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ABSTRACT 

A real world system is full of uncertainties and more than 
often the parameters, processes or events under study are 
poorly understood. In order to study a real world system, 
we often have to make a set of assumptions about how it 
works using statistical, mathematical or logical relation-
ships. Qualitative discrete event simulation involves the 
development of simulation models which require less as-
sumptions, less data requirements and yet more robust. 
This paper presents the concepts involved in the develop-
ment and implementation of qualitative discrete event 
simulation models and algorithms. 

1 INTRODUCTION 

Simulation continues to be a widely used technique for 
solving problems in engineering, business, physical sci-
ence, artificial intelligence and economics. It is without 
hesitation that simulation is a powerful and important tool 
as it provides a method for evaluating existing or alterna-
tive decisions, plans and policies without having to con-
duct real experiments.  In some situations, simulation is set 
as a required analysis tool before any major capital invest-
ments. 
 The creation of a simulation model could be highly 
dependent on the availability of system data. If data is 
available, modelers normally would begin with the devel-
opment of a frequency distribution or histogram of the data 
and then try to fit it to a family of probability distributions. 
Sometimes, it is impractical or impossible to get these data 
and even if the data is available, there are still other issues 
that need to be addressed such as data overload and data 
abstraction. A great deal of effort is required to distill qual-
ity data and encode the information that is available into 
building a simulation model. 
 A regular discrete event simulation requires the mod-
elers to specify exactly which family of probability distri-
butions together with any associated parameters that serves 
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as input to the simulation model. The choice of input 
model could significantly impact the prediction or decision 
to be made based  on the simulation results. Depending on 
the type of distributions that is used in the model, the mod-
elers are required to make the necessary assumptions. 
Every simulation analysis is based on a variety of assump-
tions that are made about the nature of the data. It is likely 
to make erroneous conclusions if one does not carefully 
evaluate the validity of the assumptions behind the analy-
sis. It has become more of a standard procedure to make 
these assumptions in  a regular discrete event simulations.  
 Qualitative simulation has created a new construct to 
allow the modelers to specify input parameters and state 
variables qualitatively. Different qualitative specifications 
have been developed over the years (which will be dis-
cussed later in Section 2). Qualitative simulation inherits 
all the benefits of simulating and transforming the study of 
the complex systems and yet offers more than “what-if” 
analysis, which allows the modelers to answer wider range 
of questions that are of interests to users. Questions regard-
ing the behavior of the system especially those that con-
cern the viability of the system, i.e. under what conditions 
the system will fail, could be answered using qualitative 
simulations. It is difficult to answer these types of ques-
tions that explore the transient behavior of the system us-
ing a  regular discrete event simulation. The reason is that 
the transient behaviors that a regular discrete event simula-
tion is able to detect are behaviors that the simulation ran-
domly generates. Also, the qualitative approach is very 
useful when the level of knowledge about the system is 
imprecise. In fact, qualitative simulation is designed to rep-
resent whatever level of knowledge is available. This could 
be a solution to solving complex problems in many indus-
tries that have been struggling with data overload and data 
abstraction. 
 Although there has been an increasing attention in the 
field of qualitative simulation, a literature search for the 
research developed is found mainly in the area of continu-
ous time models. The number of research work in the area 
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of qualitative discrete event simulation is barely a handful. 
The future for qualitative discrete event simulation looks 
bright and promising as it combines all the abilities of a 
regular discrete event simulation and yet provides more 
flexibility in specifying input parameters with less data re-
quirements, less assumptions and a more “complete” solu-
tion.  

The purposes of this paper are twofold. First, this pa-
per reviews the literature on the development and imple-
mentation of qualitative discrete event simulation. Second, 
this paper offers research propositions to motivate future 
research, based on the material presented. This paper is not 
intended to provide detailed implementation of the qualita-
tive discrete event simulation. The authors focus on pro-
viding a general idea and understanding of the concepts in 
this area. This paper is organized in the following manner. 
The next section presents a brief introduction of qualitative 
simulation. The general concepts of qualitative discrete 
event simulation is presented in Section 3. Section 4 pre-
sents the algorithms that have been developed and imple-
mented. Section 5 addresses the use of thread scoring tech-
niques to separate the more-likely-to-happen sequences of 
events from the less-likely-to-happen sequences. Future 
research proposition is presented in the final section.  

2 QUALITATIVE SIMULATION 

Qualitative simulation is a reasoning technique that derives 
useful inferences from the modeling of a system when 
there is a lack of good quantitative information about the 
system under consideration. It is motivated by the desire to 
reason about the objects, processes or events in order to 
uncover all possible behaviors that may exist in the system. 
One major distinction between qualitative simulation and 
quantitative simulation is that a quantitative model is a re-
sult from a particular experiment while the output from a 
qualitative model is in response to all possible experiments 
(Cellier 1991). When a qualitative simulation determines 
the next possible state, it can easily determine that there are 
several next possible states because of the imprecise nature 
of the data. A qualitative simulation will then execute each 
of these possible next states which results in a series of en-
visionments of all possible event sequences.  
 Another major distinction is in the representation of 
state variables. A model is quantitative if the state variables 
are real-valued, otherwise the model is qualitative (Cellier 
1991). This is an important distinction that exhibits in dif-
ferent types of simulation models. Simulation models are 
largely classified into two major types, namely the con-
tinuous simulation and discrete event simulation.  
 For the case of continuous simulation that often deals 
with the modeling of a physical system over time by a rep-
resentation in which the state variables change continu-
ously with respect to time, a regular continuous simulation 
model often uses differential equations to describe the rate 
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of change or the interaction of state variables with time. 
The abstraction is based on ordinary differential equations, 
which are numerical in character. Kuipers (2001) described 
a continuous time qualitative simulation using qualitative 
differential equation model as an abstraction of an ordinary 
differential equation, consisting of a set of real-valued 
variables with functional, algebraic and differential con-
straints among them. Qualitative differential equation con-
sists of variables which are described in terms of their or-
dinal relations with a finite set of symbolic landmark 
values. The relationships could be a first-order relationship 
as simple as: As a increases, b increases. The values a and 
b could be described as increasing or decreasing over a 
particular ranges. 
 As for discrete event simulation, the concept of quali-
tative simulation was further explored by Ingalls (1999) 
who then developed a simulation methodology that com-
bines discrete event simulation with qualitative simulation 
using temporal interval as simulation time specification. 
Temporal interval allows the user to define time as an in-
terval in the simulation.  This means that the current state 
of the simulation can occur at any time during the interval 
defined by t = [t-,t+]. Temporal intervals are represented 
by the modeling of their endpoints, assuming for any inter-
val t, the lesser endpoint is denoted by t- and the greater by 
t+. The authors would like to acknowledge that when we 
mention Qualitative Discrete Event Simulation (QDES) in 
this paper, QDES refers to the qualitative approach taken 
by Ingalls (1999). 
 Another qualitative approach to discrete event simula-
tion was taken by Ziegler and Chi (1992), known as the 
Symbolic Discrete Event System which uses the linear 
polynomial representation. This approach allows the mod-
elers to express times symbolically for both situations 
when timing of events is unknown and when timing is 
known, but can vary. The time advance values could be 
expressed as linear polynomials such as 1,2, s, t, 2s, t+s, 
2t-s+9, etc, which must evaluate to nonnegative real num-
bers (Ziegler and Chi 1992).  

3 QUALITATIVE DISCRETE-EVENT 
SIMULATION (QDES) 

Qualitative discrete event simulation (QDES) is an event-
scheduling approach to simulation modeling developed by 
Ingalls (1999). It extends the concept of qualitative simula-
tion to be applied particularly in discrete event systems. 
QDES applies the next event time advance approach as in a 
regular discrete-event simulation (RDES). At the start of a 
simulation model, the simulation clock is initialized to zero 
and the time of occurrence of the most imminent future 
event is determined and inserted into a future event calen-
dar. The simulation clock is advanced from the occurrence 
of one event to another at which the state of the system and 
the times of the occurrence of future events are updated. 
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This process advances the simulation clock until all the 
events in the future event calendar have been executed or 
canceled, or when a certain stopping criterion is met.  

One distinctive characteristic of QDES is that it allows 
the modelers to specify elements qualitatively. These ele-
ments include the times of occurrence of future events, the 
simulation time clock and state variables.  

The times of occurrence of future events are repre-
sented as time points in RDES. Unlike in RDES, QDES 
assume imprecise specification of event occurrences. The 
uncertainty of the event time is represented in a closed time 
interval in R, which is also known as temporal interval. 
There are two types of temporal intervals, namely the con-
stant interval and the uncertain interval. A constant interval 
is an interval whose values remain the same throughout the 
entire simulation, while an uncertain interval is an interval 
that changes values every time the interval is evaluated. In 
using constant intervals, it is assumed that the actual value 
of the variables is a constant that lies somewhere within an 
interval. An uncertain interval is equivalent to the model-
ing of sampling from an unknown probability distribution 
that is bounded by an interval. 

As a result of the time interval representation in 
QDES, the future event calendar is also represented as time 
intervals. Future event calendar in QDES is also sorted ac-
cording to event times but it is not a strongly ordered list. 
Events are sorted according to interval mathematics out-
lined in Allen (1983). It is likely that there would be ties on 
the future event calendar because of the uncertain order of 
events. If there is a tie, QDES would not assume a tie 
breaking strategy as in the case for RDES. Instead, QDES 
would create threads that make up all of the possible order-
ing of ties, which differentiates between QDES and RDES. 
The differences are that RDES’s future event calendar is a 
strongly ordered list according to the event times and 
RDES uses several tie-breaking mechanisms to determine 
the order of simultaneous events, sometimes ad hoc and 
specific to the simulation protocols being used. The future 
event calendar in QDES collects all the event notices 
whose execution order is uncertain and group them in a set, 
called the nondeterministically ordered set (NOS). 

The capability of generating all possible scenarios is 
achieved with the thread generation algorithm. There are 
currently two algorithms developed so far, namely the 
Depth-First algorithm and the Breadth-First algorithm. 
These two algorithms are discussed in the next section in 
more detail. The execution of QDES algorithms resembles 
the RDES to some extents. The algorithms contain the ba-
sic steps of RDES such as initializing the simulation clock, 
advancing simulation clock from its current value to an-
other, inserting events into the future event calendar, de-
termining the next event to be executed and so on. When 
QDES is executed, the next possible state is determined. 
Due to the lack of precise data about the real-world, there 
could be several next possible states or a tie. QDES algo-
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rithm will have some major additional steps to ensure that 
each of these states will be executed in turns and result in a 
set of threads that will include all of the possible ordering 
of event sequences.  An example of a new thread being 
generated is when the execution times (expressed in tem-
poral intervals) for two or more events overlap.  

The distinctive characteristic of QDES of generating 
all possible ordering of event sequences is known as cov-
erage (Ingalls, Morrice et al. 2000). The coverage property 
ensures that all outcomes of QDES are characterized and 
no outcome will be missed out.  In RDES, the simulation 
outcome is based on a sampling approach. The coverage 
property in QDES is very useful for planning and schedul-
ing problems. Schedules would not have to be rerun every 
time if something did not happen according to plan. The 
output of QDES would be able to characterize the changes 
of events and give information on the next scheduling posi-
tion, as long as the input interval is respected. Another ad-
vantage of coverage property is in debugging simulation 
models. QDES would characterize all possible scenarios, 
including anything that is characterized in a RDES model 
and sequences that have low probability of execution. This 
would give the modeler absolute confidence in the validity 
of the simulation model (Ingalls, Morrice et al. 2000). 
 Allen (1983) mentioned that time-point representation 
does not allow any uncertainty of information and often the 
exact relationship between two time-points is not known. 
Thus, the notion of time point is not decomposable and is 
not useful in a reasoning system. Temporal interval repre-
sentation is sometimes more useful in certain situations. 
An example to illustrate the use of temporal interval is 
shown in the modeling of the start time of a crisis. Let’s 
say that there is an alarm system that triggers to inform the 
appropriate authority when there is a crisis. In this case, the 
start time of the crisis is not known even if the start time of 
the triggering alarm could be determined accurately. An 
upper bound could be placed on the start time of the crisis 
if we assume that the crisis happen at a time earlier than 
the alarm time. In this case, it is only possible to specify 
the start time of the associated crisis as a time interval. 
 Temporal interval specification extends the regular 
time base from real numbers to interval representation. 
Another form of time specification is extended to linear 
polynomials over the real numbers, also known as the 
Symbolic Discrete Event System specification (Ziegler and 
Chi 1992). This specification also serves the purpose of 
representing uncertainty in event execution times. The lin-
ear polynomial representation is used to allow manipula-
tion of expressions for time with symbols representing un-
specified event times. For example, let p = waiting time at 
register A, and q = process time at register A, then “p+q” is 
a valid expression according to symbolic discrete event 
system specification. This expression could be used to rep-
resent the time a customer spends at register A where p and 
q are symbols that are used to represent unspecified event 
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times. When p and q are assigned numerical values, the 
expression evaluates to a real number. 

4 QDES ALGORITHM 

QDES is designed and developed using simulation graph 
model. The simulation graph framework was first intro-
duced by (Yucesan and Schruben 1992); (Schruben and 
Yucesan 1993) and then extended by (Ingalls 1999). Let 
simulation graph, G (V(G),ES(G),EC(G),ΨG) be a directed 
graph where V(G) is the set of vertices of G, ES(G) is the 
set of scheduling edges, EC(G) is the set of canceling edges 
and ΨG is an incidence function that associates with each 
edge of G. The Simulation Graph Model (SGM) is then de-
fined as S = (F,C,X,T,Γ,G) where 

 
  F = {fv: v є V(G)}, the set of state transitions functions as-
sociated with vertex v 
  C = {Ce: e є E(G) }, the set of scheduling edge conditions 
  X = {Xe: e є E(G) }, the set of execution edge conditions 
  T = {te :e є ES (G)}, the set of edge delay times as time 
intervals, and 
  Γ = {γe e є ES (G)}, the set of event execution priorities 
  
 The simulation graph G specifies the relationships that 
exist between the elements of the set of entities in a simu-
lation model. The basic construct of the event graph with 
edge execution condition is given in Figure 1. The nodes 
labeled A and B represent events and the edge specifies that 
there is a relationship between the two events. The con-
struct is interpreted as follows: If condition (i) is true at the 
instant event A occurs, then event B will be scheduled to 
occur t time units later. Event B will be executed t time 
units later with the state variables in array n set equal to the 
values in array k if condition (j) is true t time units later. 
 

 
 

Figure 1: Event graph with execution condition 

4.1 Depth-First Algorithm 

A depth-first algorithm was created and implemented by 
Ingalls (1999) that would completely finish generating one 
whole thread before moving on to another thread. Any ad-
ditional threads will be stored on a stack waiting to be exe-
cuted at a later time. When there is a tie, two threads or 
more will be generated. The state of the simulation after 
each thread explosion is saved in a stack called the save-
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state stack. Each save-state consists of a global event cal-
endar and state variable information so that all possible 
states in the simulation could be executed recursively. The 
algorithm would assume first thread, put the rest of the 
threads on stack and continue. When the generation of this 
thread is complete, the algorithm restores the system from 
the save-state stack and continues the simulation for the 
second thread. A save-state counter is set up to count the 
number of saved states and to iterate through the save-state 
stack. Recall that all event notices whose execution order is 
uncertain are grouped in a set, called the nondeterministi-
cally ordered set (NOS).  
 In depth-first algorithm, a NOS counter is used to iter-
ate through the NOS. The shortened version of this algo-
rithm that shows the basic steps is illustrated in Figure 2. 

 

 
Figure 2: Depth-First Algorithm 

 
 The depth-first algorithm is very useful if a complete 
analysis of all possible scenarios is needed in decision-
making. Since all possible schedules are characterized and 
as long as input interval is not violated, users could make 
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fast strategic decisions based on the previously run output, 
and thus saving time and effort.   

4.2 Breadth-First Algorithm  

A breadth-first algorithm was developed and implemented 
by Agrawal (2003). In a breadth-first algorithm, all the ac-
tive threads are evaluated simultaneously. The explosion of 
threads in this algorithm could be viewed as a tree dia-
gram. The QDES simulation starts either with one parent 
node or a set of parent nodes. The simulation execution 
continues and spawns new threads from each of these par-
ents, one by one, until all possible child nodes from each of 
these parents are explored. Before advancing to the next 
level down the tree structure, the breadth-first algorithm 
ensures that all sibling nodes are executed. Agrawal (2003) 
proposed a queue structure in his implementation to store 
the breadth-first nodes, a set consists of the event notice 
that are to be executed next, together with information such 
as the state variable and global events calendar. This queue 
is denoted as breadth-first node queue. The shortened ver-
sion of the algorithm is shown in Figure 3. 

Breadth-first algorithm proceeds and gives system 
snapshots of all event sequences through time. It keeps 
track of possible system state that is available and how it 
leads to that system state. It would also be useful to elimi-
nate threads that are considered unimportant or unlikely to 
give good information. For example, elimination of thread 
could be added to the breadth-first algorithm if the number 
of thread explosion exceeds a certain limit .  

However, depth-first algorithm has a speed advantage 
over breadth-first algorithm. This is due to the way 
breadth-first algorithm is structured.  

5 SCORING TECHNIQUES 

Some of the threads that are generated by either of the 
above QDES algorithms may have a less likelihood to 
happen than other threads. As the complexity of the system 
increases, the number of threads generated using QDES 
will also increase. The thread generation could increase 
exponentially and causes the problem of extracting mean-
ingful information from the output of the model. Thus, 
some scoring techniques were introduced to approximately 
rank the threads according to their likelihood of event exe-
cution sequences. Thread scores could be used in breadth-
first algorithms to eliminate threads that have lower scores 
in relative to other threads and thereby reducing run time 
of the algorithm. Ingalls (1999) described three scoring 
techniques. 

The midpoint ranking calculates the midpoint of each 
interval and ranks them accordingly. The second method is 
the multiple midpoint method, which also uses the mid-
point of each interval. However, the resulting midpoint has 
taken into account the relative magnitude of all the mid-
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points and thus the event that is likely to execute first has a 
higher rank. 

 

 
Figure 3: Breadth-First Algorithm 

 
 Let En, n = 1, 2, …, N (N ≥ 2) denotes events with 
execution intervals [Ln ,Un] that overlap. Let Mn be the 
midpoint of interval [Ln,Un] for n = 1, 2, …, N. Let 
Rank(Mn) denotes the rank of Mn. The calculation of using 
multiple midpoint ranking is given as in the following 
equation: 
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 The uniform method assumes that each overlap inter-
val sections have equal chances of being executed next and 
each interval follows a uniform distribution. The score is 
given to each interval, determined according to the prob-
ability that a given event would be executed first. The uni-
form distribution is chosen because it is easily programmed 
into the simulation and it has a closed form density func-
tion. 
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6 FUTURE RESEARCH 

QDES creates a brand new arena in the field of discrete 
event simulation. In the area of the QDES algorithm, 
breadth-first and depth-first algorithms had been developed 
and are outlined in this paper. Both of these algorithms are 
tested with single-server queuing model. Depth-first algo-
rithm was implemented in a PERT scheduling environ-
ment. It would be an interesting research to look into the 
scaling and expansion of this simulation methodology to 
solve real life industrial size problems. 
 With the increasing complexity in real-life problems, 
research could be embark on running the QDES algorithms 
on parallel processors, which includes research in the areas 
of problem representation, database storage of simulation 
output and scheduling criteria to yield reduction in run 
time.  

Another interesting research is to look into the possi-
bility of reasoning with probability distribution to produce 
an exact output statistics from QDES. The advance in this 
area would allow modelers to exactly represent each thread 
with its probability occurring, instead of sampling ap-
proach in the RDES models. If imposing statistical distri-
bution to describe the threads is possible, modelers could 
also identify low probability threads that are not signifi-
cant, which could contribute to the area of thread scoring. 
 There are three scoring techniques developed so far. 
All of these techniques have not been tested rigorously. It 
is possible to have more research work done in expanding 
thread scoring techniques.  
 The research on qualitative discrete event simulation is 
developing. In contrast to its quantitative counterpart, 
QDES is still in infancy. 
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