCUSSION

For a fixed budget constraint on the number of samples, Pro-
cedures LL(S), OCBALL(S) and OCBA(S) were most
efficient. Among flexible stopping rules, the EOCBonf

stopping rule was the most controllable for reaching a de-
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sired level of evidence for correct selection over a broad range
of problems (for RPI the control was very precise), and were
often the most efficient (for SC, MDM, RPI tested), espe-
cially with LL, OCBALL and OCBAδ∗ . The PGSSlep,δ∗

stopping rule for RPI instances can be more efficient, but
is not as controllable. KN++ was more efficient than the
original OCBA and VIP proposals, but was less efficient
than LL(EOCBonf ) and OCBALL(EOCBonf ), except for
special configurations and mostly for low PICS. A con-
cern for practical usage of KN++ is its sensitivity to the
indifference zone parameter for efficiency and moreso for
controlling PCSiz or PGSiz,δ∗ .

We did not test the effect of autocorrelation from steady-
state simulations, but do not see why batching would affect
one procedure differently than another. Future work includes
extensions to common random numbers (CRN) and integra-
tion of efficient selection procedures into optimization tools
that handle combinatorially large numbers of alternatives.
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Figure 12: Wilson and Pritsker’s (W&P) Degree of
Freedom Correction was Not More Efficient Than
Welch’s (SC, k = 2, δ = 0.5, ρ = 1)
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