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ABSTRACT

Software protection technology seeks to prevent unautho-
rized observation or use of applications. Cryptography can
be used to provide such protection, but imposes a poten-
tially significant additional computation load. This paper
examines the performance impact of two software protection
techniques. We develop an analytic model and validate it
using a detailed discrete-event simulator applied to memory
reference traces of well-known benchmark programs. We
find that even though the added workload may be large,
that impact is often dominated by inherent costs of disk
activity.

1 INTRODUCTION

The field of computer security has largely focused on net-
works, and controlling access to systems. There is burgeon-
ing interest through in securing applications. The concern
is that application executables reflect a significant amount of
intellectual content (e.g. the algorithms they execute) that
may be sensitive. Consequently, in addition to protecting
access we would like to protect the application itself against
unauthorized observation, analysis, or execution.

There is an ever-present tension between degree of
protection and ease of use and implementation. Many
commercial programs require a serial code in order to install
the program, yet make no attempt to check that the user does
not install the program on more machines than the license
permits, or prevent a knowledgeable user from creating an
unauthorized copy elsewhere by replicating the right set of
files. These programs are easy to use, but have easy to
defeat defenses. A stronger degree of protection is offered
by combining some machine specific information with a
key, in a way that is protected from an adversary. Certainly
at installation time (and with more work, at run-time) the
system may enforce authorization constraints. However,
this degree of protection requires support mechanisms to
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protect the acquisition of machine ID and combination of
that ID with key information.

A variety of techniques have been proposed and are
being investigated under the auspices of the Software Pro-
tection Initiative (Clark 2003). Broadly speaking, SPI aims
to develop technologies to combat software piracy, to insure
that code has not been altered in an unauthorized way (e.g.
to insert monitors or Trojan horses), and to ensure that when
an application executes it does so only by an authorized
user. Some of the goals are short-term, aimed at protecting
existing applications without modification. Longer term
goals allow protection technologies to become part of the
software development process.

This paper asks what the impact on performance might
be by adopting certain approaches that support SPI objec-
tives. One protection approach hardens the virtual memory
system, ensuring that no part of the program is ever exposed
in plaintext on disk, even while executing. A more severe
protection approach hardens the physical memory system,
ensuring that no part of the program is ever exposed in
plaintext in main memory. As one would expect, there
is a protection/performance tradeoff to be assessed. Our
approach is to develop a model focused on execution time.
We validate the model using simulation. The simulator
takes as input traces of references to memory observed in
SPEC 2000 (SPEC 2000) benchmark programs. The sim-
ulator introduces delays as a function of hits and misses in
the cache, hits and misses in the virtual memory system,
and disk delays. The model with protection introduces the
additional delays. We examine the impact on the execution
time of a single program, and the increase in native com-
putational effort. We find that a program running under
the hardened virtual memory system suffers low relative
impact on execution time almost regardless of its locality of
reference characteristics, simply because the delay due to
paging is high relative to execution costs. However, the rel-
ative amount of extra work done to provide the protection is
sensitive to locality of reference. Turning to the techniques
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for hardening physical memory we see a much increased
impact on execution time and computational work devoted
to protection. However, we observe that these impacts are
ameliorated, in part, when multiple such protected programs
are executed concurrently in a multi-tasking environment.

2 PROTECTION OF BINARIES

The area of SPI concern that is of interest to us is the
protection of software binaries. Specific objectives include
detecting unauthorized modifications, detecting unautho-
rized reverse engineering (e.g. through unauthorized use
of tools that analyze binaries, such as disassemblers), de-
tecting when the operating environment for the application
is not what is expected, and protecting memory and the
file systems. Some of these objectives are approached by
obfuscating binary executables in such a way that even if
the binary is obtained by a hostile agent, analysis of that
binary will not reveal sensitive application information, at
least not without an enormous amount of effort.

The literature on obfuscation is large, some recent
examples include (Naumovich and Memon 2003),
(Collberg and Thomborson 2002),
(Stytz and Whittaker 2003) and their references. The basic
idea to make changes in a textual form (e.g. source or
assembly) of a program that hide the author’s intent, but
lead to a functionally equivalent program. Several different
aspects of a program might be so obscured. The object
code generated by a compiler contains numerous strings
used to label and name locations and variables. One means
of obscuring meaning is to substitute nonsense strings for
meaningful ones, such as is done in the Shroud system
for C programs (Jaeschke 1990). One can also rearrange
the location of data, and the code used to access it. For
example one could transform the sequential scan of an
array into a permuted access by reordering the way the
array is laid out, and inserting code that generates the
correct sequence of array indices in place of the sequential
scan. The control logic of a program can be changed,
e.g., by identifying statements that can be executed out
of the expressed order, and changing the order. One can
also obfuscate code by removing portions of it altogether,
to be replaced by remote procedure calls to a server that
provides the necessary functionality.

One of the attractive features of obfuscation is that
it is self-contained: the operating system does not need
to be modified, there is no requirement for cryptographic
key management. From an information theoretic point-
of-view obfuscation is a weaker form of protection than
strong encryption. It also requires obfuscation tools that
are specific to the language (e.g. C++ or Java). Knowledge
of the techniques used to obfuscate a program can be used
to try and de-obfuscate it.
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Key management is an issue when binaries are en-
crypted. Different contexts and security requirements call
for different approaches. One context requires that the host
machine be oblivious to the fact that the binary is encrypted,
and is being decrypted. This means that the binary must con-
tain a plaintext decryption engine that controls decryption
and execution of the coded binary.

Interestingly, some of the work in binary encryption
comes from the hacker community. One of the motivations
is to find ways of encrypting code, decrypt it as it executes on
a hacked machine, and leave behind as little trace as possible.
Techniques such as that described in (grugq and scut 2001)
and (Mehta and Clowes 2003) embed a plaintext decryptor
in the program (but use techniques of code obfuscation to
mask its operation), modify the program entry point to be
this decryptor, and then encrypt portions of the executable.
Once inserted on a machine and run the decryptor executes
once to decrypt the entire program in memory, and runs it.
This leaves the encrypted version on disk, and the decrypted
version in main memory (to be released when the program
terminates). Whatever key is needed to decrypt has to be
hidden, accessed, or reconstructed by the decryptor.

Other sophisticated techniques for binary protection are
described in (Griffiths 2005). One can minimize the expo-
sure of decrypted executables by marking the permissions
of each page in such a way as to cause an exception to
be thrown whenever a first access to the page is made. At
startup the program registers a signal handler with the oper-
ating system to be executed when such an exception occurs.
The signal handler can decrypt the page just touched, and
re-encrypt any pages it likes that are in the memory in
plaintext form. Such a technique can reduce the number of
plaintext pages in memory to just 1 (albeit with a potentially
high overhead). The paper goes on to describe a technique
called “running line" that decodes a program one instruction
at a time. The intent of such techniques is to defeat analysis
by debuggers.

The context is a little different when the protected
program is intentionally run on the host. Indeed, the program
may be written to run only on that host, or only on hosts that
provide it with some functionality not evident in the binary.
For example, hardware support for security is appearing,
and it will soon be commonplace for CPUs to have protected
areas where secret keys may be stored, and/or cryptographic
operations may be performed. In this discussion we’ll call
that a “cryptographic function area”, or CFA. In this context
a binary might be encoded by a server specifically for a given
machine, with a given verifiable fingerprint. For example,
a public-private key pair may be associated with the hosts
CFA, with the private key being in CFA memory protected
from access by any software on the host. Likewise, a binary
encryption server could have a public-private key pair. A
host that wants a protected binary can use the server’s public
key to encrypt and send some fingerprint constructed from
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the identity of the host. The server uses that fingerprint to
generate a symmetric key for encrypting the binary, encodes
that key using the CFA’s advertised public key, and sends it
to the host, which passes it to the CFA, where the symmetric
key is decoded and stored. The encrypted binary follows.
The host can ask the CFA to decrypt (and re-encrypt) blocks
of the binary using the symmetric key that is hidden in the
CFA.

In this latter context then correct operation of the en-
crypted program requires support from the host. Security
is enhanced, at the price of requiring key management and
specialized hardware. These are acceptable costs for SPI,
particularly if these can be used to protect legacy codes,
without changing those codes. This paper develops a per-
formance analysis of such solutions.

3 PROTECTION BOUNDARIES

Assuming that an encoded executable can be securely de-
livered to a host, the issue remains of protecting it at the
host. Access is one dimension of the threat. Figure 1
illustrates different access boundaries, and the protection
mechanisms sufficient for each. The strongest boundary
assumes that files cannot be observed once resident in the
place of installation, we need only be concerned about pro-
tecting the program by encryption while being transported
to the installation. A weaker boundary admits adversar-
ial access to program files on disk, but denies access to
main memory. For example, this threat model allows for
an adversary to get (either by physical access or electronic
penetration) a copy of an executable from the disk. We
analyze a scheme that protects against this possibility by
ensuring that every representation of the program and its
data on disk are encoded. A weaker boundary exists if
an adversary has physical access to the computer and can
trace traffic between CPU and memory using probes. Pro-
tection against this threat must obscure executable program
pages and data that are resident in main memory, and must
harden the process that interprets these. Such measures
require sophisticated hardware and/or software. For exam-
ple, the executable program might be expressed in a form
that is philosophically related to Java byte-code (in-so-far
as it is an implementation-independent representation)—but
obscured—and have the running application implement a
virtual machine interpreter.

The first protection mechanism we model hits a sweet
spot in the spectrum of threats and costs of protecting
against them. It protects the program binary and data
up to the physical memory hierarchy, does so using tech-
nology that will soon be widely available, and is appli-
cable to legacy software. The central question we ad-
dress asks what impact this protection has on perfor-
mance. The delay cost is incurred only at page faults,
and is largely subsumed by the cost of handling a page
60
Figure 1: Protection Boundaries

fault. We expect—and our simulations confirm—that the
performance impact is low. The second mechanism we
model is of a “Scratchpad Memory Manager" (SMM), that
decodes, caches, and executes instructions without ever
making the decoded instructions or data visible to main
memory in plaintext. This mechanism assumes a “scratch-
pad memory" (Banakar et al. 2002), (Avissar et al. 2002),
(Ravindran et al. 2005) that supports software control of
what enters and exits this small CPU-speed memory, and
when. This type of architecture is of considerable interest
to the embedded computing community, who need such
control to make predictable the execution time of real-time
applications.

Our principle objective is to assess the performance
impact of these two protection mechanisms, in terms of
program execution time. We develop a model of program
execution costs, as a function of program locality and system
parameters. We validate the model with a trace-driven sim-
ulator, using memory traces of SPEC benchmark programs
as input. The model accounts for delays introduced by cache
management, virtual memory, and encoding/decoding. We
estimate the performance impact by comparing the execution
time of the reference program with, and without protection,
as a function of the program’s locality of reference in the
cache, and in the main memory. We find that when the cache
locality of reference is good, the first protection mechanism
performs as well as that of an unprotected program, regard-
less of the program’s locality in main memory. We see that
the second protection mechanism can have much higher
processing costs, but that those costs can be dominated
by significantly larger disk processing costs, or significant
levels of multiprogramming. Thus we see that in ordinary
contexts both mechanisms can provide protection without
undue impact on performance.

4 BASIC SYSTEM MODEL

We use a system model that focuses on the memory transla-
tion process. Our model contains a cache, a main memory,
and a disk-based virtual memory. The program execution
is described in terms of a trace of memory references, from
programs in the SPEC 2000 benchmark suite. Given a
memory address, the simulator seeks it in the fast memory
3
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adjacent to the CPU. In one set of experiments we assume
that memory is organized as a 4-way set-associative cache,
in another set we assume it is scratchpad memory that holds
entire pages.

We assume that the effective time per instruction is 0.3
ns (excluding cache misses), and that on average one out
of four instructions is a memory reference. The cost of
a miss (in the cache-based simulations) includes writing a
replaced line back to memory (if it is marked as dirty), and
also includes the cost of reading a cache line from memory.
The cost of transferring a 128 byte line between cache and
memory is 63 ns, based on a bus standard of DDR266,
which has a data rate of 2.1GBps.

A reference to main memory is checked to see if the
referenced page is resident. If not we sample a random
delay to represent the cost of going to disk. For a write of
a dirty page, or a read of page that is not first preceded by
the writing of a dirty page, we assume that the disk heads
could be anywhere, with equal probability. We assume
that the swap space is at one end of the cylinder range,
and so model the number of cylinders (e.g., distance) over
which the heads must pass to align to the target cylinder
as a uniform integer random variable sampled in the range
[1, Nc], where Nc is the number of cylinders. To translate
this distance into a delay we model the seek time using the
model described in (Lee and Katz 1993). Specifically, we
take the delay of moving the disk head n > 0 cylinders to
be d(n) = a

√
(n − 1) + b(n − 1) + c, where, if smin, savg ,

and smax are the minimum, average, and maximum seek
times (respectively), then

a = −10smin + 15savg − 5smax

3
√

Nc

b = 7smin − 15savg + 8smax

3Nc

c = smin.

Our simulations use parameter values modeled after a 80Gb
Western DigitalWD800BB drive : smin = 2ms, savg = 9ms,
smax = 21ms, and Nc = 16383.

The second component of disk delay is due to rota-
tion, waiting for the correct sector to align with the heads.
Assuming a 7200 rpm disk, we model this delay with a
uniform random variable sampled over [0,1/7200] seconds.
For the case of a disk read that immediately follows the
writing of a dirty page we assume the heads are “close
enough", and assume only a random rotational delay. We
assume the disk has a large cache buffer, and that 60% of
the read requests are satisfied from this buffer. The final
component of disk delay is transferring the disk block to the
main memory, which we assume is done using a 100Mbs
bus.
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5 ENCRYPTION AND CONTROL

The first protection mechanism we consider never leaves
program pages in plain-text on a disk. At its point of origin
the program executable is divided into pages, each of which
is individually encrypted. The encryption is ’symmetric’,
meaning that the same key K used to encrypt the pages is
used to decrypt them. The key used can be generated in
such a way that use of it is restricted to a particular machine
(or sets of machines). This customarily is accomplished
by having hardware support on the machine that executes
the program that binds the key to some unique physical
characteristic of that machine (e.g. a secure coprocessor
holding private keys associated with asymmetric cryptogra-
phy. The symmetric key K can be conveyed after encoding
by the coprocessor’s public key; only the coprocessor can
obtain the symmetric key.) The encryption / decryption
costs assumed by our simulations are based on the the AES
algorithm (Daemen and Rijmen 2002), used with a 128 bit
key. Our experiments assume an execution cost of cost of
encrypting or decrypting an N -Kb page as 36Nμ-secs; this
figure comes from measurements of a publicly available op-
timized ANSI C version of the algorithm, scaled to execute
on a 4GHz machine.

The most straightforward implementation of this mech-
anism involves a small modification to the host computer’s
operating system. The modifications needed are not diffi-
cult for the open source Linux operating system. The main
idea of the approach we analyze is to place the encryp-
tion/decryption logic into the virtual memory management.
Different pages may come from different sources (e.g. ap-
plication, code from various system libraries, data files) and
be encrypted using different keys. The data structures that
manage virtual memory mappings need to be augmented
to record, for each page, some index to the appropriate
encryption/decryption key. (As we pointed out earlier, the
key itself may be protected within an CFA; we assume
here an interface that allows the operating system to request
an encrypt or decrypt operation using a specific key by
specifying the index.) Extra logic is needed in the virtual
memory system to decrypt incoming pages before they are
used, and encrypt pages that are about to be written back
to swap space.

The virtual memory system works almost exactly as
before. A page fault causes an interrupt, and the operating
system looks for a free page frame into which it might
place the needed page. If it must eject a page that has
been modified, that page will be written out to the swap
area. Here we require a modification that has the operating
system first ask the CFA to encrypt the page, in-place, in
memory, and then write it out to disk. The augmented page
table will specify the index of the key needed to perform the
encryption. Now when the disk has completed the fetch of
a requested page, it raises an interrupt. Taking the interrupt,
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Table 1: Variables Used in Analytic Model
pm Pr{main memory hit}
pdm Pr{reference evicts dirty page}
pc Pr{cache hit}
pdc Pr{reference evicts dirty cache line }
ps Pr{scratchpad hit}
pds Pr{reference evicts dirty scratchpad page}
tinst time to execute instruction
tline cache transfer time, 128 bytes
taes AES encrypt/decrypt time, 1K bytes
npage number of 1Kb per page
tsp transfer time, 1Kb, scratchpad
tseek average disk seek time
trot average disk rotational delay
ttrns disk transfer time per 1Kb block

nm number of page misses in trace
ndm number of dirty memory pages evicted
nc number of cache misses in trace
ndc number of dirty cache lines evicted
ns number of scratchpad misses in trace
nds number of dirty scratchpad pages evicted
nir number of instructions per memory reference
nref number of references in the trace

the operating system calls upon the CFA to decrypt the page,
after which the virtual memory logic is exactly as before. A
principle benefit of such an approach is that legacy programs
and libraries can be protected without any modification. The
principle disadvantage is that it requires modification to the
operating system, albeit a small modifications, which may
be problematic when the operating system source code is
not available.

The second protection mechanism we consider goes
through similar steps. We assume that the scratchpad mem-
ory is used to hold entire pages, that any page copied from
main memory to the scratchpad is in an encrypted state, and
that such a page is decrypted and held in the scratchpad.
On a scratchpad fault, if a page must be evicted (to main
memory) it must first be encrypted. Main memory now
serves primarily as a cache buffer between scratchpad and
disk memories; of course, the usual virtual memory actions
(and costs) still apply. We have just moved the encryption
/ decryption costs to the fast memory and made different
assumptions about how memory references are interpreted
in that fast memory.

6 ANALYSIS

We have developed models for predicting the average ex-
ecution time per memory reference of protected binaries.
Parameters of these models are explained in Table 1. All
of these probabilities are unconditional, each represents the
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probability that a memory reference causes the supposed
action.

First consider the baseline case, where no protection is
used. The average CPU time per memory reference is

μcpu = nir ∗ tinst + (p̄c + pdc) ∗ tline.

This expression accounts for processing instructions, trans-
ferring a cache line on every miss, and transferring a cache
line when an evicted line is dirty. The average additional
delay due to disk operations is

μdisk = p̄m ∗ (tseek + trot ) + pdmtrot .

This expression encodes the assumption that no head move-
ment is needed between writing an evicted dirty page to
disk and reading the page that evicted it. Now the cost
of protecting virtual memory is the cost of encrypting or
decrypting pages moving between memory and disk. This
additional cost is thus

μe = (p̄m + pdm) ∗ taes ∗ npage.

The execution slowdown due to protection is the ratio

(μcpu+μdisk+μe)/(μcpu+μdisk) = 1+μe/(μcpu+μdisk).

It is not difficult to see that the slowdown will be small
whenever μe � μdisk , regardless of the cache and main
memory hit rates. We have measured the former cost on
the order of 100 μ-secs, specifications for modern disks
estimate the latter cost on the order of 10 msec, a difference
of two orders of magnitude. By contrast, the factor by which
CPU workload increases using protection is the ratio

(μcpu + μe)/μcpu = 1 + μe/μcpu.

Typically the timings that quantify μcpu are measured in
nano-seconds, whereas taes is measured in micro-seconds.
The value of this ratio depends significantly on cache and
memory hit probabilities, and can be large when locality of
reference is not good.

A model for the average execution time when protecting
physical memory is similar. CPU cost associated with this
protection scheme is

γcpu = nir ∗ tinst + (p̄s + pds) ∗ npage ∗ tsp.

The average overhead associated with cryptography is

γe = (p̄s + pds) ∗ npage ∗ taes .

The slowdown due to protection mechanisms in this case is
1 + γe/(μcpu + μdisk). This overhead is sensitive to cache
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locality, for the cost of a miss is considerably higher than in a
normal system. The factor by which the CPU load increases
is (γcpu +γe)/μcpu. This is orders of magnitude larger than
the corresponding factor under the other protection scheme.

We validated these formulations by writing a functional
discrete-event simulation of the model described in Section
§4. The simulation takes memory reference traces as input.
It explicitly simulates the identity of values in the cache
(and in the scratchpad), it manages explicitly the identity
of pages in the virtual memory. In order to provide a real-
istic context of background memory demand, we measured
memory usage over extended periods of time in computer
running Linux, and varying the amount of physical memory
available to our simulated program accordingly, as it com-
petes for resources represented by the background memory
consumption. Thus this simulator captures with some de-
tail the impacts of architecture and operating context on
the behavior of the program. The output of this simulator
is an enumeration of memory activities—the number of
cache hits/misses, the number of dirty cache line evictions,
the number main memory hits/misses, the number of dirty
memory page evictions, and so on. These counts completely
determine the costs of transferring data between memory
hierarchies; since the protection mechanisms are all tied to
data movement within the memory hierarchy, the summary
serves to determine those costs as well. The action summary
is read by a separate timing simulator. Many of the time
delays are deterministic (at least given the level of detail in
this model). The component of execution time related to
non-disk activities in the caching system is

Tc = nir ∗ nref ∗ tinst + (nc + ndc) ∗ tline.

The corresponding component for the scratchpad system is

Ts = nir ∗ nref ∗ tinst + (ns + nds) ∗ npage ∗ tsp.

The work associated with cryptography in the caching system
is

Tcc = (nm + ndm) ∗ taes ∗ npage,

while the work associated with cryptography in the scratch-
pad system is

Tsc = (ns + nds) ∗ taes ∗ npage.

However, our model does assume random costs associated
with the disk, due to uncertainty in the distance that the
heads must be moved, and the rotational latency. A distinct
advantage of separating the functional memory simulator
from the timing simulator is that one study the impact of
different timing costs (e.g. bus speeds, disk technology).
One can sample random disk delays multiple times, en-
abling us to study the sensitivity of execution time to this
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stochastic component. The timing simulator therefore es-
timates the mean disk delay (according to the disk model
already specified), and reports the standard deviation for a
given number of samples.

The data reported by the functional simulator for a given
trace can be used to construct parameters for the analytic
model. Specifically

pm = 1 − nm/nref pdm = ndm/nref

pc = 1 − nc/nref ps = 1 − ns/nref

pdc = ndc/nref pds = nds/nref .

By construction, use of these estimators in the analytic
model will cause the deterministic components to fit the
measured data exactly. The behavior of the disk component
is more interesting. The total delay attributed to the disk is
the sum of a number of independent identically distributed
random numbers. The precise number is driven by the
program’s locality behavior; in our evaluations of traces
with 109 memory references, a memory miss rate of, say,
10−6, yields on the order of a thousand disk accesses.
The central limit theorem obviously applies then, so that
given D disk accesses, the total disk cost is approximately
normal N(Dμd,

√
Dσd), where μd and σd are the mean and

standard deviation of the random disk delay. Computing the
details of μd and σd is more technical than it is interesting,
but there is a very important point to be made. σd/μd

cannot be large, because the disk seek time distribution does
not have a large range relative to its mean, the rotational
latency is essentially just a uniform random variable, and
the probabilistic choice based on whether the page is in
cache or not is fairly balanced. This all implies that the
coefficient of variation

√
DσD/(DμD) = (σD/μD)/

√
D

will be small in our application so that the analytic model
(which uses μd ) is bound to predict results close to those
observed in any long-lived experiment.

We evaluated two different traces taken from executions
of two particular SPEC 2000 benchmark suite. Both are
representative of the the kinds of codes that might merit
protection. lucas performs a test (the Lucas-Lehmer test)
to check the primality of Mersenne numbers 2p − 1, using
arbitrary-precision arithmetic. Computation of large squares
is based on an FFT designed to be cache friendly. sixtrack
is a high-energy physics code that tracks particles around
a model of particle accelerator, in order to check the long
term stability of the particle beam.

We simulated the execution of these codes assuming a
host computer with 0.5Gb of memory, a 4GHz CPU, 1Mb
of fast CPU speed memory (alternatively treated as a 4-way
set associative cache with 128 byte lines, and a scratchpad
memory with page-size units of transfer between it and main
memory. We assume a 2.1GBps bus between fast memory
and main memory, and a 100Mbs bus between main mem-
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ory and the hard drive cache buffer. We assume that 60% of
disk accesses are resolved in the hard drive cache. For each
experiment we simulated one billion memory references.
As we expect, comparison of all measured costs and pre-
dicted costs (base execution, encryption, disk) costs were
extremely close; the relative error between predicted and
measured costs were in tiny fractions of a percent. Table 2
presents the locality behavior of these traces on the simu-
lated architecture, and tabulates the various average costs
per memory reference, assuming both 2K and 4K pages.
Prominent features of this data include that the programs
enjoy good locality of reference, that disk costs essentially
halve going from 2k to 4k pages, and that encryption costs
increase by 50% going from 2k to 4k pages. It is also very
noteworthy that the overall execution time is dominated by
the disk delay.

We have shown why the analytic model is an excellent
predictor of long-term behavior of any program. We now
use that model to explore regions of behavior not exercised
by the benchmark traces. We compute two figures of merit.
One is based on estimated execution time, without any
cryptographic protection, and with protection. Under the
assumption that the system is essentially dedicated to the
program (so that the program never waits for CPU service
when it is able to execute after processing of a page fault,
and that it never waits for disk service upon processing
a page fault) we can compute the execution slowdown—
the factor by which the program completes more slowly
using protection than not. As seen in Table 2, under all
circumstances tested, both protection techniques yield a very
small slow-down. The reason is that the execution time is
far and away dominated by the common cost of disk access.
To illustrate that point, we compute also the ratio of the
execution time component except for the disk. This ratio
gives the factor by which protection mechanisms require
more CPU and fast memory resources than not.

These experiments show that under some circumstances
one can use cryptographic protection without suffering undo
performance penalties. The space of possibilities probed by
these traces is small. But with the confidence we’ve gained
in our analytic model, we can explore a much wider space
of possibilities. Some of the results of that exploration
are illustrated in Figure 2. Here we consider the main
memory miss rate to of the same order as those observed
in the SPEC benchmarks), and evaluate performance as a
function of the fast memory miss rate. Figure 2 shows the
remarkable tendency of the execution time ratio associated
with the virtual memory protection scheme to be small,
independent of locality of reference. The explanation is just
that cryptographic costs occur precisely when disk operations
supporting virtual memory occur, and those cryptographic
costs are overwhelmed by the inherent delays in accessing
disk. Changing the locality of reference characteristics
changes the frequency of disk accesses, but the frequency of
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cryptographic costs changes in lock-step. The impact on the
mechanism for protecting physical memory is more marked.
Here cryptographic costs occur as a function of locality
of reference in the scratchpad memory, so the frequency
of incurring those costs increases as the scratchpad miss
rate increases. We also computed these same merits for a
family of applications whose underlying memory miss rate
is an order of magnitude larger. The comparison shows
that as scratchpad locality degrades, the application with
an order of magnitude smaller main memory miss rate
incurs an order of magnitude larger slowdown. This is
understood by observing that when scratchpad locality is bad
the execution time is dominated by the cryptographic costs
of moving things into and out of the scratchpad memory.
The denominator of the execution time ratio is an order of
magnitude smaller when the volume of disk activity is an
order of magnitude smaller, which occurs when the main
memory miss rate is an order of magnitude smaller. These
graphs clearly show the potential for slowdowns of 10, 100,
or even 1000 when locality of reference is poor.

The lower graph in Figure 2 plots the factor by which
the protected methods use more processing time exclusive
of disk delays. Again we see interesting trends. In the case
of VM protection the workload ratio is

nir tinst + (p̄c + pdc)tline + (p̄m + pdm)npagetaes

nir tinst + (p̄c + pdc)tline

= 1 +
(

p̄m + pcm

p̄c + pdc

)
npagetaes

tline

.

This explains the observed behavior : when the cache miss
rate (p̄c) is very small the ratio is dominated by some multiple
of npagetaes/tline = 571.4npage. That term diminishes as
the cache miss rate increases, approaching unity. Something
similar occurs in the case of PM protection. Here the ratio
is

nir tinst + (p̄s + pds)(npagetaes + ttrans)

nir tinst + (p̄c + pdc)tline

.

Assuming that p̄s and p̄c increase together, the ratio goes
from being dominated by the nir thit terms at very low
miss rates, to increase asymptotically to 571.4npage. It is
important to note that 571.4npage must serve as an upper
bound on the execution time ratio, for that ratio is maximized
when the cost associated with the disk is minimized.

The possibility of a slowdown on the order of 1000 is
daunting. However, high workload ratios need not always
be problematic, when the workload increase is dominated by
the delay due to disk activity. The flat-line behavior of the
VM execution ratio is an example of this—observe that under
low cache miss rates the PM workload ratio is as high as 100.
A similar principal applies when the protected code runs in
a multiprogramming environment. This could be expected
if a physically secured host uses specialized hardware and
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Figure 2: The top graph shows overall execution time slowdown due to cryptographic measures, as a function of the miss
rate in the fast memory, the bottom graph depicts the factor by which time spent in non-disk computation increases due to
cryptographic measures. VM denotes protection of program on disk, PM denotes protection of program in main memory.
Ratios are computed separately under the assumption of 2K and 4K byte memory pages. Both graphs assume a main memory
miss rate of 10−5.
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Table 2: Characteristics of Lucas and Sixtrack Benchmark Simulations
(a) Hit Rates into Main Memory, Cache, and Scratchpad

trace pm pc ps

lucas 2k 0.99998052 0.99964415 0.99998052
lucas 4k 0.99999023 0.99964415 0.99999023

sixtrack 2k 0.99998996 0.99624699 0.99996118
sixtrack 4k 0.99999494 0.99624699 0.99997313

(b) Per-instruction Costs (in nanoseconds) from Lucas and Sixtrack Benchmarks.
trace cpu cost encryption cost disk cost normal execution workload protected execution

lucas 2k (VM) 1.24 1.84 121.20 122.44 3.08 124.28
lucas 2k (PM) 1.22 2.77 121.13 122.35 3.99 125.11
lucas 4k (VM) 1.24 1.84 60.61 61.86 3.09 63.70
lucas 4k (PM) 1.22 2.78 60.70 61.92 4.00 64.69

sixtrack 2k (VM) 1.24 1.84 121.32 122.56 3.08 124.40
sixtrack 2k (PM) 1.22 2.77 121.12 122.34 3.99 125.11
sixtrack 4k (VM) 1.24 1.84 61.72 62.97 3.09 64.81
sixtrack 4k (PM) 1.22 2.78 61.66 62.88 4.00 65.66
software; potentially many secured applications might be
running concurrently. In this context an individual program’s
execution time is much less important than the system’s
throughput. In a multiprogrammed environment a secured
application taking a page fault will have to wait for the disk to
serve the disk requests of a number of other applications first.
From the point of view of the application it is as though the
disk was simply much slower than if the host were dedicated
to the application. Thus the presence of those applications
effectively increases the time spent waiting for the disk.
Naturally this increases the execution time, but it can also
serve to cause the larger disk wait to dominate the execution
time in a way it would not if the host were dedicated to
the application. The execution time ratio (adjusted now to
reflect increased disk delay under the unprotected case) may
once again approach unity.

7 CONCLUSIONS

This paper uses analytic modeling and discrete-event simula-
tion to evaluate the performance impact of securing applica-
tion programs from unauthorized observation or execution.
It studies two methods based on encrypting the application
executable and its data. One method allows the executable
to exist in plaintext in main memory, but makes sure that
any representation of any part of it on the disk is encrypted.
The second method hardens the application further, ensur-
ing that no plaintext representation of it ever exists in main
memory.

We find that the costs of the first approach are always
dominated by the inherent cost of virtual memory, and so it
suffers no relative performance impact. The second method
is seen to not impact performance when the protected pro-
gram has good cache locality. Our fundamental conclusion
is that while the amount of additional computation needed
609
to support protection may be large, in a variety of common
circumstances those costs are dominated by inherent disk
costs, so that the relative impact of the extra computation
is not large.
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