
Proceedings of the 2005 Winter Simulation Conference
M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, eds.

A MOVING MESH APPROACH FOR SIMULATION BUDGET ALLOCATION ON CONTINUOUS DOMAINS

 Mark W. Brantley
Chun-Hung Chen

Dept. of Systems Engineering and Operations Research

4400 University Drive, MS 4A6
George Mason University
Fairfax, VA 22030, U.S.A

ABSTRACT

We introduce a moving mesh algorithm for simulation op-
timization across a continuous domain. During each itera-
tion, the mesh movement is determined by allocating simu-
lation runs to partitions of the domain that are critical in
the process of identifying good solutions. The partition
boundaries are then adjusted to equally distribute the allo-
cation runs between each partition. To test the moving
mesh algorithm, we implemented it using the OCBA
method to allocate simulation runs to each partition. But,
the simplicity of the procedure should provide flexibility
for it to be used with other simulation optimization tech-
niques. Results are presented for several numerical ex-
periments and suggest that the technique has potential
given further development.

1 INTRODUCTION

Simulation optimization is a method to find a design consist-
ing of combination of input decision variable values of a
simulation system that optimizes a particular output per-
formance measure of the system. When presented with a
stochastic, continuous domain with an infinite number of
values for each input decision variable and a finite simula-
tion budget, we must efficiently allocate our simulation runs
in order to investigate the combinations of input decision
variable values (Law and Kelton 2000). Most simulation op-
timization methods use points in the domain to represent de-
signs (Swisher et al. 2000). These methods typically require
indifference zones to not only represent solutions within a
certain distance of the best solution but to also ensure that
simulation runs are not wasted by comparing two designs
that are essentially the same. Shi and Olafsson present a ran-
domized method for global optimization called Nested Parti-
tion (NP) that seeks to efficiently concentrate the computa-
tional effort in parts of the domain that may be most likely to
contain the global optimum (Shi and Olafsson, 2000). NP
aggregates the information from designs to allocate addi-

699
tional runs and then partitions the domain to search the most
promising region.

This paper investigates a different approach of using
partitions of the domain that is motivated by mesh moving
techniques for finite difference and finite element schemes.
Similar to nested partition, these numerical techniques can
use what is typically called local mesh refinement to divide
the mesh in certain regions of the domain to reduce the error
or to adapt to nonuniformity (Arney and Flaherty 1986). An
alternate approach for adapting the mesh is to keep a fixed
number of partitions on the domain but to move the mesh to
have a fine grid where needed and a course grid elsewhere
(Adjerid and Flaherty 1986). The method we introduce mir-
rors this alternate approach. Instead of partitioning the do-
main by refining the mesh like nested partitioning, we will
move the mesh to concentrate the search in the most promis-
ing region. As we move the mesh, we reduce the size of the
partitions in the most promising regions and increase the size
of the partitions elsewhere.

By changing our problem from finding the most prom-
ising point in our domain to searching for the most promis-
ing region, we have transformed our continuous stochastic
optimization problem to a discrete stochastic optimization
problem. We now seek to identify the best partition b out of
k competing partitions. While discrete stochastic optimiza-
tion is still an active field of research, recent advances pro-
vide techniques that greatly reduce the number of simulation
runs required to obtain a good or the best solution. Given the
simplicity of the moving mesh algorithm, we expect that it
can be coupled with many of the discrete stochastic optimi-
zation techniques. However, we focused our efforts on using
a highly efficient technique developed by Chen et al. (2000)
called the Optimal Computing Budget Allocation (OCBA)
method. Their numerical comparisons have shown that
OCBA can achieve a speedup factor of approximately 4 for
a small number of competing designs and can be as much as
20 times faster than traditional approaches for a much larger
number of designs.

Brantley and Chen

2 THE OCBA ALGORITHM

Since the implementation of our moving mesh technique in
this paper utilizes OCBA to award runs to partitions during
each iteration, we present a summary of the technique.
OCBA allocates simulation runs by considering the follow-
ing optimization problem:

 }{max

,,1

CSP
kNN K

 TNNNts k =+++ L21.. . (1)

Under a Bayesian model, OCBA approximates the prob-
ability of correctly selecting the best design, P{CS}, using
the Bonferroni inequality and offers an asymptotic solution
to this approximation. In particular, OCBA allocates simu-
lation runs according to:

2

,

,

/
/

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

jbj

ibi

j

i

N
N

δσ
δσ

,

 ,bjiand},k,,2,1{ji, ≠≠∈ L (2)

 ∑
≠=

=
k

bii i

i
bb

N
N

,1
2

2

σ
σ . (3)

Chen et al. (2000) denote by

:iN the number of simulation runs for design i,
:ijX the j-th independent and identically distributed

sample of the performance measure from design
i,

:iJ the sample average of the simulation output for

runs in design i, ∑
=

=
iN

j
ij

i
i X

N
J

1

1 ,

:2
iσ the variance of the simulation output for runs in

design i, approximated by the sample variance
of the simulation output,

i.e., ∑
=

−
−

=≈
iN

j
iij

i
ii XX

N
S

1

222)(
1

1σ ,

b: the design having the smallest sample mean
performance measure, i.e., i

i
b JJ min≤ ,

 ibib JJ −≡,δ .

For our discussion, we will adopt this same convention.
700
3 THE MOVING MESH ALGORITHM

3.1 Moving Mesh Algorithm Steps

Limiting our discussion to a one-dimensional domain
without loss of generality, we have k continuous partitions
(intervals) on a domain of length L and we denote

iΦ : the i-th partition where by convention we order

the partitions such that mjXX miji ,),1(, ∀≤ + ,
:, jiX the j-th independent and identically distributed

sample of the performance measure from the
region of the domain currently assigned to par-
tition i,

ji,Ω : the j-th boundary for partition i. For the one-
dimensional case each iΦ will have two
boundaries 1,iΩ and 2,iΩ with coordinates

1,ix and 2,ix constructed such that
kixx ii <∀= + 1),1(2, .

Although the implementation of the moving mesh al-

gorithm is dependent upon the allocation method that we
use, the basic algorithm is very simple:

1. Determine k, the number of partitions, and then

construct the mesh uniformly across the domain
such that jixxxx jjii ,1,2,1,2, ∀−=− , and the inter-
vals span the entire domain such that

Lxxk =− 1,12, .
2. Randomly generate 0n initial runs on each parti-

tion. For this paper, we used a uniform distribu-
tion to select the location of the run on the parti-
tion. The number of initial runs for each iΦ will
be dependent upon the allocation method that we
use.

3. Allocate more runs to each iΦ . In order to do this,
we aggregate the information for all of the runs in
each iΦ to calculate the sample statistics required
by the allocation method that we are using. When
coupled with OCBA, we estimate 2

iσ and calcu-
late ib,δ for each partition as presented in Section
2. We then allocate additional runs, iNΔ , to each

iΦ according to Equations (2) and (3).
4. Keeping k, the number of partitions, fixed, move

ji,Ω so that each iΦ has the same number of runs
or jiNN ji ,∀= . By convention, we establish the
boundary by merely equally dividing the distance
between the last point in one interval and the first
point in the next interval.

Brantley and Chen

5. Repeat steps 3 and 4 until we exhaust the comput-
ing budget.

6. After exhausting the computing budget, determine
a point to represent the partition having the small-
est sample mean performance measure. For this
paper, we used the midpoint of the partition but
we could use other conventions such as selecting
the point in the best partition that has the best per-
formance measure.

A one-dimensional example of the first five steps using
OCBA can be seen in Figures 1 - 3 below. The underlying
function used is)1,0(4)5.5()(2 Uxxf +−= where)10,0(∈x
and the optimal solution is located at 5.5=x .

1. As shown in Figure 1, the domain is divided into

5 equal intervals.
2. We set 200 =n for each iΦ and randomly distrib-

ute (uniform distribution) the initial runs across
each separate interval ()2,1, , ii xx .

0

5

10

15

20

25

30

0 2 4 6 8 10

x value

f(x
) =

 (5
.5

-x
)^

2
+

4*
U

(0
,1

)

Iteration 0
Design 1

0<x<2

Iteration 0
Design 2

2<x<4

Iteration 0
Design 3

4<x<6 Iteration 0
Design 4

6<x<8

Iteration 0
Design 5
8<x<10

Figure 1: Moving Mesh Example, Steps 1 and 2

3. We calculated the mean and standard deviation of

the runs in each interval and used OCBA to allo-
cate a total of 50 more runs across the entire do-
main. In this case, 31 =ΔN , 122 =ΔN , 73 =ΔN ,

224 =ΔN , and 65 =ΔN . These runs are shown in
Figure 2 with the new runs portrayed by triangles.
701
0

5

10

15

20

25

30

0 2 4 6 8 10

x value

f(x
) =

 (5
.5

-x
)^

2
+

4*
U

(0
,1

)

Iteration 0
Design 1

0<x<2

Iteration 0
Design 2

2<x<4

Iteration 0
Design 3

4<x<6 Iteration 0
Design 4

6<x<8

Iteration 0
Design 5
8<x<10

Figure 2: Moving Mesh Example, Step 3

4. Keeping the number of intervals fixed, we then

adjusted ji,Ω . Since we have allocated a total of
150 runs among the five designs, we move ji,Ω
so that iNi ∀= 30 . Using this construct, we now
have the new intervals shown in Figure 3.

0

5

10

15

20

25

30

0 2 4 6 8 10

x value

f(x
) =

 (5
.5

-x
)^

2
+

4*
U

(0
,1

)

Iteration 1
Design 1
0<x<2.4

Iteration 1
Design 2
2.4<x<4.6

Iteration 1
Design 3
4.6<x<6.4 Iteration 1

Design 4
6.4<x<7.8

Iteration 1
Design 5
7.8<x<10

Figure 3: Moving Mesh Example, Step 4

5. From here, we would repeat Step 3 which calcu-

lates the new mean and standard deviation for
each interval and then uses OCBA to allocate new
runs to each interval until we exhaust our comput-
ing budget.

3.2 Algorithm Convergence

OCBA, and other methods, concentrate the simulation ef-
fort on designs that are promising and do not allocate to
designs that are not promising. Mathematically, we do not
change the OCBA method described by Chen et al. (2000).
Instead of designs consisting of points, we merely compete
designs consisting of a group of runs distributed across a
partition against each other in order to maximize the prob-
ability of identifying the best partition. We obtain our con-

Brantley and Chen

vergence by dynamically redefining the designs. The mesh
will get smaller for the partitions that receive more runs al-
located in an iteration. Intuitively, we expect these bounda-
ries to converge on the optimal design partition (or point).
In fact, as the mesh size for a partition gets smaller, the
mean and standard deviation of the runs of the partition
begin to resemble those from a point since these measures
are less affected by the distribution of the runs across the
partition and more heavily influenced by the variance of
the underlying function.

However, as Chen et al. (2000) mention, when using
OCBA, the number of runs allocated to a particular design
increases as the mean the design decreases or the standard
deviation of the design increases. It is this property that en-
ables our moving mesh method to maintain a global per-
spective. By iteratively widening the interval boundaries of
a less desirable partition, we expect that the mean of this
design will decrease and the standard deviation of the de-
sign will increase until it becomes competitive for addi-
tional simulation runs.

Figure 4 shows the convergence map for an experi-
ment using the moving mesh method with 10 partitions
coupled with OCBA for the example function in Section 3
of this paper.
.

0

1

2

3

4

5

6

7

8

9

10

100 300 500 700 900 1100 1300

Total Simulation Runs Allocated

B
ou

nd
ar

y
Lo

ca
tio

n
(x

-v
al

ue
)

Figure 4: Convergence Example (10 Partitions)

4 NUMERICAL TESTING FRAMEWORK

In this section, we describe how we tested our new moving
mesh approach and compared it with a series of numerical
experiments it against two allocation procedure: Equal Al-
location-Uniform Mesh (EA-UM) and OCBA-Uniform
Mesh (OCBA-UM). The next section will provide the re-
sults of these experiments.

4.1 Equal Allocation – Uniform Mesh (EA-UM)

This is a brute force method for allocating the number of
runs, iN , to each design. Given a simulation budget T and k
designs, we space the k designs uniformly across the do-
702
main and allocate the runs equally such that kTNi /= for
each i. The efficiency of this method is dependent upon
two inversely proportional parameters: the number of runs
allocated to each design and the size of the mesh (number
of designs). A small mesh enables the method to poten-
tially have a design close to the optimal solution but a lim-
ited computing budget for each design may prevent the
method from differentiating the best possible design from
others. A large mesh provides enough runs to differentiate
the designs under consideration but the best possible solu-
tion may be relatively removed from the optimal solution.
Through experimentation, we found that this method per-
formed best using about 20 designs during our tests.

4.2 OCBA Allocation – Uniform Mesh (OCBA-UM)

Given a simulation budget T and k designs, we space the k
designs uniformly across the domain for this method.
However, instead of equally allocating the runs between
the designs we use OCBA. Like EA-UM method, the effi-
ciency of this method is dependent upon two inversely
proportional parameters: the number of runs initially allo-
cated to each design, 0n , and the size of the mesh (number
of designs). Based upon the discussion by Chen et al.
(2000) and a little experimentation, we used 50 =n for all
of our testing. A small mesh enables the method to poten-
tially have a design close to the optimal solution but leaves
a limited computing budget for OCBA after providing each
design with its initial allocation. However, like EA-UM, a
large mesh provides enough runs to differentiate the de-
signs under consideration but the best possible solution
may be relatively removed from the optimal solution.
Through experimentation, we found that this method en-
abled us to use a finer mesh than EA-UM and performed
best using about 40 - 50 designs during our tests. This
method also requires us to specify an additional parameter,
Δ , for the total number of runs allocated during each itera-
tion. We used 10=Δ for all of our testing.

4.3 Moving Mesh – OCBA (MMO)

As previously discussed, the convergence of this method is
dependent upon the number of partitions we used. In addi-
tion, it is also dependent upon parameters for the allocation
method it uses. Since we used OCBA, we had to decide
values for 0n and Δ . Through experimentation, we found
that the method performed best during our tests using 8 –
10 partitions, 100 =n , and k10=Δ , where k is the number
of partitions. Allocating too few runs per iteration does not
provide enough new points to cause significant movement
in the mesh boundaries. Allocating too many obviously
wastes runs that could be concentrated in the most promis-
ing partitions.

Brantley and Chen

4.4 Test Procedures

Given the differing parameters for each of these methods,
we constructed our experiments to provide a fair compari-
son. The EA-UM and OCBA-UM have fixed mesh sizes
while the MMO method obviously has a dynamic mesh. In
order to fairly compare these methods, each of our experi-
ments incorporates a randomly selected optimal solution
and our comparison metric is the distance from our best so-
lution to the randomly generated optimal solution. In addi-
tion, the methods have varying fixed costs associated with
them. To mitigate this difference, we calculate the error for
each method during each iteration of the method until the
total simulation budget is exhausted. For each experiment,
we limited the simulation budgets to 2,000 runs since it
was a sufficient number to differentiate between the differ-
ent methods. We repeat this whole procedure 10,000 times
and then calculate the average error obtained for each
method during these 10,000 independent applications of
each method. This average error obtained from each differ-
ent procedure serves as our measurement of its effective-
ness.

5 NUMERICAL TESTING RESULTS

To initially test our method, we conducted the following
experiments on a one-dimensional domain. Each of the
numerical experiments was constructed to see if the mov-
ing mesh method had convergence problems relative to the
two other methods we tested. The first experiment is a
baseline experiment where the underlying function is a
quadratic. The next experiment has an underlying function
with two optimal solutions and that is relatively flat when
compared to its variance. The third experiment has two
quadratic functions constructed on each half of the domain
with one of the critical points having a lower functional
value than the other.

5.1 Experiment 1: Convex Function

This experiment is our baseline and uses the following un-
derlying function:

)10,0(~where)1,0(4)()(2 UUxxf ξξ +−=

and where)10,0(∈x .
 The optimal solution is ξ so the error for each itera-
tion is measured as ξ−bx . Note that for the portions of
domain in the interval)1,1(+− ξξ , the variance of the

)1,0(4U term clearly dominates a change in the underlying
function 2)()(ξ−= xxf . Figure 5 contains the simulation
results for the three methods. We can see that MMO ob-
tains rapid convergence in the first few iterations and then
703
slowly improves after that. Compared to the other two
methods, MMO performs the best for when the simulation
budget is less than 400 runs, performs about the same as
OCBA-UM when the budget is between 400 and 1,000
runs, and performs worse than OCBA-UM after 1,000
runs.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Total Simulation Budget (Runs)

N
or

m
 fo

r 1
0,

00
0

Ex
pe

rim
en

ts

EA-UM OCBA-UM MMO

Figure 5: Results for Experiment 1 (Convex Function)

5.2 Experiment 2: Two Optimal Solutions

This experiment is constructed to see if the two optimal so-
lutions cause the MMO method to diverge and uses the fol-
lowing underlying function:

)10,0(~where)1,0(4)
10
3cos()(UUxxf ξξ +−=

and where)10,0(∈x .
 There are two optimal solutions on the interval (0,10)
at 10/3ξπ −=ax and 10/33 ξπ −=bx so the error for each
iteration is measured as the minimum of 1xxb − and

2xxb − . For the underlying function)10/3cos()(ξ−= xxf ,
we obtain values in the interval [-1,1] so the variance of the

)1,0(4U term again dominates a change in the underlying
function. The results of this experiment are very similar to
those from the first experiment and are shown in Figure 6.
MMO makes most of its convergence in the first 7 itera-
tions of the method (700 total runs allocated). At this point
it begins to converge slowly at best and OCBA-UM begins
to provide better results.

Brantley and Chen

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Total Simulation Budget (Runs)

N
or

m
 fo

r 1
0,

00
0

Ex
pe

rim
en

ts

EA-UM OCBA-UM MMO
Figure 6: Results for Experiment 2 (Two Optimal Solu-
tions)

5.3 Experiment 3: Competing Near Optimal Alternate
Solution

This experiment is an extension of Experiment 2. Instead
of determining if MMO can find one of two optimal solu-
tions, we test to see if it can differentiate between an opti-
mal solution and another near optimal solution. We define
the underlying difference between the optimal solution and
the near optimal solution as the constant λ .
For)4,1(~ Uξ and)10,0(∈x , this experiment uses the fol-
lowing underlying function:

 5when)1,0(4)()(2 ≤+−= xUxxf ξ

and

5when)1,0(4)10()(2 ≤+++−= xUxxf λξ .

The optimal solution is ξ so the error for each iteration is
measured as ξ−bx . Just as in Experiment 1, for the por-
tions of domain in the interval)1,1(+− ξξ , the variance of
the)1,0(4U term clearly dominates a change in the underly-
ing function 2)()(ξ−= xxf . The results for this experiment
with 1.0=λ are shown in Figure 7 and are not encourag-
ing. While MMO again converges rapidly, OCBA-UM
performs better than this method after only 400 runs and
EA-UM performs better after about 1300 runs.

70
0

0.5

1

1.5

2

2.5

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Total Simulation Budget

N
or

m
 fo

r 1
0,

00
0

Ex
pe

rim
en

ts

EA-UM OCBA-UM MMO
Figure 7: Results for Experiment 3 (Competing Near Op-
timal Alternate Solution)

However, these results are very sensitive to the value
we use for the constant λ . If we use 05.0=λ instead of

1.0=λ as shown above, MMO is better than OCBA-UM
until we exceed 800 runs and remains better than EA-UM
throughout the 2,000 runs. If we use 02.0=λ , MMO is
clearly superior to OCBA-UM until we allocate about 1800
runs. When compared to EA-UM for when 02.0=λ , it
only takes MMO 300 runs to obtain better results than
those obtained by EA-UM in 2,000 runs.

In order to see if modifications to MMO might im-
prove its performance, we repeated Experiment 3 with

1.0=λ . However, for the MMO method we trimmed
simulation runs from the upper portion of the domain for
each iteration after we had awarded 200 runs. The results
for trimming 30 points each iteration (MMO-T30) and 75
points each iteration (MMO-T75) are compared against our
original results for this experiment in Figure 8. This naïve
trimming approach clearly improves the performance.
However, it introduces a cycling pattern that is clearly evi-
dent in the MMO-T75 results. This pattern is introduced
because we region we are trimming from reaches the parti-
tion that covers the near optimal alternate solution. When
we trim from this partition, we have fewer runs allocated to
the partition and are more prone to select it as the best par-
tition in error. However, the OCBA method coupled with
the moving mesh method recognizes that we need to allo-
cate more runs in this area. This improves our solution un-
til we trimmed from this partition again.
4

Brantley and Chen

0

0.5

1

1.5

2

2.5

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Total Simulation Budget

N
or

m
 fo

r 1
0,

00
0

Ex
pe

rim
en

ts

EA-UM OCBA-UM MMO MMO- T30 MMO- T75
Figure 8: Experiment 3 with MMO Trimmed Methods

6 EXTENDING THE METHOD TO TWO
DIMENSIONAL PROBLEMS

6.1 Moving Mesh Algorithm Modifications

The moving mesh method does not change dramatically
when moving from a one dimensional problem to a two
dimensional problem. The main difference is that, with two
dimensional problems, there are numerous methods to con-
struct the mesh. However, the purpose of this paper is to
introduce the moving mesh method. Therefore, we used a
simple rectangular mesh and a basic accounting scheme to
move the mesh between each iteration. We still have k con-
tinuous partitions on a domain of length L and width W and
we denote

iΦ : the i-th partition

ji,Ω : the i,j-th boundary. For the two dimensional
case, each iΦ will have four boundaries with
coordinates),()1,()1,(ii yx ,),()1,()2,(ii yx ,

),()2,()1,(ii yx , and),()2,()2,(ii yx .

The new algorithm now becomes:

1. Determine k, the number of partitions, and then

construct the mesh uniformly across the domain
such that the partitions span the entire domain
such that Lxxk =− 1,12, and Wyyk =− 1,12, .

2. Randomly generate 0n initial runs on each parti-
tion iΦ . As in the one dimensional case, we used
a uniform distribution to select the location of the
run on the partition.

3. Allocate more runs to each iΦ . In order to do this,
we aggregate the information for all of the runs in
each iΦ to calculate the sample statistics required
by the allocation method that we are using. When
705
coupled with OCBA, we estimate 2
iσ and calcu-

late ib,δ for each partition as presented in Section
2. We then allocate additional runs, iNΔ , to each

iΦ according to Equations (2) and (3).
4. Keeping k, the number of partitions fixed, move

ji,Ω so that each iΦ has the same number of runs
or jiNN ji ,∀= . For this paper, we kept our
mesh construction method simple. We first
equally divided the runs in the x direction and es-
tablished boundaries by equally dividing the dis-
tance between the last point in one sub-section
and the first point in the next sub-section. We then
took each x direction sub-section and equally di-
vided the runs in the y direction and again estab-
lishing the boundaries equidistant from the last
and first points of the resulting partitions.

5. Repeat steps 3 and 4 until we exhaust the comput-
ing budget.

6. After exhausting the computing budget, determine
a point to represent the partition having the small-
est sample mean performance measure.

An example of the first five steps using OCBA can be seen
in Figures 9 and 10 below. The underlying function used
is)1,0(4)3.4()6.6(),(22 Uyxyxf +−+−= where)10,0(, ∈yx
and the optimal solution is located at)3.4,6.6(),(=yx .

1. As shown in Figure 9, the domain is divided into

16 equal partitions.
2. We set 100 =n for each iΦ and randomly distrib-

ute (uniform distribution) the initial runs across
each partition.

0

2.5

5

7.5

10

0 2.5 5 7.5 10

x value

y
va

lu
e

2

1

3

4

5 9

16

11

Figure 9: 2D Example, Steps 1 and 2

3. We calculated the mean and standard deviation of

the runs in each interval and used OCBA to allo-
cate a total of 160 more runs across the entire do-

Brantley and Chen

main. In this case, the 16 partitions re-
ceived 7,3),8,3,4,23,8,3,1,6,842,1,2,1,4,(=Δ iN new
runs respectively. These runs are shown in Figure
10 with the new runs portrayed by triangles.

4. Keeping the numbers of partitions fixed, we then
adjusted ji,Ω . Since we have allocated a total of
320 runs among the 16 designs, we adjust ji,Ω so
that iNi ∀= 20 . Using this construct, we now
have the new partitions shown in Figure 10.

0

2.5

5

7.5

10

0 2.5 5 7.5 10

x value

y
va

lu
e

1

4 16

9
5 11

2

3

Optimal
Solution

Figure 10: 2D Example, Steps 3 and 4

5. We would then repeat Step 3 which calculates the

new mean and standard deviation for each interval
and then uses OCBA to allocate new runs to each
interval.

6.2 Experiment 4: Two Dimension Convex Function

This experiment is a two dimensional version of Experi-
ment 1 and uses the following underlying function:

)10,0(~,where)1,0(4)()(),(21

2
2

2
1 UUyxyxf ξξξξ +−+−=

and where)10,0(, ∈yx .

The optimal solution is),(21 ξξ so the error for each itera-

tion is measured as 2
2

2
1)()(ξξ −+− bb yx . We again con-

duct 10,000 experiments and use EA-UM and OCBA-UM
for comparison purposes. For EA-UM, we constructed a
10x10, 15x15, and 20x20 grids providing 100, 225, and
400 total designs respectively. By extending our simulation
budget for each experiment to 2,200 runs, we also used
10x10, 15x15, and 20x20 grids for the OBCA-UM method.
For MMO, we used a 4x4 construct for 16 total partitions.

Figure 11 contains the simulation results for EA-UM
10x10, OCBA-UM 10x10, OCBA-UM 15x15, OCBA
20x20, and MMO 4x4. The EA-UM results were very
similar for the three different grids we used and converged
706
very slowly. After applying the initial runs, the OCBA-UM
methods converge rapidly to the best possible solution but
are ultimately limited in performance by the width of the
uniform mesh used. However, uniformly refining the mesh
to obtain a better solution comes at a large cost in terms of
initial runs for each design. We can see that MMO obtains
rapid convergence in the first few iterations and then con-
tinues to slowly improve after that. Compared to OCBA-
UM, MMO obtains the same results in vastly fewer runs.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

Total Simulation Budget (Runs)
N

or
m

 fo
r 1

0,
00

0
Ex

pe
rim

en
ts

OCBA-UM 10x10 OCBA-UM 15x15 OCBA-UM 20x20
EA-UM 10x10 MMO 4x4

Figure 11: Results for Experiment 4 (2D Function)

7 CONCLUDING REMARKS

In this paper we introduced a moving mesh algorithm for
simulation optimization across a continuous domain. Dur-
ing each iteration, the mesh movement is determined by
allocating simulation runs to partitions of the domain that
are critical in the process of identifying good solutions.
The partition boundaries are then adjusted to equally dis-
tribute the allocation runs between each partition which re-
duces the size of promising partitions and increases the
size of less desirable partitions. Comparisons with simula-
tion optimization methods using points in the domain on a
uniform mesh as designs show that our approach is promis-
ing. However, as we refine our approach, we may have to
develop trimming heuristics to ensure the method contin-
ues to converge and improve the efficiency of our iterative
mesh construction as we expand to higher dimensions.

ACKNOWLEDGMENTS

This work has been supported in part by NSF under Grant
IIS-0325074, by NASA Ames Research Center under
Grants NAG-2-1565 and NAG-2-1643, by NASA Langley
Research Center and NIA under task order NNL04AA07T,
by FAA under Grant 00-G-016, and by George Mason
University Research Foundation.

Brantley and Chen

REFERENCES

Adjerid, S. and J.E. Flaherty. 1986. A moving-mesh finite
element method with local refinement for parabolic
partial differential equations, Computer Methods Ap-
plications for Mechanics and Engineering, 55: 3-26.

Arney, D.C. and J.E. Flaherty. 1986. A two-dimensional
mesh moving technique for time-dependent partial dif-
ferential equations, Journal of Computational Physics,
67: 124-144.

Chen, C.H., J.Lin, E.Yücesan, and S.E.Chick. 2000. Simu-
lation budget allocation for further enhancing the effi-
ciency of ordinal optimization, Journal of Discrete
Event Dynamic Systems: Theory and Applications, 10:
251-270.

Law, A.M. and W.D. Kelton. 2000. Simulation Modeling
and Analysis, McGraw-Hill, Inc.

Shi, L. and S. Olafsson. 2000. Nested partitions method for
global optimization, Operations Research, 48 (3): 390
– 407.

Swisher, J., S. Jacobson, P. Hyden, and L. Schruben. 2000.
A survey of simulation optimization techniques and
procedures, Proceedings of the 2000 Winter Simula-
tion Conference, ed. J.A. Joines, R.R. Barton, K.
Kang, and P.A. Fishwick, 119-126. Piscataway, NJ:
Institute of Electrical and Electronics Engineers.
707
AUTHOR BIOGRAPHIES

MARK W. BRANTLEY is in the Department of Systems
Engineering and Operations Research at George Mason
University. He received his BS degree in Mathematical
Sciences at the United States Military Academy and re-
ceived MS degrees in Applied Mathematics and Opera-
tions Research from Rensselaer Polytechnic Institute. His
research interests include simulation and optimization. His
e-mail address is mbrantl1@gmu.edu.

CHUN-HUNG CHEN is an Associate Professor of Sys-
tems Engineering at George Mason University. He served
as the Co-Editor of the Proceedings of the 2002 Winter
Simulation Conference and the Methodology Analysis
track coordinator for the 2003 and 2004 Winter Simulation
Conference He received his Ph.D. from Harvard University
in 1994. His research interests are mainly in development
of very efficient methodology for simulation and optimiza-
tion, and its application to engineering design and air traf-
fic management. He is a member of INFORMS and a sen-
ior member of IEEE. His email address is
cchen9@gmu.edu.

mailto:mbrantl1@gmu.edu
mailto:cchen9@gmu.edu

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

