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ABSTRACT

Large deviations theory is a well-studied area which has
shown to have numerous applications. The typical results,
however, assume that the underlying random variables are
either i.i.d. or exhibit some form of Markovian dependence.
Our interest in this paper is to study the validity of large de-
viations results in the context of estimators built with Latin
Hypercube sampling, a well-known sampling technique for
variance reduction. We show that a large deviation principle
holds for Latin Hypercube sampling for functions in one
dimension and for separable multi-dimensional functions.
Moreover, the upper bound of the probability of a large
deviation in these cases is no higher under Latin Hypercube
sampling than it is under Monte Carlo sampling. We ex-
tend the latter property to functions that preserve negative
dependence (such as functions that are monotone in each
argument). Numerical experiments illustrate the theoretical
results presented in the paper.

1 INTRODUCTION

Suppose we wish to calculate EP [g(X)] where X =
[X1, . . . , Xd ] is a random vector in R

d with probability
distribution P and g(·) : R

d �→ R is a measurable function.
Further, suppose that the expected value is finite and can-
not be written in closed form or be easily calculated, but
that g(X) can be easily computed for a given value of X.
Let EP [g(X)] = µ ∈ (−∞, ∞). To estimate the expected
value, we can use the sample average approximation:

1

n
Sn = 1

n

n∑
i=1

g(Xi(ω)) (1)

where the Xi(ω) are random realizations of X. When
the Xi(ω) are i.i.d. (i.e. Monte Carlo sampling), by the
law of large numbers the sample average approximation
should approach the true mean µ (with probability one) as
673
the number of samples n becomes large. Large deviations
theory ensures that the probability that the sample average
approximation deviates from µ by a fixed amount δ > 0
approaches zero exponentially fast as n goes to infinity.
Formally, this is expressed as

lim
n→∞

1

n
log P

(∣∣∣∣1

n
Sn − µ

∣∣∣∣ > δ

)
= −βδ,

where βδ is a positive constant.
The above description, of course, is a small fraction of

a much more general theory, but conveys a basic concept
— that one obtains exponential convergence of estimators
under certain conditions. This idea has found applications
in numerous areas, from simulation to telecommunications
to optimization; we refer to classical books in the area such
as (Shwartz and Weiss 1995), (Dembo and Zeitouni 1998)
and (Bucklew 2004) for further discussions.

Despite the exponential convergence results mentioned
above, it is well known that Monte Carlo methods have
some drawbacks, particularly when one wants to calculate
the errors corresponding to given estimates. Although the
theory behind such calculations — notably the Central Limit
Theorem — is solid, in practice the error may be large even
for large sample sizes. That has led to the development of
many variance reduction techniques as well as alternative
sampling methods (see, e.g., Law and Kelton 2000 for a
general discussion of this topic).

One alternative approach for sampling the Xi(ω) is
called Latin Hypercube sampling (LHS, for short), intro-
duced by McKay, Beckman, and Conover (1979). Broadly
speaking, the method calls for splitting each dimension into
n strata (yielding nd hypercubes) and, for every dimension,
sampling all n strata exactly once. This technique has been
extensively used in practice, not only because of simplicity
of implementation but also because of its nice properties.
Indeed, McKay, Beckman, and Conover (1979) show that
if g(X) is monotone in all of its arguments, then the vari-
ance of the estimator obtained with LHS (call it VarLHS)
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is no higher than the sample variance from Monte Carlo
sampling (VarMC). Hoshino and Takemura (2000) extend
this result to the case where g(·) is monotone in all but one
of its arguments. Stein (1987) splits the function g(·) into a
constant component µ plus first order terms plus a residual
component (this is called the ANOVA decomposition of g),
i.e.,

g(X) = µ + g1(X
1) + · · · + gd(Xd) + gresid (X). (2)

Stein shows that, asymptotically, the sample variance from
Latin Hypercube sampling is just equal to the variance of
the residual term and is no worse than the variance from
Monte Carlo sampling. Loh (1996) extends this result to the
multivariate case where g : R

d �→ R
m. Owen (1997) shows

that for any n and any function g, VarLHS ≤ n
n−1VarMC.

Also, Owen (1992) shows that LHS satisfies a Central
Limit Theorem with the variance equal to the variance of
the residual term.

The above discussion shows that the LHS method has
been well studied and possesses many nice properties. How-
ever, to the best of our knowledge there have been no studies
on the exponential convergence of estimators obtained with
LHS. Thus, it is of interest to know whether large deviations
results hold under Latin Hypercube sampling. This is by no
means a trivial question — since the Xi(ω) are no longer
i.i.d. under LHS, Cramér’s Theorem (which is the basic
pillar of the results for i.i.d. sampling) can no longer be
applied.

In this paper, we study the above problem. We derive
conditions under which large deviations results hold under
Latin Hypercube sampling. More specifically, our results
apply when the integrand function is either one-dimensional,
multi-dimensional but separable (i.e. functions with no
residual term), or where the LH samples are negatively
dependent. One special case of negative dependence is
the case when the underlying function is monotone in all
of its arguments. Further, in these situations, we show
that the upper bound for the large deviations probability is
lower under LHS than under Monte Carlo sampling. Jin, Fu,
and Xiong (2003) show this property holds when negatively
dependent sampling is used to estimate a probability quantile,
whereas we prove it for the situations mentioned above.

The remaining of the paper is organized as follows.
In Section 2, we give some background on large devia-
tions theory and Latin Hypercube sampling. In Section 3,
we show our results for functions in one-dimension. In
Section 4, we extend the one-dimensional results to separa-
ble functions with multi-dimensional domain and functions
where negatively dependent sampling is used. In Section 5
we show some examples of our results and in Section 6 we
present concluding remarks.
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Due to space constraints, we omit most of the proofs;
those can be found — along with more detailed discussions
— in (Drew and Homem-de-Mello 2005).

2 BACKGROUND

2.1 Large Deviations

We begin with an overview of some of the basic results from
large deviations theory. All of the results in this section can
be found in any large deviations textbook such as (Dembo
and Zeitouni 1998) or (den Hollander 2000).

Suppose Y is a real-valued variable with mean µ = E[Y ]
(possibly infinite) and let Sn = ∑n

i=1 Yi , where Y1, . . . , Yn

are (not necessarily i.i.d.) unbiased samples of Y , i.e.,
E[Yi] = µ.

Define the function

φn(θ) := 1

n
log E[exp(θSn)], (3)

or equivalently,

exp(nφn(θ)) = E[exp(θSn)],

and let

φ(θ) := lim
n→∞ φn(θ) when the limit exists. (4)

In the case where the Yi are i.i.d., we have

φn(θ) = 1

n
log(E[exp(θSn)])

= 1

n
log({E[exp(θY1)]}n)

= log(E[exp(θY1)])
= log MY1(θ)

where MY1(θ) is the moment generating function of Y1
evaluated at θ . Notice that the above quantity does not
depend on n, so φ(θ) = φn(θ).

The large deviations rate function of Y at a given point
x is defined as

I (x) := sup
θ

[θx − φ(θ)]. (5)

It can be shown that both φ(·) and I (·) are convex.
The estimator 1

n
Sn is said to satisfy a large deviation

principle (LDP) with rate function I (·) if the following
conditions hold:

1. I (·) is lower semi-continuous, i.e., it has closed
level sets;
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2. For every closed subset F ∈ R,

lim sup
n→∞

1

n
log P

(
1

n
Sn ∈ F

)
≤ − inf

x∈F
I (x)

3. For every open subset G ∈ R,

lim inf
n→∞

1

n
log P

(
1

n
Sn ∈ G

)
≥ − inf

x∈G
I (x).

I (·) is said to be a good rate function if it has compact level
sets. Note that this implies that there exists some point x

such that I (x) = 0.
Next, define

I (n, x) = sup
θ∈R

[θx − φn(θ)]. (6)

When using the asymptotic φ(θ) instead of φn(θ), we denote
this function I (x). In the i.i.d. case, I (x) = I (n, x).

Let (a, b) be an interval on the real line containing µ.
We wish to calculate the probability of a large deviation,
i.e.

P

(
1

n
Sn /∈ (a, b)

)
= P

(
1

n
Sn ≤ a

)
+ P

(
1

n
Sn ≥ b

)
.

For all θ > 0, it holds that P( 1
n
Sn ≥ b) = P(Sn ≥ bn) =

P(exp(θSn) ≥ exp(θbn)). Using Chebyshev’s inequality,
P( 1

n
Sn ≥ b) ≤ exp(−θbn)E[exp(θSn)]. Thus,

1

n
log

[
P

(
1

n
Sn ≥ b

)]
≤ −

(
θb − 1

n
log E[exp(θSn)]

)
= −[θb − φn(θ)].

Note that this inequality holds regardless of any assumptions
on the Yis. Moreover, since the above inequality is true for
all θ ≥ 0 it follows that

1

n
log

[
P

(
1

n
Sn ≥ b

)]
≤ inf

θ≥0
−[θb − φn(θ)]. (7)

By Jensen’s inequality, we have E[exp(θSn)] ≥
exp(θE[Sn]) = exp(θnµ) for any θ ∈ R and hence

φn(θ) ≥ θµ for all θ ∈ R. (8)

It follows that θb−φn(θ) ≤ θ(b−µ). Since b ≥ µ, we can
take the infimum in (7) over θ ∈ R — which is then equal
to −I (n, b) — and, moreover, if b = µ the right-hand side
of (7) is zero.

Similarly, for all θ < 0 it holds that P( 1
n
Sn ≤ a) =

P(Sn ≤ an) = P(exp(θSn) ≥ exp(θan)). By repeating the
675
argument in the above paragraphs we conclude that

1

n
log

[
P

(
1

n
Sn ≥ b

)]
≤ −I (n, b) (9a)

1

n
log

[
P

(
1

n
Sn ≤ a

)]
≤ −I (n, a). (9b)

In the i.i.d. case, since φ(θ) = φn(θ) for all n we
have that (9) holds with the terms −I (b) and −I (a) on the
right-hand side, thus yielding Chernoff’s upper bound, i.e.,

P

(
1

n
Sn /∈ (a, b)

)
≤ e−nI (a) + e−nI (b). (10)

The upper bounds in (9) hold for any positive integer n.
In the i.i.d. case, it is possible to show that (9) holds with
the reverse inequalities in the limit as n approaches infinity
(note however that the lower bounds do not necessarily hold
for a given n). Together, the above statements constitute
Cramér’s Theorem, which states that, under i.i.d. sampling,
1
n
Sn satisfies a large deviation principle with good rate

function I (·).
The above results can be extended to the non-i.i.d. case,

which is our main interest as Latin Hypercube samples are
dependent. The main tool for that case is the Gartner-Ellis
Theorem, which we describe below. Roughly speaking,
the theorem asserts that, under proper conditions, a large
deviation principle holds for the estimator 1

n
Sn, with the

rate defined in terms of the limiting φ(θ) defined in (4).
The assumptions of the theorem are the following:
Assumption 1 : For each θ ∈ R, the function φ(θ)

defined in (4) exists as an extended real number.
Assumption 2 : 0 belongs to the interior of Dφ

where Dφ = {θ ∈ R : φ(θ) < ∞}.
Assumption 3 : φ(θ) is essentially smooth, i.e. the

following three conditions hold:
i) The interior of Dφ is nonempty
ii) φ(θ) is differentiable on the interior of Dφ

iii) Either Dφ = R or φ(θ) is steep, i.e. for θ ∈ Dφ

as θ approaches the boundary of Dφ , |φ′(θ)| = ∞ (where
φ′(θ) is the derivative of φ with respect to θ ).

Assumption 4 : φ(θ) is lower semi-continuous.
Theorem 1 (Gartner-Ellis Theorem):

1. If Assumptions 1 and 2 hold, then for every closed
subset F of R,

lim sup
n→∞

1

n
log P

(
1

n
Sn ∈ F

)
≤ − inf

x∈F
I (x).

2. If Assumptions 1-3 hold, then for every open subset
G of R,

lim inf
n→∞

1

n
log P

(
1

n
Sn ∈ G

)
≥ − inf

x∈G
I (x).



Drew and Homem-de-Mello
3. If Assumptions 1-4 all hold, then a large deviation
principle holds with the good rate function I (·).

That rate function is I (x) = supθ [θx − φ(θ)].
Our main goal is to derive conditions under which the

Gartner-Ellis Theorem can be applied under Latin Hypercube
sampling. We do that in Sections 3 and 4. Before that, we
review in detail the basic ideas of LHS.

2.2 Latin Hypercube Sampling

Let X = [X1, X2, . . . , Xd ] be the vector of the d in-
put variables of a simulation and let Y = g(X) =
g(X1, X2, . . . , Xd) be the output of the simulation. Assume
that all of the dimensions are independent. Let Fj (·) be the
marginal cumulative distribution function for Xj . Suppose
the quantity of interest is E[Y ].

One possible sampling method to estimate E[Y ] is to
randomly sample n points in the sample space (Monte Carlo
sampling). For each replication i from 1 to n, Uniform(0,1)
random numbers Ui = [U1

i , . . . , Ud
i ] are generated (one

per dimension) which, assuming we can use the inverse
transform method, yield the input random vector Xi =
[F−1

1 (U1
i ), . . . , F−1

d (Ud
i )] and the output Yi = g(Xi).

One problem with random sampling is that there is no
guarantee that all sections of the sample space are equally
represented. Input points could be clustered in one partic-
ular region. An improvement on this is Latin Hypercube
sampling, first proposed by McKay, Beckman, and Conover
(1979). Each dimension of the sample space is split into
n sections (or strata) each with probability 1

n
, and one

observation is randomly sampled from each stratum. The
algorithm is comprised of three steps — it generates some
uniform random numbers, then some random permutations
and finally these elements are put together to yield the
samples. The detailed algorithm is the following:

1. Generate uniform random numbers:

(a) Generate a n × d matrix U of Uniform(0,1)
random numbers. Let U

j
i be the (i, j)th entry

of this matrix.

(b) Create another n×d matrix V (U) with (i, j)th

entry V
j
i (U) = i−1+U

j
i

n
. Thus each V

j
i (U) is

uniform on the interval [ i−1
n

, i
n
].

2. Generate random permutations:

(a) Let P(n) be the set of column vectors of permu-
tations of the numbers (1, 2, . . . , n). There are
n! possible permutations, each equally likely.
Let P be the set of n×d matrices where each
column (representing an input variable) is a
random permutation in P(n) with all columns
mutually independent. There are (n!)d ele-
ments in P , each equally likely. Index these
676
with k = 1, . . . , (n!)d and let K be a random
index.

(b) Randomly select Π(K) ∈ P (i.e. the Kth

element of P). Let π
j
i (K) be the (i, j)th

entry of this matrix. Note that the permutation
matrix Π(K) is independent of the random
number matrix V (U).

(c) In Latin Hypercube sampling, only n of the
nd strata are sampled. The rows of the Π(K)

matrix determine which hypercubes get sam-
pled. Let πi(K) = [π1

i (K), . . . , πd
i (K)] be

the ith row of Π(K). This corresponds to the
hypercube that covers the π1

i (K)th stratum of
X1, the π2

i (K)th stratum of X2, . . ., and the
πd

i (K)th stratum of Xd .

3. Determine the randomly sampled point within each
hypercube.

(a) Create matrix Z(ω) = Z(V, K) with (i, j)th

entry Z
j
i (ω) = V

j

π
j
i (K)

(U). In other words,

the (i, j)th entry of Z(ω) corresponds to the
(π

j
i (K), j)th entry of V (U) based on the per-

mutation matrix. Thus the j th column V j (U)

of the random number matrix V (U) is per-
muted according to the j th column of the
permutation matrix Π(K).

(b) Let X
j
i (ω) = F−1

j [Zj
i (ω)]. Then Xi(ω) =

[X1
i (ω), . . . , Xd

i (ω)] and Yi(ω) = g(Xi(ω)).

The above algorithm generates n random vectors
Zi(ω) = [Z1

i (ω), . . . , Zd
i (ω)], each of which is uniformly

distributed on [0, 1]d . Unlike standard Monte Carlo, of
course, the vectors Z1, . . . , Zn are not independent. These
vectors are mapped via inverse transform into vectors
X1, . . . , Xn, which then are used to generate the samples
Y1, . . . , Yn. It is well known that each Yi generated by the
LHS method is an unbiased estimate of E[Y ] (see, e.g., the
appendix in McKay, Beckman, and Conover 1979).

More formally, let f : [0, 1]d �→ R
d be the function

that converts the uniform random vector Zi(ω) into the
random vector Xi(ω), and let h := g ◦ f . Then we have
Yi(ω) = g(Xi(ω)) = g(f (Zi(ω))) = h(Zi(ω)). Thus,
without loss of generality we will assume that the outputs Yi

are functions of random vectors that are uniformly distributed
on [0, 1]d .

3 THE ONE-DIMENSIONAL CASE

We study now large deviations properties of the estimators
generated by LHS. In order to facilitate the analysis, we
start by considering the one-dimensional case.
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Let h : [0, 1] �→ R be a real-valued function in one
variable. It is known that a large deviations principle is
satisfied when we use Monte Carlo sampling to estimate
E[h(Z)] via the sample average approximation. We wish to
show that a large deviations principle is also satisfied when
we use Latin Hypercube sampling to estimate E[h(Z)] and
that the upper bound on the probability of a large deviation
is lower for Latin Hypercube sampling than for Monte Carlo
sampling.

In standard Monte Carlo sampling, the Zi(ω) are all
independent Uniform(0,1) random variables. We can cal-
culate

exp(nφMC
n (θ)) = E[exp(θSn)]

= E[exp(θ

n∑
i=1

h(Zi))]

= E[
n∏

i=1

exp(θh(Zi))]

=
n∏

i=1

E[exp(θh(Zi))]

= {E[exp(θh(Z1))]}n

and so

φMC
n (θ) = log(E[exp(θh(Z1))])

= log

[∫ 1

0
exp(θh(z))dz

]
,

which is independent of n.
Thus

φMC(θ) = log

[∫ 1

0
exp(θh(z))dz

]
. (11)

In LHS, when the interval [0, 1] is split into n strata
of equal probability 1

n
, the intervals are all of the form

[ j−1
n

,
j
n
] and each random variable Zi(ω) is now uniform

on some interval of length 1
n

. Further, independence no
longer holds.

We make the following assumptions about the function
h(z) : [0, 1] �→ R:

Assumption 5

1. h(z) is an integrable function (i.e. | ∫ 1
0 h(z)dz| <

∞).
2. h(z) has at most a finite number of singularities.
3. h(z) has a finite moment generating function (i.e.∫ 1

0 exp(θh(z))dz < ∞ for all θ ∈ R).

A simple situation where the above assumptions are satisfied
is when h(·) is a bounded function; however, we do allow
677
h(·) to be unbounded. Also, it can be shown that the
third part of this assumption is equivalent to assuming that
Dφ = R.

To show that LHS satisfies a large deviation principle,
we will show that it satisfies the assumptions of the Gartner-
Ellis Theorem. The key element of the proof is the lemma
below, which shows that {φn(θ}} converges to a linear
function in θ .

Lemma 1 Suppose h(z) : [0, 1] �→ R and that
Assumption 5 holds. Let Z be a Uniform(0,1) random
variable. If Latin Hypercube sampling is used to estimate
E[h(Z)], then limn→∞ φn(θ) = θ

∫ 1
0 h(z)dz.

The main result of this section is the following:
Theorem 2 Suppose h(z) : [0, 1] �→ R and that

Assumption 5 holds. Let Z be a Uniform(0,1) random
variable and define µ1 := E[h(Z)] = ∫ 1

0 h(z)dz. Then, the
LHS estimator of µ1 satisfies a large deviation principle
with good rate function

ILHS(x) =
{

∞, if x 	= µ1

0, if x = µ1.

Proof From Lemma 1, Assumption 1 holds for the 1-
dimensional case. Let φ(θ) denote the linear function
θ

∫ 1
0 h(z)dz = θµ1.

Since by assumption h(z) is integrable, µ1 is finite and
Dφ = R. Thus the interior of Dφ is also R, meaning that
Assumption 2 holds. Also, since φ(θ) is a linear function of
θ , it is differentiable everywhere and lower semi-continuous
and thus Assumptions 3 and 4 also hold and the Gartner-
Ellis Theorem can be applied. The resulting rate function
is

ILHS(x) = sup
θ

[θx − φ(θ)]
= sup

θ

[θ(x − µ1)]

=
{

∞, if x 	= µ1

0, if x = µ1

which is a good rate function since {x : ILHS(x) ≤ α} = {0}
for any α ≥ 0. �

Theorem 2 implies that, for any closed subset F of R,
as long as µ1 /∈ F we have that

lim sup
n→∞

1

n
log P

(
1

n
Sn ∈ F

)
≤ − inf

x∈F
I (x) = −∞.

That is, we have an infinite decay rate, as opposed to the
exponential rate obtained with standard Monte Carlo. This
shows that, asymptotically, LHS is much more precise than
Monte Carlo.
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.

The next result suggests that superiority of LHS (in
the context of deviation probabilities) in fact holds for any
finite n.

Theorem 3 Consider the setting of Theorem 2. Let
IMC(x) and ILHS(n, x) denote the (non-asymptotic) func-
tions defined in (6) respectively for Monte Carlo and for
LHS. Then, for any sample size n and all x we have that
ILHS(n, x) ≥ IMC(x).

In particular, from (9) we see that the upper bound for
the probability of a large deviation is smaller under Latin
Hypercube sampling than under Monte Carlo sampling for
any sample size n.

Although the above result compares only the upper
bounds corresponding to LHS and Monte Carlo, the impor-
tance of Theorem 3 lies in the fact that the Monte Carlo
upper bound is tight asymptotically. This suggests that even
for small sample sizes the deviation probabilities under LHS
may be smaller than under Monte Carlo — a fact that is
corroborated in the examples of Section 5.

4 THE MULTI-DIMENSIONAL CASE

We consider now the multi-dimensional case h : [0, 1]d �→
R . Assume that the dimensions are all independent and
define Zi(ω) = [Z1

i (ω), . . . , Zd
i (ω)].

For Monte Carlo sampling, a large deviation principle
holds, and we can show using a similar calculation to the
one-dimensional case that the function φn defined in (3) is
equal to

φMC(θ) = log

[∫
[0,1]d

exp(θh(z))dz

]
. (12)

Again, we would like to show that a large deviation principle
holds for Latin Hypercube sampling in the multi-dimensional
case and that the upper bound for the probability of a large
deviation under LHS is lower than it is for Monte Carlo
sampling. While the latter assertion is in general not true for
multidimensional functions, we will focus on two special
cases: (1) h(·) is a separable function, and (2) the samples
are negatively dependent.

In the multi-dimensional case, each Latin Hypercube
permutation is equally likely with probability P[K = k] =

1
(n!)d (recall that the permutation matrices are indexed by k,
and that K is a random index). As in the one-dimensional
case, given a particular permutation Π(k), the point sampled
from each strata is independent of the point sampled from
any other strata, so the product and the expectation can be
678
switched. Thus, we can write

exp(nφLHS
n (θ)) = E

[
n∏

i=1

exp(θh(Zi(V , K)))

]

=
(n!)d∑
k=1

E

[
n∏

i=1

exp(θh(Zi(V , K))) | K = k

]
P[K = k]

= 1

(n!)d
(n!)d∑
k=1

n∏
i=1

E
[
exp(θh(Zi(V , K))) | K = k

]
. (13)

Also, given a particular permutation index K = k, for
each sample i we have that

Zi(V, k) ∈
[

π1
i (k) − 1

n
,
π1

i (k)

n

]
×· · ·×

[
πd

i (k) − 1

n
,
πd

i (k)

n

]

For notational convenience, define a
j
i (k) := π

j
i (k)−1

n
and

b
j
i (k) := π

j
i (k)

n
. Also, let z := [z1, . . . , zd ] and dz :=

dz1 · · · dzd . Note that Z
j
i (V , k) is uniformly distributed on

(a
j
i (k), b

j
i (k)). Then, (13) becomes

exp(nφLHS
n (θ))

= 1

(n!)d
(n!)d∑
k=1

n∏
i=1

nd

∫ bd
i (k)

ad
i (k)

· · ·
∫ b1

i (k)

a1
i (k)

exp(θh(z))dz.

(14)

We now specialize the calculations for the two cases
mentioned above.

4.1 Case 1: The Separable Function Case
Definition 1 A function h(·) defined on a d-

dimensional space is said to be separable if there exist
one-dimensional functions h1, . . . , hd such that

h(z1, . . . , zd) = h1(z1) + . . . + hd(zd).

Note that this is equivalent to saying that the ANOVA
decomposition of h (cf. (2)) has residual part equal to zero.
Also, when a function is separable,

∫
[0,1]d

h(z)dz =
∫ 1

0
h1(z1)dz1 + · · · +

∫ 1

0
hd(zd)dzd .

Since a separable multidimensional function can be decom-
posed into a sum of one dimensional functions, it is intuitive
that our results from the one-dimensional case can be ex-
tended to this case. The theorem below states precisely
that:
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Theorem 4 Suppose h(z) : [0, 1]d �→ R is a sepa-
rable function and that each component hj of h satisfies As-
sumption 5. Let Z be a random vector uniformly distributed
on [0, 1]d , and define µd := E[h(Z)] = ∫

[0,1]d h(z)dz.
Then, the LHS estimator of µd satisfies a large deviation
principle with good rate function

I (x) =
{

∞, if x 	= µd

0, if x = µd.

Proof As in the proof of Theorem 2, the basic idea is to
show that the functions {φLHS

n (θ)} converge to the linear
function φLHS(θ) := θµd . Then, applying the Gartner-
Ellis Theorem yields the desired result. Details of the proof
can be found in (Drew and Homem-de-Mello 2005). �

As before, for any closed subset F of R, as long as
µd /∈ F we have a decay with infinite rate, i.e.,

lim sup
n→∞

1

n
log P

(
1

n
Sn ∈ F

)
≤ − inf

x∈F
I (x) = −∞.

Moreover, as in the one-dimensional case, in the case
where h(z) is separable the Chernoff upper bound for the
large deviations rate for LHS is better than that of Monte
Carlo sampling for any number of samples, i.e., we have
an extension of Theorem 3:

Theorem 5 Consider the setting of Theorem 4. Let
IMC(x) and ILHS(n, x) denote the (non-asymptotic) func-
tions defined in (6) respectively for Monte Carlo and for
LHS. Then, for any sample size n and all x we have that
ILHS(n, x) ≥ IMC(x).

In particular, from (9) we see that the upper bound for
the probability of a large deviation is smaller under Latin
Hypercube sampling than under Monte Carlo sampling for
any sample size n.

4.2 Case 2: The Negative Dependent Case

We move now to the case of negative dependence. The
relevance of this case is due to the fact that Latin Hypercube
samples are negatively dependent (as shown in Jin, Fu, and
Xiong 2003) and so a function preserving that property will
inherit some of the behavior of the samples.

We start by defining negative dependence.
Definition 2 Random variables Yi, i = i . . . n are

called negatively dependent if

P[Y1 ≤ y1, . . . , Yn ≤ yn] ≤ P[Y1 ≤ y1] · · · P[Yn ≤ yn].

In our context, we are interested in the case where
Yi = h(Z1

i , . . . , Z
d
i ), where the vectors Zi , i = 1, . . . , n

are LH samples of a Uniform([0, 1]d ) random vector Z.
In that setting, one situation where the Yi are negatively
dependent is when the function h is monotone in each
679
argument when the other arguments are held fixed (we refer
again to Jin, Fu, and Xiong 2003).

Unfortunately, in this case it is not clear whether the
Gartner-Ellis Theorem can be applied — the reason being
that we do not know if negative dependence suffices to
ensure convergence of the functions {φLHS

n (θ)}. We must
note, however, that the Gartner-Ellis Theorem only provides
sufficient (but not necessary) conditions for the validity of
a large deviation principle; that is, it is possible that a large
deviation principle holds in the present case even if the
assumptions of the theorem are violated. A definite answer
to that question is still an open problem.

Nevertheless, we can still provide results that are analo-
gous to Theorems 3 and 5, i.e., comparing the upper bounds
on deviation probabilities under LHS and under Monte Carlo.
Jin, Fu, and Xiong (2003) show that, when the quantity to
be estimated is a quantile, the upper bound on a deviation
probability with negatively dependent sampling is less than
that from Monte Carlo sampling. Here we show a similar
result but in the context of estimation of the mean.

Theorem 6 Suppose h(z) : [0, 1]d �→ R is a func-
tion that preserves negative dependence, and let µd :=∫
[0,1]d h(z)dz.

Let IMC(x) and ILHS(n, x) denote the (non-asymptotic)
functions defined in (6) respectively for Monte Carlo and
for LHS. Then, for any sample size n and all x we have
that ILHS(n, x) ≥ IMC(x).

In particular, from (9) we see that the upper bound for
the probability of a large deviation is smaller under Latin
Hypercube sampling than under Monte Carlo sampling for
any sample size n.

5 EXAMPLES

We now show examples comparing the probability of a large
deviation under Latin Hypercube sampling and Monte Carlo
sampling on four different functions. For each function, we
generated both Monte Carlo and Latin Hypercube samples
for various sample sizes n (n = 50, 100, 500, 1000, 5000,
10000). For each sampling method and each n, we calculated
the numerical integral (i.e. the sample mean). We then
repeated this for 1000 replications. A large deviation was
determined to be any value of the sample mean that was
not within 0.1% of the true mean. The estimate of the
probability of a large deviation is just the number of large
deviations divided by 1000.

In each graph below, the x-axis represents the different
sample sizes while the y-axis shows the estimated large
deviations probabilities for each sample size. Estimates
for both Latin Hypercube and Monte Carlo sampling are
graphed as well as the upper and lower 95% confidence
intervals for each estimate (represented by the dashed lines).



Drew and Homem-de-Mello
Example 1:

h(z) = log(
1√
z1

)

This is a one-dimensional function with a singularity at
z1 = 0. Its integral on [0, 1] is equal to 1

2 . Latin Hypercube
sampling considerably outperforms Monte Carlo sampling
with a large deviation probability of essentially zero by
the time n = 5000. Meanwhile the probability of a large
deviation is still roughly 90% for Monte Carlo sampling
with n = 10000. This is shown in Figure 1.
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Figure 1: h(z) = log( 1√
z1

)

Example 2:

h(z) = log(z1z2z3z4z5)

This function is separable, so by Theorem 4 we expect
the large deviation probability to be essentially zero under
Latin Hypercube sampling with large n. The integral of
the function is −5. Again the Latin Hypercube sampling
dominates the Monte Carlo sampling which has a large
deviations probability of nearly 80% at n = 10000. This is
shown in Figure 2.
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Figure 2: h(z) = log(z1z2z3z4z5)
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Example 3:

h(z) = log(
1√
z1

+ 1√
z2

)

While not separable, this function is negative dependent
because it is monotone in both z1 and z2. Its integral is 5

4 .
From Theorem 6, we know that the upper bound for the
large deviations probability is guaranteed to be smaller under
Latin Hypercube sampling than under Monte Carlo sampling
for each value of n, and indeed we see that Latin Hypercube
sampling again dominates Monte Carlo sampling. This is
shown in Figure 3.
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Example 4:

h(z) = log
[
2 + sin(2πz1) cos(2πz2

2)
]

This function is neither separable nor negative depen-
dent — in fact, it is highly non-separable. We have no
guarantee that Latin Hypercube sampling will produce a
lower probability of a large deviation than Monte Carlo
sampling. This function has integral 0.653212638. From
the run, we see that it is possible for Monte Carlo sampling
to have a lower probability of large deviation than Latin
Hypercube sampling, even at n = 10000. In fact, the two
sampling methods give similar results for this function. This
is shown in Figure 4.
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6 CONCLUSIONS

In this paper, we have shown that Latin Hypercube sampling
satisfies a large deviation principle for real-valued functions
of one variable and for separable real-valued functions in
multiple variables. We have also shown that the upper bound
of the probability of a large deviation is smaller under LHS
than it is for Monte Carlo sampling in these cases regardless
of the sample size. This is analogous to the result that Latin
Hypercube sampling gives a smaller variance than Monte
Carlo sampling in these same cases since VarLHS approaches
the variance of the residual term, which in these cases is
nonexistent. Further, as the number of samples becomes
large, the probability of a large deviation from the true mean
is essentially zero under Latin Hypercube sampling.

We have also shown that, if the underlying function
preserves negative dependence (e.g., a function which is
monotone in each component), then the upper bound for
the large deviation probability is again less than that of
Monte Carlo sampling regardless of the sample size. Again,
this is analogous to the fact that the variance from LHS
is no greater than that of Monte Carlo sampling when the
function is monotone in all arguments. Unfortunately we
do not know whether the large deviations rate is infinite, as
it is in the separable case.

Large deviations results for LHS for general functions
still remain to be shown, though the Latin Hypercube vari-
ance results found in the literature seem to provide a good
direction. In general, the variance of a Latin Hypercube
estimate may not be smaller than that of a Monte Carlo
estimate (recall the bound VarLHS ≤ n

n−1VarMC proven by
Owen (1997)); however, asymptotically it is no worse. This
might also be the case for the upper bound of the large
deviations probability. Also, Stein (1987) has shown that
asymptotically, VarLHS is equal to just the variance of the
residual term. In the separable function case, the upper
bound for the large deviation probability is zero, which is
also the variance of the residual term. This suggests that the
rate of convergence of large deviations probabilities for LHS
may depend only on the residual terms. Further research
on this topic is underway.
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