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ABSTRACT

In this paper, we address the problem of finding a set of
feasible or near-feasible systems among a finite number of
simulated systems in the presence of stochastic constraints.
Andradóttir, Goldsman, and Kim (2005) present a procedure
that detects feasibility of systems in the presence of one
constraint with a pre-specified probability of correctness.
We extend their procedure to the case of multiple constraints
by the use of the Bonferroni inequality. Unfortunately, the
resulting procedure tends to be very conservative when the
number of systems or constraints is large. As a remedy,
we present a screening procedure that uses an aggregated
observation, which is a linear combination of the collected
observations across stochastic constraints. Then, we present
an accelerated procedure that combine the extension of An-
dradóttir, Goldsman, and Kim (2005) with the procedure that
uses aggregated observations. Some experimental results
that compare the performance of the proposed procedures
are presented.

1 INTRODUCTION

Ranking and selection (R&S) performs comparisons among
a finite number of simulated systems. It mainly focuses
on finding the best or near-best systems with the largest or
smallest expected primary performance measure by either
maximizing or minimizing an objective function. However,
very little work has been done for solving an optimiza-
tion problem in the presence of stochastic constraints on
some secondary performance measures. Butler, Morrice
and Mullarkey (2001) handle multiple performance mea-
sures and Santner and Tamhane (1984) propose a two-stage
procedure with a constraint on variance. However, their
methods are either very hard to apply in practice or focused
on only a special case. Andradóttir, Goldsman, and Kim
(2005) present a R&S procedure that determines the feasibil-
ity of a system for one stochastic constraint. This procedure
can handle a general stochastic constraint on a secondary
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performance measure and determines the feasibility of sys-
tems in consideration correctly with high probability. Yet,
the work needs to be further extended to multiple constraints.

In this paper, we tackle the problem of determining a
set of feasible or near-feasible systems that satisfy a number
of stochastic constraints, especially, when the number of
systems or constraints is large. Determining the best fea-
sible system, which minimizes or maximizes the primary
performance measure, from the resulting set is beyond the
scope of this paper.

Any R&S procedure that checks feasibility in the pres-
ence of one stochastic constraint can easily be extended to
the case of multiple constraints by the use of the Bonferroni
inequality. We call the extended procedure FB . In this pa-
per, we only focus on the extended version of the feasibility
check procedure byAndradóttir, Goldsman, and Kim (2005).
Unfortunately, the conservativeness of the Bonferroni in-
equality is well-known and this conservativeness becomes
more serious when the number of systems or constraints is
large. To lessen it, we present a screening procedure that
accelerates elimination of infeasible systems. The idea is to
use an aggregated observation, which is a linear combination
of observations across the stochastic constraints in consid-
eration. How does this idea help the elimination of the
infeasible systems?: When there are multiple constraints, a
system is feasible if all the constraints are satisfied. If at
least one constraint is violated, then the system is infeasible
and eliminated immediately regardless of the feasibility of
the other constraints. When infeasibility occurs in one or
two constraints, then it might be more effective to keep
a feasibility check test for each constraint. However, if a
number of constraints contribute to infeasibility together,
then an aggregated observation of the collected observa-
tions corresponding to each constraint would make it easier
to detect infeasibility. From this motivation, we design a
screening procedure that uses an aggregated observation for
feasibility check and show how to combine this idea with
FB to accelerate the efficiency of FB .
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The paper is organized as follows: In Section 2, the
problem is formulated and notation and definition are given.
Section 3 provides the FB procedure—an extended proce-
dure of the feasibility check procedure due to Andradóttir,
Goldsman, and Kim (2005) to multiple constraints using
the Bonferroni inequality—and Section 4 presents an ac-
celerated version of FB . Some experimental results on
independent and identically distributed (i.i.d.) multivari-
ate normal data are presented in Section 5, followed by a
conclusion in Section 6.

2 PROBLEM

In this section, we define our problem and notation for the
paper. Our problem is to determine a set of feasible or
near-feasible systems from k simulated systems that satisfy
s stochastic constraints. Let Yi�j , for i = 1, 2, . . . , k,
� = 1, 2, . . . , s, j = 1, 2, . . . , denote an observation from
the j th replication associated with the �th performance
measure (or the �th constraint) from the ith system, and let
Yij = (Yi1j , Yi2j , . . . , Yisj )

′ be the vector of j th observation
across all s performance measures from system i. The
expected performance measure of system i is defined as
yi = E[Yij ] = (yi1, yi2, . . . , yis)

′ where E[Yi�j ] = yi� for
� = 1, 2, . . . , s and j = 1, 2, . . . . We assume

Yij =




Yi1j

Yi2j

...

Yisj




i.i.d.∼ MN (yi , �i) ,

where ∼ implies ‘are distributed as’, MN implies multi-
variate normal, and �i is the variance-covariance matrix of
Yij . Further, we assume that Yij and Yνj are independent
for i �= ν (i.e., no common random numbers). Throughout,
we write vectors in boldface, random variables in upper
case, and their realizations in lower case. If we take within-
replication averages as basic observations, then Yi�j are
likely to be approximately normally distributed. Perfor-
mance measures from a system are likely to be correlated
in practice such as waiting times and the number of jobs
waiting. Therefore, the assumption of multivariate normal
random variables is plausible.

In order for a system to be feasible, the vector of mean
performance measures has to be less than a constant vector
Q = (Q1, Q2, . . . , Qs)

′. More specifically, system i will
be feasible if yi ≤ Q. Unfortunately, for stochastic systems,
it is impossible to guarantee identifying all feasible systems
that satisfy s stochastic constraints. Instead Andradóttir,
Goldsman, and Kim (2005) introduce tolerance level which
is similar to the indifference-zone (IZ) parameter and we
adopt the same approach in this paper. For each constraint,
a decision maker will be asked to give a range around Q�,
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say, (Q�,low, Q�,up) such that Q�,low ≤ Q� ≤ Q�,up and
Q�,low < Q�,up. Let Qlow = (Q1,low, . . . , Qs,low)′ and
Qup = (Q1,up, . . . , Qs,up)′. Then three regions are defined
for the constraints we consider:

• yi ≤ Qlow: This is the desirable region. If system
i is in this range, then it is feasible.

• (yi < Qup)\(yi ≤ Qlow): This is the acceptable
region. If system i is in this range, it is either
feasible or infeasible and can be declared feasible
or infeasible regardless of its true feasibility.

• (yi1 ≥ Q1,up)∪(yi2 ≥ Q2,up)∪. . .∪(yis ≥ Qs,up):
This is the unacceptable region. If system i is
in this range, then it is infeasible and should be
eliminated.

Furthermore, we can define the following three sets for the
constraints in consideration:

SD = the set of all desirable systems;
SA = the set of all acceptable systems;
SU = the set of all unacceptable systems.

For given Q�,low and Q�,up, we define q� and ε� as
q� = (Q�,low + Q�,up)/2 and ε� = (Q�,up − Q�,low)/2,
respectively. In this setup, Q�,low = q� − ε� and Q�,up =
q� + ε� and our procedures will be presented in terms of
q� and ε�. The parameter q�, called the target value of the
�th constraint, behaves as a cut-off point between feasible
and infeasible systems for the �th constraint. Parameter ε�

is the tolerance level of the �th constraint, indicating how
much we are willing to be off and above from q�. Figure 1
shows the desirable (D), acceptable (A), and unacceptable
(U) regions when there are two stochastic constraints.

Further, we let q = (q1, q2, . . . , qs)
′ and E =

(ε1, ε2, . . . , εs)
′ be the vector of target values and tolerance

levels for the s constraints, respectively. A correct decision
(CD) is defined as the event that a set F returned by a pro-
cedure as a set of feasible systems is SD ⊂ F ⊂ (SD ∪SA).

3 MULTIPLE FEASIBILITY CHECK PROCEDURE

In this section, we consider Algorithm I presented in An-
dradóttir, Goldsman, and Kim (2005) and extend it to the
case of multiple constraints. Algorithm I handles only one
constraint and requires tolerance level ε and target value q

for the constraint. It is fully sequential with a triangular
boundary, that is sometimes called a triangular continua-
tion region. In a fully sequential procedure, one samples
one basic observation from each survivor at each stage and
compute the partial sum of the difference between the ob-
servation and the target value q up to the current stage. If
this partial sum stays within the boundary, sampling contin-
ues. Otherwise, the procedure stops and a decision is made



nd Kim
Batur a

ε 1 ε 1

ε 2

ε 2

D

A

U

1q   +

q   −2

1q   −

2q   +

Figure 1: Desirable (D), Acceptable (A), and Unacceptable
(U) Regions in the Presence of Two Stochastic Constraints

depending on through which side of the boundary the exit
occurs. For example, Figure 2 shows the triangular contin-
uation region of Algorithm I. The horizontal and vertical
axes in the figure denote stage number, r , and partial sums,∑r

j=1(Xij −q), respectively. If the exit occurs through the
upper boundary, we conclude that µi > q and the system is
infeasible. On the other hand, if the exit occurs through the
lower boundary, we conclude that µi ≤ q and the system
is feasible. Algorithm I guarantees the event of CD with
at least 1 − α probability. The FB procedure given below
is the extension of Algorithm I to the case of s constraints
via the Bonferroni inequality.
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Figure 2: Continuation Region for the Constraint µi ≤ q

in Algorithm I of Andradóttir, Goldsman, and Kim (2005)
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Algorithm of FB:

Setup: Choose confidence level 1−α, vector of tolerance
levels E = (ε1, ε2, . . . , εs)

′, and first stage sample
size n0 ≥ 2. Find η as the solution to the equation

g(η) ≡ 1

2
(1 + 2η)−(n0−1)/2 = 1−(1−α)1/(ks).

Initialization: Let I = {1, 2, . . . , k}, F = ∅, and
Si = ∅, i = 1, 2, . . . , k, be the set of undeter-
mined systems, the set of systems declared ‘feasi-
ble’, and the set of constraint indexes of system i

that are already checked as feasible for system i,
respectively. Let h2 = 2η × (n0 − 1).
Obtain observations Yij , j = 1, 2, . . . , n0, from
each system i. For each system i and constraint
� = 1, 2, . . . , s, compute the sample variance

S2
i� = 1

n0 − 1

n0∑
j=1

(Yi�j − Yil(n0))
2,

where Yil(n0) is the sample average of the first
n0 observations associated with constraint � from
system i.
Set the number of observations r = n0 and go to
Feasibility Check.

Feasibility Check: Let

R(r; a, b, c) = max

{
0,

a

2

(
bc

a2 − r

)}

for a, b, c > 0.
For each i ∈ I and any � /∈ Si , � = 1, 2, . . . , s, if

r∑
j=1

(Yi�j − q�) ≥ +R(r; ε�, h
2, S2

i�),

then eliminate i from I ; else if

r∑
j=1

(Yi�j − q�) ≤ −R(r; ε�, h
2, S2

i�),

then add � to Si .
For each i ∈ I , if |Si | = s, then move i from I

and to F .
Stopping Rule: If |I | = 0, then return F as a set of

feasible systems.
Otherwise, take one additional observation Yi,r+1
from each system i ∈ I . Then, set r = r + 1 and
go to Feasibility Check.



Batur and Kim
The FB procedure eliminates all unacceptable systems
and returns a set of all desirable systems, possibly with
some acceptable systems, with probability at least 1 − α.
The full proof is given in Batur and Kim (2005).

4 ACCELERATED FEASIBILITY CHECK
PROCEDURE

When the number of systems or constraints is large, the FB
procedure becomes very conservative in terms of the number
of observations required and the actual probability of CD
(PCD) because of the Bonferroni inequality. To lessen this
conservativeness, we design a screening procedure in which
basic observations associated with each constraint are aggre-
gated into one observation by a linear combination A′Yij

where A = (a1, a2, . . . , as)
′ is a vector of positive con-

stants. Since Yij , j = 1, 2, . . . , are assumed to be i.i.d.
multivariate normally distributed, the aggregated observa-
tions A′Yij are also i.i.d. normally distributed. Therefore,
we can apply FB directly to the aggregated observations
with aggregated tolerance level εa = A′E and aggregated
target value qa = A′q. The difficulty is that aggregation
with A′Yij , εa , and qa results in different desirable, ac-
ceptable, and unacceptable regions from those defined by
the original individual constraints.

More specifically, let Da, Aa, and Ua denote desirable,
acceptable, and unacceptable regions defined by aggrega-
tion with a vector A. Shaded triangles of Figure 3 show the
three regions for the aggregated constraint while rectangles
show those for the original individual constraints when there
are two constraints. The vector A is usually chosen so that
Ua and Aa do not contain any desirable system in order
to avoid declaring a desirable system as infeasible. Batur
and Kim (2005) discuss the choice of A in more detail. As
one can see from Figure 3, all systems in Ua fall into the
unacceptable region U in terms of the original constraints,
so the screening procedure with aggregated observations is
likely to eliminate systems in U only. However, Aa and Da

contain some unacceptable systems in terms of the original
constraints. Therefore, it is possible that a system declared
as feasible by the screening procedure with aggregated ob-
servations is actually an unacceptable system in U. This
implies that we can confidently eliminate a system if the
system is declared as infeasible by the screening procedure
with aggregated observations, but a decision that a system
is feasible by the procedure is untrustworthy because Da

and Aa contain unacceptable systems in terms of the orig-
inal constraints. Therefore, the screening procedure with
aggregated observations can not be used solely to make
the feasibility decision but can help accelerate elimination
of unacceptable systems in the presence of multiple con-
straints, especially when a number of constraints contribute
infeasibility of the system. To utilize the efficiency of the
screening procedure with aggregated observations in elim-
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Figure 3: Da , Aa , and Ua Regions for the Aggregated
Measure in the Presence of Two Stochastic Constraints

inating unacceptable systems, we combine it with the FB
procedure. The combined accelerated procedure is called
the FA procedure and the steps of the procedure are given
below.

Algorithm of FA:

Setup: Choose confidence level α0 and α1, vector of
tolerance levels E = (ε1, ε2, . . . , εs)

′, and first
stage sample size n0 ≥ 2. Compute εa = A′E
and qa = A′q where A = [A�]�=1,2,...,s such that
A� = ∏s

j=1,j �=� εj (see Batur and Kim 2005 for
more detail about the choice of A). Find η0 as the
solution to the equation

g(η0) = 1 − (1 − α0)
1/k,

and η1 as the solution to the equation

g(η1) = 1 − (1 − α1)
1/(ks).

Initialization: Let I = {1, 2, . . . , k}, F = ∅, and Si =
∅, i = 1, 2, . . . , k, be the set of undetermined
systems, the set of systems declared ‘feasible’,
and the set of constraint indexes of system i that
are already checked as feasible, respectively. Let
h2

0 = 2η0 × (n0 − 1) and h2
1 = 2η1 × (n0 − 1).

Obtain observations Yij , j = 1, 2, . . . , n0, from
each system i. Compute Ya

ij = A′Yij . For each
system i, compute the sample variance

S2
i = 1

n0 − 1

n0∑
j=1

(Y a
ij − Ya

i (n0))
2,
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where Ya
i (n0) is the sample average of the first n0

aggregated observations from system i.
For each system i and constraint � = 1, 2, . . . , s,
compute the sample variance

S2
i� = 1

n0 − 1

n0∑
j=1

(Yi�j − Yil(n0))
2,

where Yil(n0) is the sample average of the first
n0 observations associated with constraint � from
system i.
Set the number of observations r = n0 and go to
Feasibility Check.

Feasibility Check: For each system i ∈ I , if

r∑
j=1

(Y a
ij − qa) ≥ +R(r; εa, h2

0, S
2
i ),

then eliminate i from I . Otherwise for each i ∈ I

and any � /∈ Si, � = 1, 2, . . . , s, if

r∑
j=1

(Yi�j − q�) ≥ +R(r; ε�, h
2
1, S

2
i�),

then eliminate i from I ; else if

r∑
j=1

(Yi�j − q�) ≤ −R(r; ε�, h
2
1, S

2
i�),

then add � to Si .
For each i ∈ I , if |Si | = s, then move i from I to
F .

Stopping Rule: If |I | = 0, then return F as a set of
feasible systems.
Otherwise, take one additional observation Yi,r+1
from each system i ∈ I and let Ya

i,r+1 = A′Yi,r+1.
Set r = r + 1 and go to Feasibility Check.

Batur and Kim (2005) show that FA guarantees CD
with probability at least 1 − (α0 + α1). When the overall
nominal confidence level is 1−α, choosing α0 and α1 such
that α0 + α1 = α guarantees CD with probability at least
1 − α. However, with this choice of α0 and α1, FA might
not perform better than FB under all circumstances. For
example, suppose that the overall nominal confidence level is
95% and we choose α0 = α1 = 0.025. If all the systems are
in the desirable region D, elimination based on aggregated
observations is not likely to be utilized and FA becomes
very similar to FB except that FA uses a larger confidence
level 1 − α1 = 0.975 instead of 1 − α = 0.95. Thus, the
performance of FA is likely to be worse than FB in this
situation. However, it is possible that FA performs better
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than FB if there are a number of acceptable or unacceptable
systems in terms of the original constraints: the saving from
eliminating acceptable or unacceptable systems earlier by
the screening part with aggregated observations might be
large enough to compensate using a larger probability 1−α1
than 1 −α for the screening part for the original individual
constraints.

On the other hand, if we choose α1 = α and 0 < α0,
then FA is guaranteed to perform better than FB in terms
of the number of replications required until we reach a
decision. However, the efficiency is achieved at the cost of
PCD: the actual PCD for FA is now only guaranteed to be
≥ 1 − (α0 + α1) which is smaller than 1 − α. However,
we know that FB and FA are already quite conservative
and the actual PCD is usually considerably larger than the
theoretical lower bound 1 − (α0 + α1). So, if one chooses
0 < α0 < α and α1 = α, it will certainly help FA perform
better than FB while the actual PCD is still ≥ 1 − α most
of the time.

5 EXPERIMENTAL RESULTS

In this section, we present some experimental results that
show the performance of the FB and FA procedures. We
test the cases of k = 1 and 9 systems. We assume that there
are five stochastic constraints (s = 5). For replication j of
system i, i = 1, 2, . . . , k, we assume that Yij is multivariate
normally distributed with equal marginal variance σ 2

i� = 1,
for � = 1, 2, . . . , s, and equal correlation, ρ, for each pair of
systems. We test ρ = {−0.15, 0.0, 0.3}. We choose these
correlation values because a multivariate normal distribution
requires a positive definite variance-covariance matrix by
definition, and these are three of the correlation values that
guarantee a positive definite variance-covariance matrix.
We set E = [ε�]�=1,2,...,s where ε� = 1/

√
n0 and n0 = 10.

Also, without loss of generality, we can assume that q =
(0, 0, . . . , 0)′. The overall nominal confidence 1−α is set to
1−α = 0.95. In the FA procedure, we set α0 = α1 = 0.05.
Note that the FA procedure with this choice of α0 and α1
only guarantees the actual PCD ≥ 0.90.

The systems, used in the experiments, are categorized
into SD, SA, SU depending on its mean configurations on
yi . The mean configurations for a system in each region are
given in Table 1. We have three desirable, three acceptable,
and three unacceptable mean configurations. D1 is more
difficult—requires more observations—than D2 and D2 is
more difficult than D3. Similarly, A1 (or U1) is more
difficult than A2 (or U2) and A2 (or U2) is more difficult
than A3 (or U3). For example, a system with the D1
configuration has performance measures that are all exactly
equal to −ε and barely falls into the desirable region D.
On the other hand, all performance measures of a system
with the D3 configuration are much smaller than −ε and
the system is clearly a desirable system in D.
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Table 1: The Mean Configurations of the Performance
Measures Associated with s Stochastic Constraints

desirable
D1 y� = −ε, � = 1, 2, . . . , s

D2 y� = −�ε, � = 1, 2, . . . , s

D3 y� = −10ε, � = 1, 2, . . . , s

acceptable
A1 y1 = y2 = −2ε, y� = −ε/2, � = 3, 4, . . . , s

A2 y� = 0, � = 1, 2, . . . , s

A3 y� = ε/2, � = 1, 2, . . . , s

unacceptable
U1 y1 = y2 = −2ε, y� = ε, � = 3, 4, . . . , s

U2 y� = ε, � = 1, 2, . . . , s

U3 y� = �ε, � = 1, 2, . . . , s

Table 2: Sample Average of Total Number of
Replications Required in FB and FA when
k = 1, s = 5, and σ 2

i� = 1 for all i and �

ρ = −0.15 ρ = 0.0 ρ = 0.3
FB FA FB FA FB FA

D1 72 71 71 71 68 66
D2 47 47 47 47 46 46
D3 11 11 11 11 11 11
A1 87 87 85 85 82 81
A2 49 22 52 26 60 37
A3 27 10 28 11 31 17
U1 25 20 25 20 27 24
U2 19 10 20 10 22 12
U3 11 10 11 10 11 10

In tables, we report the sample average of the total
number of replications rather than the sample average of total
number of observations corresponding to each constraint
since a vector Yij can be obtained at the same time whenever
a replication of system i is finished.

Tables 2 and 3 show the sample average of total number
of replications and the corresponding estimated PCD in FB
and FA when k = 1, s = 5, and σ 2

i� = 1. These estimated
values are obtained as a result of 10, 000 macroreplications
(complete repetitions). For a system with the D1, D2, or
D3 configuration, both procedures require about the same
number of total number of replications as expected, because
(i) the value of α of the FB is same as the value of α1 of FA;
and (ii) the screening with aggregated observations of the
FA procedure is not likely to be utilized. For the A1, A2,
A3, U1, U2, or U3 configuration, we observe a significant
decrease in the total number of replications required in the
FA procedure compared to the FB procedure. However,
there is some degradation in PCD. For example, for the D1
configuration, the actual PCD is around 0.93.

When nine systems—one system from each mean con-
figuration from D1 through U3—are considered, we do not
observe degradation in PCD any more. For example, when
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Table 3: Estimated PCD in FB and FA when k = 1,
s = 5, and σ 2

i� = 1 for all i and �

ρ = −0.15 ρ = 0.0 ρ = 0.3
FB FA FB FA FB FA

D1 0.961 0.961 0.962 0.952 0.961 0.930
D2 0.992 0.992 0.993 0.993 0.992 0.992
D3 1.000 1.000 1.000 1.000 1.000 1.000
U1 1.000 1.000 1.000 1.000 1.000 1.000
U2 1.000 1.000 1.000 1.000 1.000 1.000
U3 1.000 1.000 1.000 1.000 1.000 1.000

ρ equals 0.0, the FB procedure spends 764 total replica-
tions on average and provides the estimated PCD of 0.993;
however, the FA procedure spends only 589 replications
on average with the estimated PCD equal to 0.991. But
when all the systems are in the desirable region D, both
procedures show similar performance as expected although
we did not include the results in this paper. In practice
when k is large, it is very rare that all the systems are
in the desirable region D. Therefore, the FA procedure
is expected to be more efficient than the FB procedure in
general with very little or no degradation in PCD.

6 CONCLUSION

In a discrete optimization problem with several stochastic
constraints, the first step is to identify the set of feasible or
near-feasible systems and the proposed procedures in the
paper will be useful in that step. In this paper, we show
that a feasibility detection procedure due to Andradóttir,
Goldsman, and Kim (2005) for a single stochastic constraint
can easily be extended to multiple constraints. Also, we
show that the extended procedure can be further improved by
combining it with a screening procedure based on aggregated
observations. Finally, Batur and Kim (2005) provide lemmas
that generalize the extension from a single constraint to
multiple constraints and that constructs combined procedures
with the acceleration technique for any feasibility check
procedure that satisfies a certain set of conditions.
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