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ABSTRACT

Sequential discrete event simulation is widely employed to
study the behavior of many systems. Events are typically
managed in a central event list which is implemented as a
priority queue ordered by event timestamps. Most research
to improve sequential simulation performance has focused
on improving the priority queue implementations. Recent
work has demonstrated that asynchronous conservative par-
allel discrete event simulation systems can achieve better
sequential performance under some conditions, but worse
performance under other conditions. This paper introduces
a new sequential discrete event simulation algorithm that
can exhibit some of the same performance advantages of
asynchronous conservative parallel discrete event simulation
algorithms and has complexity no more than that of central
event list algorithms in the worst case.

1 INTRODUCTION

Discrete event simulation (DES) is used to test and analyze
the behavior of many systems. Events are used to model
changes in the system that occur at discrete points in time.
Each event has a timestamp to indicate the time that the
state change should occur.

Most sequential DES systems employ a single central
event list (CEL) to manage future events. The CEL is im-
plemented as a priority queue ordered by event timestamps.
In many cases the simulator performance depends on on
the efficiency of insert and remove operations on the CEL.
Many different priority queue algorithms and implementa-
tion techniques have been explored in the literature (Jones
1986, McCormack and Sargent 1981, Vaucher and Duval
1975).

Parallel discrete event simulation (PDES) systems have
been developed that can decrease the run length of individual
simulation runs. However, they do this at the expense of
extra complexity and decreased efficiency. It is often the
case that many thousands of individual simulation runs are
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required to complete a study. In this case the efficiency of
use of the available resources has a far greater impact on
the time taken to complete the study than the speed of any
individual run.

Recent work (Curry et al. 2005) has demonstrated
that asynchronous conservative discrete event simulation
algorithms based on the Chandy-Misra-Bryant (CMB) al-
gorithm (Bryant 1977, Chandy and Misra 1979) can show
significant performance improvement sequentially over other
CEL algorithms. This is due to increased cache locality
and decreased priority queue maintenance under certain
conditions. However, there are also many conditions under
which CMB algorithms exhibit much worse performance
than CEL algorithms.

This paper introduces a new sequential discrete event
simulation algorithm called the CHAnnel based SEquen-
tial (CHASE) algorithm that can exhibit the performance
advantages of the CMB algorithm while having the same
complexity as CEL algorithms in the worst case. A theo-
retical analysis of the CHASE algorithm is provided along
with empirical results that confirm the theoretical analysis.

The rest of the paper is organized as follows. Sec-
tion 2 provides an overview of CEL and CMB algorithms.
Section 3 introduces the CHASE algorithm, provides an
informal proof of correctness and also contains a theoreti-
cal cost analysis of CHASE. The experimental methodology
used to compare performance of the CEL, CMB and CHASE
algorithms is present in Section 4, with the experimental
results given in Section 5. Conclusions and future work are
discussed in Section 6.

2 BACKGROUND

This section provides an overview and cost analysis of CEL
and CMB algorithms. Variables used in the cost analysis
are defined in Table 1.
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Table 1: Variables Used in Cost Analysis
Term Definition

P event population (total # events)
N number of LPs
D event density = P/N (avg # events at each LP)
C avg # of channels per LP
L min lookahead of all channels
E avg # events per LP execution
μ avg lifetime of an event

2.1 CEL Algorithms

Most sequential discrete event simulation systems use a
single central event list (CEL) to manage all future events.
Events are removed from the CEL and executed in non-
decreasing timestamp order. During the execution of an
event, new events could be created that are inserted into
the CEL. Many studies have been performed that compare
the performance of CEL algorithms using different prior-
ity queue implementations (Jones 1986, McCormack and
Sargent 1981, Vaucher and Duval 1975).

Examples of priority queue implementations include
the linked list, heap, splay tree (Sleator and Tarjan 1985)
and the calendar queue (Brown 1988). Per event costs of
these CEL algorithms can be found in Table 2. The per
event cost is the cost of inserting and removing an event
from the priority queue. P is the event population (i.e.,
number of events in the priority queue).

Table 2: Per Event Cost of CEL Algorithms
linked list heap splay tree calendar

O(P ) O(log P) O(log P) O(1)

2.2 CMB Algorithm

Most asynchronous conservative PDES systems em-
ploy algorithms derived from the Chandy-Misra-Bryant
(CMB) (Bryant 1977, Chandy and Misra 1979) algorithm.
In conservative PDES algorithms, causality errors, where
events that affect the same state variable are executed out of
order, are strictly avoided. This is in contrast to optimistic
PDES algorithms that can execute related events out of or-
der, but employ mechanisms to recover when this situation
is detected (Jefferson 1985).

The real system is viewed as a set of physical pro-
cesses that interact only by exchanging messages. Each
physical process is mapped to a logical process (LP) in
the simulation system and messages are mapped to events.
Unidirectional channels are set up between any pair of LPs
that could communicate with each other. Associated with
each channel is a clock that represents the lower bound
on the timestamp of future events to be received from the
channel. A minimum lookahead value is also associated
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with each channel representing the minimum lifetime of any
event that can be sent on the channel. The lifetime of an
event is defined to be the difference between the timestamp
assigned to the event and the timestamp of the event whose
execution caused this event to be generated.

Events must be sent on a channel in nondecreasing
timestamp order and received in the same order. This
guarantees that the timestamp of the last event received
from the channel is a lower bound on the timestamp of any
future events that will be received. As long as an LP has
an event on each input channel, it is safe to execute the
event with the smallest timestamp. To avoid deadlock in
the absence of events, LPs send NULL messages on output
channels to update channel clocks. Note that in sequential
and shared memory parallel computers it is not necessary to
explicitly send NULL messages. The channel clock variable
can simply be updated by the sender LP.

The CMB algorithm has costs associated with scanning
channels to determine the time up to which it is safe to
execute events and to update channel clocks, costs associated
with sorting the LP scheduling queue and costs associated
with sorting an LP’s local event priority queue. Assuming
that the queues are implemented as heaps, that events are
uniformly distributed among LPs and that P , N , D and C

are constant, the per event cost for the sequential execution
of the CMB algorithm as derived in (Curry et al. 2005) is

Per Event Cost = O

(
C + log N

E
+ log D

)
.

When E > 1 the LP scheduling queue is accessed
less frequently, reducing sorting costs in comparison to the
CEL algorithms. Also, better cache behavior is expected
as the LP state remains in cache for the execution of E

events. When E < 1 the LP scheduling queue is accessed
more than once per event on average, giving rise to worse
cache performance and greater sorting costs in comparison
to CEL algorithms. High connectivity can also lead to poor
performance for the CMB algorithm.

It was also shown in (Curry et al. 2005) that the
expected minimum time advance per LP execution session
will be L on average giving an expected minimum value
of Emin = LD/μ events per LP execution. The per event
cost of a CMB algorithm can now be expressed as

Per Event Cost = O

(
μ(C + log N)

LD
+ log D

)
.

The above cost expression is influenced by the number
of LPs, the event density, the connectivity, the minimum
lookahead and the average lifetime of an event. Table 3
summarizes the expected behavior when modifying a given
parameter and keeping the other parameters constant. Em-
pirical results in (Curry et al. 2005) confirmed the expected
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behavior of CMB. Excellent performance has been achieved
for high event density and high lookahead with poor per-
formance achieved for low event density, low lookahead or
high connectivity.

Table 3: Expected Behavior of CMB when Modifying
Model Parameters

N D C L μ

O(log N) O( 1
D

+ log D) O(C) O( 1
L
) O(μ)

3 CHASE

The CHAnnel based SEquential (CHASE) algorithm aims at
taking advantage of the cache benefits of the CMB algorithm
while still achieving the same order of complexity of CEL
algorithms in the worst case. For example, compared to a
heap based CEL algorithm, CHASE must have a per event
cost no greater than O(log(P )). This can be achieved by
avoiding problems associated with low lookahead cycles to
ensure that there is at least one event per LP execution and
by eliminating channel scanning costs.

Approaches that address low lookahead cycles for CMB
in a parallel environment such as Carrier NULL Mes-
sages (Cai and Turner 1990) and cooperative accelera-
tion (Blanchard, Lake, and Turner 1994) pass extra in-
formation between LPs in an attempt to advance to the
next event more quickly. CHASE employs a much simpler
mechanism since the processor has knowledge of all events
in a sequential environment.

This section proceeds by describing the CHASE algo-
rithm, giving an informal proof of correctness and then by
deriving the complexity of the algorithm.

3.1 Algorithm

Up until the simulation end time is reached, the simulation
proceeds by repeatedly removing the first LP in the LP
scheduling queue, executing the LP and inserting the LP
back into the scheduling queue if it has at least one event.
An LP that has no events in its local priority queue at the
end of an execution session will be inserted into the LP
scheduling queue when the next event is sent to the LP. The
LP scheduling queue is sorted by the lowest timestamped
event at each LP and consists of only those LPs that have
at least one event in its local priority queue. Therefore,
the clock of the LP scheduling queue is that of the lowest
timestamped event in the system. This allows the simulation
to directly advance to the lowest timestamped event in the
system after each LP execution.

Pseudocode for an LP execution session is shown in
Figure 1. The LP execution proceeds by executing events
in the LP’s local priority queue in timestamp order while at
least one of the following two conditions is met: 1) none of
the LP’s input channels are empty (i.e., contain no events)
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or 2) the timestamp of the next event to process is less than
that of the safetime (i.e., lower bound on the timestamp
of future events to be received by the LP) (lines 1-4). A
counter is maintained indicating the number of empty input
channels. When there are no empty input channels it is
guaranteed that no event will arrive with a timestamp less
than that of the next event to be processed. If there are one
or more empty input channels then it is still safe to process
the next event if its timestamp is less than or equal to the
safetime.

1. While no channels are empty or timestamp
of next event is less than safetime:

2. Set LP clock to timestamp of next event.
3. Process next event.
4. Sample channel for event if necessary.
5. Set the LP clock to timestamp of next event

or ∞ if no events.

Figure 1: Pseudocode for LP Execution Session

Rather then scanning each input channel to determine
the safetime, a simpler approach that eliminates channel
scanning costs is employed. The safetime is taken to be
the clock of the LP scheduling queue (which is the lowest
timestamped event at any other LP in the model) plus the
minimum lookahead of all input channels to the LP currently
being executed. If the LP scheduling queue is empty the
clock of the LP scheduling queue is taken to be infinity. No
event from any other LP will arrive with a timestamp less
than this time. Since it is possible for the clock of the LP
scheduling queue to change when events are sent to other
LPs, the safetime must be kept up to date.

Note that there might not be any input channels from
the first LP in the LP scheduling queue to the LP currently
being executed. Also, it could be possible that such an input
channel does exist, but with a lookahead that is greater than
the minimum lookahead of all input channels to the LP. As
such, this approach for determining safetime could result in
a more conservative estimate than that obtained using the
CMB algorithm. However, as the lowest timestamped event
at any other LP in the system is being used in the safetime
calculation, it is possible that the safetime estimate could
be far greater than that obtained using the CMB algorithm.

Before processing an event, the clock of the LP is set
to the timestamp of the event (line 2). After processing an
event (line 3), if the event came from a channel, the channel
is sampled for another event (line 4). Sampling involves
receiving the next event from the channel and inserting it in
the LP’s local priority queue, or if there is no event, marking
the channel not sampled and incrementing the counter of
empty input channels. Only one event from each channel
is kept in the local priority queue as is done for the CMB
based algorithm described in (Curry et al. 2005). This
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reduces sorting costs by keeping as many events in FIFO
queues as possible.

After all safe events have been processed the clock of
the LP is set to the timestamp of the next event in the LP’s
local priority queue or to infinity if there are no events in
the LP’s local priority queue (line 5). This is done so that
the LP scheduling queue is sorted according to the lowest
timestamped event at each LP. Note that it is still possible
for an LP to receive an event with a timestamp lower than
this clock value.

To ensure that the clock of the LP scheduling queue is
always accurate the process of sending events to channels
was changed from that used in the CMB algorithm. For
the CMB algorithm, when an event is sent to a channel it
is simply appended to the FIFO queue of events, and the
receiving LP will eventually remove it from the channel. For
CHASE, when an event is sent to the channel, if the channel
is sampled (i.e., not empty) it is appended to the end of the
FIFO queue. If the channel is not sampled (i.e., empty),
the channel is marked sampled, the counter of empty input
channels at the destination LP is decremented and the event
is directly inserted into the destination LP’s local priority
queue. The destination LP clock is updated to the time
of the lowest timestamped event in the LP’s local priority
queue. If the destination LP is not in the LP scheduling
queue it is inserted into the LP scheduling queue. If the
destination LP is already in the LP scheduling queue and
the value of the LP clock is lower than it was before the
event was inserted, a decrease key operation is performed
on this LP to keep the LP scheduling queue sorted.

3.2 Proof of Correctness

This section contains an informal proof of the CHASE
algorithm. To prove that CHASE is correct it must be shown
that a simulation will successfully terminate by processing all
events with a timestamp less than or equal to the simulation
end time without any causality errors occurring.

To prove that no causality errors will occur it suffices
to show that each LP obeys the local causality constraint as
defined in (Fujimoto 2000), i.e., each LP must process events
in nondecreasing timestamp order. During an LP execution
an LP processes events in nondecreasing timestamp order
while there are no empty channels. Since events are sent on
channels in nondecreasing timestamp order and received in
the same order, this guarantees that no event with a timestamp
less than that of the event being processed will be received
in the future. When one or more empty channels exist
only events with timestamps that are less than the safetime
(i.e., clock of the LP scheduling queue plus the minimum
lookahead of all input channels to the LP currently being
executed) may be processed. Since the clock of the LP
scheduling queue is that of the lowest timestamped event
at any other LP, no event can arrive with a timestamp less
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than the calculated safetime in the future. Therefore, the
local causality constraint is obeyed.

To prove that the simulation will terminate it suffices
to show that deadlock is avoided and that progress is made
each LP execution session. Deadlock is avoided as an LP
is always placed in the LP scheduling queue if it has an
event with a timestamp less than or equal to the simulation
end time (i.e., there is always an LP that can be executed
if the simulation end time has not been reached). An LP
is only inserted into the LP scheduling queue if it has at
least one event. Also, the LP scheduling queue is sorted by
the lowest timestamped event at each LP. Therefore, when
an LP executes, it contains the lowest timestamped event
in the system which is safe to process according to the
safetime calculation. This guarantees that at least one event
is processed each LP execution session. Therefore, progress
is made each LP execution session and the simulation end
time will eventually be reached (assuming that only a finite
number of events with a timestamp less than or equal to
the simulation end time are generated).

Since the local causality constraint is obeyed, deadlock
is avoided and progress is made each LP execution ses-
sion, the simulation will successfully terminate proving the
correctness of the CHASE algorithm.

3.3 Cost Analysis

As channel scanning has been eliminated the simulation
overhead per event (assuming that heaps are used for both
the LP scheduling queue and the LP’s local priority queue)
can be divided up into two parts as follows:

1. LP Scheduling Queue Cost: O(log N) if D >=
1, O(log P) if D < 1 - For the CHASE algorithm
an LP is removed from and inserted into the LP
scheduling queue once per LP execution session
as is the case for the CMB algorithm. This gives
a per event cost of O(log N/E) as per the CMB
algorithm. An event may also have an additional
LP scheduling queue sorting cost if the is event
sent on an empty channel and causes the desti-
nation LP to lower its clock. This is O(log N)

complexity. Therefore the per event LP schedul-
ing queue cost is O(log N/E) + O(log N) which
works out to be O(log N) in the worst case since
E >= 1 for CHASE. Sorting due to events sent
on empty channels may be infrequent and thus
CHASE could achieve the same best case perfor-
mance as CMB. For CMB there are always N LPs
in the LP scheduling queue. However, for CHASE
an LP is in the LP scheduling queue only if it has
an event. Therefore, if P < N , which is the case
for D < 1, then the cost is O(log P).
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2. Local Event Priority Queue Cost: O(log D) -
An event is inserted into and removed from an LP’s
local event priority queue once per event execution,
so the per event cost is O(log D). Like the CMB
algorithm, this reduces to O(log C) if C <= D

and no local events are generated (i.e., all events are
sent on channels to other LPs). In a system where
events are not uniformly distributed among LPs
then the worst case scenario is actually O(log P)

as it could be possible that all events are located
on the same LP.

Combining the two costs together for the case where
D >= 1 gives a per event cost of O(log N + log D) =
O(log(ND)) = O(log P). For D < 1, the local event
priority queue cost can be ignored also giving O(log P).
Therefore the per event cost of CHASE using heaps for
both the LP scheduling queue and an LP’s local priority
queue is:

Per Event Cost = O(log P)

This is the same per event cost as the heap CEL based
algorithm. Similar analysis could be performed for other
types of priority queues. Although CHASE has the same
complexity of CEL algorithms in the worst case, it still has
the potential to gain the advantages of the CMB algorithm
if E > 1 and sorting of the LP scheduling queue due to
events sent on empty channels is infrequent.

4 EXPERIMENTAL METHODOLOGY

This section describes the experimental methodology used to
evaluate the sequential performance of the CHASE algorithm
with respect to CEL and CMB algorithms. Included are
descriptions of the experimental environment, simulation
model and performance metrics.

4.1 Experimental Environment

The CEL, CMB and CHASE algorithms that are examined in
experiments are implemented as part of the same simulation
kernel and make use of the same model code. The CMB and
CHASE implementations use a heap for the LP scheduling
queue and a linked list for the local event queue at each
LP. A linked list is used for the local event queue as this
queue usually does not contain a large number of events
and linked lists perform well for small queue sizes.

Experiments were run on an IBM eServer BladeCenter
HS20 with 2 GB RAM and two 3.0 GHz Intel Xeon pro-
cessors. Each processor has a 12 KB micro-op instruction
trace cache, an 8 KB, 4-way associative first level (L1)
data cache with a 64 byte line size, and a 512KB, 8-way
associative second level (L2) cache with a 64 byte line size.
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The BladeCenter was running Red Hat Linux 9.0 with the
v2.4.20-24.9gpfs kernel. The GNU g++ V3.2.2 compiler
was used with the “-O2” optimization flag.

Cachegrind, which is part of Valgrind 2.2.0 and is
available at <http://valgrind.kde.org>, was used
to determine instruction counts and analyze cache behavior.
It was configured to simulate an L2 cache with the same
specifications as that for the computer that the experiments
were run on, as described above.

4.2 Simulation Model

A ring model, also used in Curry et al. (2005), was used for
the experiments. The ring model does not implement any
real system, but it allows the effects of model size, event
density per LP, connectivity and lookahead to be examined.
An example ring model can be seen in Figure 2. The model
is parameterized with N = 8 LPs, an average event density
of D = 4 events per LP, a connection radius R = 2, and a
minimum channel lookahead L = 1 simulation time unit.
Each LP is connected to R LPs ahead in the ring and R

LPs behind in the ring with channel lookahead L.

N0

N1

N2

N3

N4

N5

N6

N7

N = 8
D = 4
R = 2
L = 1

Figure 2: Example Ring Model

Before the simulation is started, the system is populated
with N ×D events with timestamps selected independently
from an exponential distribution with a mean of 1 simulation
time unit. The events are uniformly distributed among LPs
such that on average, each LP is populated with D events.
The initial events are considered to be local events (i.e.,
events generated locally at the same LP).

Upon processing a local event, an output channel is
selected randomly with uniform probability. A new external
event is generated with a timestamp equal to the timestamp
of the current event plus the minimum lookahead L assigned
to the selected output channel. Upon receiving an event
from a neighboring LP a local event is generated with a
timestamp equal to the timestamp of the current event plus
an increment drawn from an exponential distribution with a
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mean of 1 simulation time unit. The total event population
P in the system remains constant at P = N×D throughout
the simulation.

4.3 Performance Metrics

Four metrics are used to analyze the performance of the
algorithms, namely the instructions per event, cache misses
per event, events per LP execution and event rate. The first
three metrics are obtained while running the simulator with
Cachegrind, whereas the event rate metric is obtained while
running the simulator without Cachegrind.

Instructions per event is the total number of instructions
divided by the total number of events executed. Only
instructions after initialization are taken into account.

Cache misses per event is the total number of L2 data
cache misses divided by the total number of events executed.
Only cache misses after initialization are taken into account.
L1 cache misses are not examined as the cost of an L2 cache
miss is much larger.

Events per LP execution is the total number of events
divided by the total number of LP execution sessions. This
is easily calculated for the CMB algorithm. For the CEL
algorithms this is taken to be the average number of events
executed consecutively at the same LP.

Event rate is the total number of events divided by
the wallclock time (i.e., execution time) taken to run the
simulation. Only wallclock time after initialization is taken
into account. This metric is taken from runs where the
simulator is run without Cachegrind so that the performance
overhead of Cachegrind does not affect the results.

5 EXPERIMENTAL RESULTS

This section compares the performance of three different
CEL algorithms, the CMB algorithm and the CHASE al-
gorithm. The discussion of results in this section primarily
focus on the CHASE algorithm. For more details pertaining
to the behavior of the CEL and CMB algorithms see Curry
et al. (2005).

Each test was run twice with Cachegrind and once
without it. One of the Cachegrind runs used a simulation
end time of 100 simulation units and the other Cachegrind
run was terminated after initialization so that the effects
of initialization could be eliminated from the results. The
run without Cachegrind lasted for 60 seconds of wallclock
time, excluding initialization. The three runs were repeated
5 times using different random number seeds. The met-
rics were averaged over the 5 runs and corresponding 95%
confidence intervals calculated. The half-width of the con-
fidence interval was less than 5% of the sample mean for
all metrics in all cases.
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5.1 Event Density Results

The first set of experiments examine the effects of varying the
event density with number of LPs N = 8192, connection
radius R = 1 and minimum channel lookahead L = 1.
Figure 3(a) shows a plot of the instructions per event versus
the event density. The plot clearly shows the poor behavior
of CMB at low event density. The CHASE algorithm does
not exhibit this behavior at low event density but rather
exhibits the same behavior as the CEL algorithms as is
expected. At higher event densities the behavior of the
CHASE algorithm follows that of the CMB algorithm.

Figure 3(b) shows a plot of the L2 cache misses per
event versus the event density. At low event density the
CMB algorithm exhibits a very high cache miss rate due to
the higher number of instructions per event. With increasing
event density the cache miss rate for the CMB algorithm
decreases resulting in a much lower cache miss rate than
CEL algorithms for higher event densities. The CHASE
algorithm exhibits a similar cache miss rate to the CEL
algorithms at low event density and a similar cache miss
rate to the CMB algorithm at high event density.

A plot of the events per LP execution versus the event
density is shown in Figure 3(c). A single line is plotted for
all of the CEL algorithms as the events per LP execution
values are the same for all of these algorithms. The number
of events executed consecutively at the same LP is usually
one. This means that the next event in the central event list
most often occurs at a different LP. The LP might not be
in the cache so the cache miss rate increases. Due to the
nature of the ring model, the CEL algorithms achieve one
event per LP execution on average for all of the test sets
in this paper. It should be noted that there are cases where
CEL algorithms would achieve greater than one event per
LP execution which are not captured by this model.

The expected minimum number of events per LP ex-
ecution is also plotted for the CMB algorithm. This was
derived to be Emin = LD

μ
= 2LD

1+L
in Curry et al. (2005).

For the CHASE algorithm the same derivation applies ex-
cept that E >= 1. Therefore for the CHASE algorithm
Emin = max(1, 2LD

1+L
).

The expected maximum number of events per LP ex-
ecution is also plotted for the CMB algorithm. This was
derived to be Emax = 4LD

1+L
= 2Emin in Curry et al. (2005).

This maximum does not apply to the CHASE algorithm.
The Emin and Emax curves for the CMB algorithm are
also plotted on the events per LP execution graphs for the
remaining test sets in this paper.

The plot shows that the number of events per LP execu-
tion for the CHASE algorithm stays above one at low event
density. In contrast, the number of events per LP execution
for the CMB algorithm becomes significantly less than one
at lower event densities. At low event density the CMB
algorithm suffers the problem of executing many LPs before
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Figure 3: Plots of (a) Instructions Per Event, (b) Cache Misses Per Event, (c) Events Per LP Execution
and (d) Event Rate vs. the Event Density for N=8192, R=1 and L=1
executing an LP that contains an event. After each LP exe-
cution session, the CHASE algorithm jumps directly to the
LP containing the lowest timestamped event in the model.
The events per LP execution increases with event density
for the CMB algorithm and CHASE algorithm. At higher
event densities the number of events per LP execution for
both the CHASE and CMB algorithms are similar. This
explains why CHASE has a similar cache performance to
the CEL algorithms at low event density and to the CMB
algorithm at higher event densities.

Figure 3(d) shows a plot of the event rate versus the
event density. The performance of the CHASE algorithm is
neither the best nor the worst. It typically lies in between the
performance of the CEL algorithms and the CMB algorithm
and is most similar to the performance the algorithm that
performs the best for a particular event density range. At
low event density, the CEL algorithms perform best and
the CHASE algorithm achieves similar, but somewhat lower
performance due to extra sorting costs. At high event density,
the CMB algorithm performs best and the CHASE algorithm
achieves similar, but somewhat lower performance due to
a more conservative safetime estimate that results in fewer
events per LP execution and hence a higher cache miss rate.
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5.2 Lookahead Results

The second set of experiments examine the effects of vary-
ing the minimum channel lookahead on the CEL, CMB
and CHASE algorithms with number of LPs N = 8192,
event density D = 8 and connection radius R = 1. Fig-
ure 4(a) shows a plot of the instructions per event versus
the minimum channel lookahead. Nearly constant behavior
is observed for the CEL algorithms as expected. While
the instruction cost for CMB is somewhat less than that
for the CEL algorithms at high lookahead, it becomes sig-
nificantly greater at low lookahead. This is due to the
temporal separation of events being much greater than the
minimum lookahead resulting in low lookahead cycles. The
instruction cost for CHASE is similar to that for CMB at
high lookahead, increases somewhat as lookahead starts to
decrease, but approaches constant behavior like the CEL
algorithms rather than continually increasing like CMB.
This is due to the ability of CHASE to avoid low lookahead
cycles by immediately jumping to the timestamp of the next
event after an LP execution session.

Figure 4(b) shows a plot of the L2 cache misses per
event versus the minimum channel lookahead. Overall, the
cache miss rate for the CEL algorithms is close to constant.
The observed variation could be due to the distribution of
event timestamps being dependent on the lookahead since
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Figure 4: Plots of (a) Instructions Per Event, (b) Cache Misses Per Event, (c) Events Per LP Execution
and (d) Event Rate vs. the Lookahead for N=8192, D=8 and R=1
half of the events are generated with a lifetime equal to
the minimum lookahead. The cache miss rate for the CMB
based algorithm starts out very high (due to the state of many
LPs being accessed in low lookahead cycles) and decreases
as lookahead increases, eventually exhibiting much better
cache performance than the CEL algorithms. The cache
miss rate for CHASE is similar to the CEL algorithms at
low lookahead as low lookahead cycles are avoided. At
higher lookahead values, the cache performance of CHASE
follows that of the CMB algorithm.

A plot of the events per LP execution versus the min-
imum channel lookahead is shown in Figure 4(c). At low
lookahead, the CHASE algorithm is able to achieve at least
one event per LP execution while the CMB algorithm does
very poorly. As lookahead increases, the number of events
per LP execution for the CHASE algorithm increases and
eventually exhibits similar behavior to the CMB algorithm.

Figure 4(d) shows a plot of the event rate versus the
minimum channel lookahead. At low lookahead the CHASE
algorithm achieves near constant event rates as do the CEL
algorithms. As the lookahead increases, the event rate for the
CHASE algorithm begins to increase along with the event
rate for the CMB algorithm. Once again the performance
of the CHASE algorithm is neither the best or the worst,
but exhibits similar behavior to the algorithm that performs
best over a certain lookahead range.
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5.3 Connectivity Results

The third set of experiments examines the effects of varying
connectivity on the CEL, CMB and CHASE algorithms
with number of LPs N = 8192, event density D = 8 and
minimum channel lookahead L = 1. Figure 5(a) shows a
plot of the instructions per event versus the connection radius.
The instruction cost for the CMB algorithm increases with
increasing connection radius due to greater channel scanning
costs. The instruction cost for the CHASE algorithm remains
constant like the CEL algorithms. This is expected as the
CHASE algorithm does not have channel scanning costs.

Figure 5(b) shows a plot of the L2 cache misses per
event versus the connection radius. The CEL algorithms
do not need to access additional state as the connection
radius increases and therefore the cache miss rate remains
constant. The cache miss rate for the CMB algorithm
increases with increasing connectivity as a greater number
of channels must be scanned during each LP execution.
For the CHASE algorithm, the cache miss rate starts low,
increases and eventually levels off at a cache miss rate close
to that of the CEL algorithms as the connectivity increases.
The cache miss rate starts out low for the CHASE algorithm
as at lower connectivity multiple events may be sent to or
received from the same channels, thus accessing the same
channel state more than once in a given LP execution session.
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Figure 5: Plots of (a) Instructions Per Event, (b) Cache Misses Per Event, (c) Events Per LP Execution
and (d) Event Rate vs. the Connection Radius for N=8192, D=8 and L=1
As the connectivity increases there are a greater number
of different channels that events are sent to and received
from, increasing the cache miss rate. The cache miss rate
eventually levels off, rather then continually increasing as
for the CMB algorithm, as the state for only those channels
on which events are sent to or received from need to be
accessed (i.e., the same number of channels are accessed
each LP execution session on average regardless of the
connection radius). For the CMB algorithm the state of
each channel must be accessed each LP execution session.

A plot of the events per LP execution versus the con-
nection radius is shown in Figure 5(c). The events per
LP execution for the CMB algorithm starts out near the
expected maximum value but approaches the expected min-
imum value as the connection radius increases. As the
connection radius increases, an LP has more neighbors so
it is unlikely that all neighbors are L simulation time units
ahead at the start of each LP execution session. It is more
likely that there will be one or more neighbors that are close
in time allowing the LP to advance only L simulation time
units instead of 2L simulation time units. The events per LP
execution for the CHASE algorithm is constant and close
to the minimum expected value. At higher connectivity
CHASE actually achieves a slightly higher value for events
per LP execution than the CMB algorithm. This is likely
due to a greater safetime estimate that can be achieved by
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taking into account the lowest timestamped event at another
LP, rather than by scanning channels.

Figure 5(d) shows a plot of the event rate versus the con-
nection radius. The event rate for the CMB algorithm starts
out high due to good cache performance and decreases with
increasing connection radius due to more instructions and
cache misses. Eventually, it exhibits the worst performance
of all of the algorithms. The CHASE algorithm starts out
with a higher event rate than the CEL algorithms, due to
better cache performance initially, but eventually exhibits
similar performance levels as the CEL algorithms due to a
constant number of instructions per event and a cache miss
rate that approaches that of the CEL algorithms. Since the
number of instructions per event is constant and the cache
miss rate levels off, one would expect that the event rate
for the CHASE algorithm should level off. However it
still tends to decrease somewhat with increasing connection
radius. This performance degradation is observed for the
calendar queue CEL algorithm and also for the heap and
splay tree CEL algorithms to a lesser extent. Further ex-
ploration is needed to determine the cause of this behavior.
Once again, the performance of the CHASE algorithm is
neither the best nor the worst.
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6 CONCLUSIONS AND FUTURE WORK

This paper explored the range of performance that can be
achieved by a the new CHASE sequential discrete event
simulation algorithm in comparison to the performance of
several CEL algorithms and the sequential performance of
the CMB algorithm. In cases where the CMB algorithm
exhibits better performance than CEL algorithms, such as
high event density and high lookahead, empirical results
demonstrated that the CHASE algorithm can also exhibit
better performance than CEL algorithms. Empirical results
also confirmed a theoretical analysis that the CHASE algo-
rithm has the same complexity as CEL algorithms in the
worst case. Thus the CHASE algorithm avoids the perfor-
mance pitfalls of the CMB algorithm when event density
is low, lookahead is low or connectivity is high.

Among the different algorithms tested, CHASE never
achieved the best performance or the worst performance.
However it did follow the behavior of the algorithm with the
best performance over a given model parameter range. This
suggests that the CHASE algorithm may serve as a better
general purpose algorithm. If the model characteristics such
as event density and lookahead are well known then it would
be more appropriate to choose an algorithm that performs
best for the model characteristics in question. However
if the model characteristics are unknown, or if the model
covers a wide range of characteristics then it may be more
appropriate to employ the CHASE algorithm.

Studies involving different models, parameters and
event distributions would be useful. Particularly, it would
be interesting to explore if the CHASE algorithm exhibits
the best performance for models that have a wide range of
event densities or lookahead values.
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