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ABSTRACT

Markov models are used in many industrial applications,
but, for very large models, simulation is often currently
the only viable evaluation technique. However, simulation
techniques that are based on evaluating trajectories at the
level of individual states and transitions can be inefficient
because they have to keep track of many details. Moreover,
since they use statistical methods, estimating solutions at
higher confidence intervals requires the evaluation of an
increasingly large number of trajectories which often leads to
poor performance. On the other hand, analytical path-based
techniques can be used for computing guaranteed bounds
on the true solutions, but they can have poor performance
because they must evaluate many paths to obtain reasonable
bounds. In this paper, we present a path-based simulation
approach for evaluating models at the component, rather than
individual state/transition, level. At this level of abstraction,
the approach can compute more accurate solutions than
traditional discrete-event simulation techniques can in a
given amount of time. In addition to presenting the approach,
we compare its performance and effectiveness against a
path-based analytic technique.

1 INTRODUCTION AND MOTIVATION

Model-based evaluation is an effective means to gain in-
sight into the behavior of many computing systems. It can
be used during many stages of system development, from
conceptual design to prototype evaluation to actual-system
operation and maintenance. At all these stages, models of
performance, availability, and reliability may be used to
584
predict the operating characteristics of systems. Frequently,
models can be expressed as continuous-time Markov chains
(CTMCs). However, it is generally necessary to model a
system at a fairly high level of detail in order to obtain
results efficiently. As the amount of detail and the level
of complexity in a model increase, computing solutions by
numerical methods becomes increasingly difficult due to
the well-known state-space explosion problem.

Simulation is an alternate solution approach that is
usually used for analyzing very large models. It has no
explicit state-space storage constraint because it analyzes a
model directly without the use of the underlying state space.
It does this by executing a representative set of trajectories
over which the model may evolve over time. The trajectories
are chosen based on their relative likelihood of occurrence
in the model, and the solution of the model is estimated
using a statistical analysis of the chosen trajectories.

In many simulation approaches, the trajectories are
defined at the level of individual states and transitions. At
this low level of representation, it is necessary to keep
track of many state variables of a model to determine
which transitions are enabled and which events may occur
next. Furthermore, even though multiple trajectories can be
evaluated in parallel on a multiprocessor machine, each one
must still be evaluated serially on a uniprocessor machine.
That constraint limits the number of trajectories that can
be evaluated in a given amount of time. When a high
confidence level is required in a solution, a large number of
trajectories have to be evaluated. Thus, solving a model for
solutions with high confidence levels is a time-consuming
task.
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In this paper, we present a new approach for simu-
lating continuous-time discrete-state Markov models. The
approach extends existing simulation and path-based ana-
lytical approaches by simulating models at the component
level. Instead of representing the states of a model ex-
plicitly, as is traditionally done in many other simulation
methods, our approach represents them with a set of prob-
ability vectors corresponding to the probabilities of being
in particular states within each component of a model.
By traversing “trajectories” at this higher level of abstrac-
tion, the approach improves the efficiency and quality of
a solution relative to a solution computed using traditional
discrete-event simulation or analytical path-based methods.

The presentation of our paper proceeds as follows. In
Section 2, we briefly explain how to represent a model at
the component level. Then, in Section 3, we present a
path-based simulation approach for executing a trajectory
at the component level. Next, in Section 4, we illustrate
how the approach can be used for evaluating the availability
and reliability of a distributed information service system.
Additionally, we present experimental results to compare the
performance and effectiveness of the approach against the
analytical path-based approach presented in (Lam, Buchholz,
and Sanders 2004). Finally, we conclude with a summary
and a discussion of future work in Section 5.

2 COMPONENT-LEVEL ANALYSIS OF MODELS

Many large models, like their physical system counterparts,
are constructed from smaller logical submodels or com-
ponents. A large model is composed from the submodels
either by means of state sharing, whereby the submodels
coordinate their transitions through shared states (e.g., De-
risavi, Kemper, and Sanders 2003), or by means of action
synchronization, whereby they coordinate through shared
events. For our approach, we consider the latter.

Suppose a given model has state space RS =
{0, . . . , n − 1} (such that |RS| = n) and is decompos-
able into J components, which are numbered from 1 to
J . In the sequel, we use parenthesized superscripts and
subscripts, i,j ∈ {1, . . . , J}, to denote particular compo-
nents, unless the context is clear (in which case, we do
not use parentheses). Let component i have state space
RSi = {0, . . . , ni − 1}. Then the state space of the en-
tire model can be composed from the state spaces of the
components such that the relation RS ⊆ ×J

i=1RSi holds
true.

In many simulation methods, a state of a component is
represented by a vector of its state variables; the state of the
model is represented by a vector of component states. The
next events that may occur are determined by observing the
values of the state variables of the current state. When all
conditions are satisfied to enable an event, it is scheduled
and put on a list of enabled events. Then, one event from
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the list is chosen to occur. After the occurrence of an event,
the affected state variables are updated, and a transition
to the next state takes place. Afterward, events previously
scheduled on the list may become disabled and are removed
from the list.

The costs of determining the next events, managing the
event lists, and updating states and state variables can (when
all state holding times are exponentially distributed) be
eliminated or lessened by keeping track of the probabilities
that a component will occupy individual states instead of
keeping track of the states that the component may occupy.
Essentially, instead of using a vector of state variables for
each component, a vector of state probabilities is used to keep
track of the probabilities that the component will occupy
the states in its state space. The state probability vector of
the whole model can be represented in a similar manner
and can be computed from the state probability vectors of
the components. If this representation is used, it is not
necessary to determine which next events are enabled; it is
not necessary to manage an event list; and updating states
involves only a (more efficient) vector-matrix operation.

More formally, define p(i)
0 to be the initial state proba-

bility (row) vector of component i and p(i) to be the vector
after some number of events that affect i have occurred.
The events that affect i can be classified as either local to i
or global. The local events are those occurring within com-
ponent i. The global events are those associated with the
synchronization activities that affect multiple components
in the whole model. Each synchronization activity can be
further classified as either a true synchronization event, in
which all involved components take a synchronized tran-
sition, or a disabled synchronization event, in which some
involved components cannot take the synchronized transition
because their present states disallow the transition.

The effects of these events on the components can be
described by the probability transition matrices (Stewart
1994). Each matrix describes how a component transitions
among its states and the probabilities that those transitions
will be caused by the event. Let us define the following
matrices corresponding to these types of events for com-
ponent i: P(i)

l is the local transition matrix, E(i)
t is the

synchronized transition matrix for synchronization event t,

and E
(i)
t is the disabled synchronized transition matrix for

synchronization event t. D(i)
t = diag(E(i)

t eT ), where e is
an ni-dimensional vector of ones, is simply the diagonal
matrix of E(i)

t . We summarize these matrices notationally
as follows:

Φ(i)
π(k) =




P(i)
l if π(k) = li

E(i)
t if π(k) = t for t ∈ TS

D(i)
t if π(k) = t̄j for i < j and t ∈ TS

E
(i)
t if π(k) = t̄i for t ∈ TS

Ini otherwise

.
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By using these vectors and matrices, the effect of a series of
events on a particular component can be computed simply
by a series of products of the corresponding component
vector and matrices.

It is possible to compute various measures of interest
from a model by using the Markov reward model (Howard
1971) to specify how reward is computed when the model
visits some states. For computing rate reward, define the
column vector r(i) to be the reward vector for component i.
r(i) is an ni-dimensional vector whose entries specify the
reward associated with the corresponding states. Further,
let π(i) be a sequence of events that affect i. π(i) can also
be considered as a set of paths over which i evolves over
time, and it is an abstraction of the state-level trajectory.
Then the product of p(i)

0 and the matrices corresponding
to the events in π(i) yields the state probability vector,
p(i)[π(i)], after the occurrence of π(i). The reward from
component i over this path is computed as

R(i)(π(i)) = p(i)[π(i)] · r(i). (1)

At a global model level, let π be a path of events over
which the model evolves. Observe that π is a splicing of
π(i) for i = 1 . . . J . For a measure specified by a tensor
product (Stewart 1994) of the component reward vectors,
the reward over π is computed as

R(π) =
J∏

k=1

R(i)(π(i)). (2)

The probability of the path π is given by

Prob(π) =
|π|∏
k=1

λπ(k)

Λ
, (3)

where λπ(k) is the rate of occurrence of the event corre-
sponding to π(k) and Λ is the sum of the rates of enabled
transitions in the model. Let β(Λs, k) denote the Poisson
density describing the probability of having k occurrences
of some events at rate Λs. Then the expected reward of the
model at time s can be computed by

E[Rs] =
∞∑

k=0

β(Λs, k)
∑

π∈Pk

Prob(π)R(π). (4)

Equation (4) states that the expected instantaneous reward is
just the weighted sum of the path rewards over all possible
paths, where the weights are the probabilities of the paths.

Note that computation of the exact solution requires
evaluation of infinitely many paths as shown in Equation (4).
Guaranteed lower and upper bounds on the exact solution
can be computed by evaluating a finite number of paths; the
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more paths that are evaluated, the tighter the bounds will
be (as shown in Lam, Buchholz, and Sanders 2004). In
general, to get useful bounds for practical models, a large
number of paths must be evaluated. In the next section, we
present a new path-based simulation approach that evaluates
many fewer paths than the analytical path-based bounding
approach of Lam, Buchholz, and Sanders (2004), yet it can
efficiently compute solutions with high confidence. The
approach is not only more effective than existing ones, it
is also more efficient.

3 THE PATH-BASED SIMULATION APPROACH

This section presents the component-level path-based sim-
ulation approach. It is more efficient than traditional sim-
ulation methods because it is partially based on numerical
analysis and it does not manage any event list. It is also
often faster than the analytical path-based approach because
it can estimate a solution by evaluating fewer paths. After
presenting the approach, we use it to evaluate one model
for the availability measure and another model for the re-
liability measure. We then compare the performance and
effectiveness of the approach in computing these solutions
against the analytical path-based bounding approach.

The basic idea behind the path-based simulation ap-
proach is that it is possible to estimate the solution of
Equation (4) by sampling a set of random paths. Formally,
let SP be a multiset of (sets of) paths from which samples
will be drawn. Note that SP is a (small but representative)
subset of the set of all possible paths, and the same path
may be drawn multiple times from it. A path π ∈ SP must
be chosen with probability

β(Λs, |π|) · Prob(π). (5)

Then the unbiased estimators for the mean and variance can
be computed by

R̂(SP) =
1

|SP|
∑

π∈SP
R(π)

Ŝ2(SP) =
1

|SP| − 1

∑
π∈SP

(
R(π) − R̂(SP)

)2
.

(6)

In order to keep the estimators unbiased, it is necessary
to exercise caution in choosing random paths according to
their probabilities of occurrence as given in Equation (5). It
is possible to choose a path randomly according to the prob-
ability by first drawing a random variate from the Poisson
distribution that has rate Λs. For an efficient realization, we
use the work of Fox and Glynn (1988) in our implementa-
tion. A Poisson random variate is used to choose the length
of each sampled (abstract) path. Next, the events making
up the path must be chosen according to their probabilities.
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Note that they cannot be statically determined as in Equa-
tion (3), but instead they must be computed dynamically
as the model evolves according to the path π. That is,
the probabilities of the events to be chosen to form the
path π are computed according to the states that the model
occupies. These probabilities are computed by

ProbT (π(k)) =
λπ(k)

Λ

J∏
j=1

p(j) · Φ(j)
π(k) · eT

nj
, (7)

where π(k) ∈ {lj , t, t̄j} for j = 1 . . . J and t ∈ TS . Equa-
tion (7) is simple to compute and can be optimized so as to
require only a scalar product. Thus, ProbT (π(k)) forms
a distribution over the set of possible next events.

Using Equation (6), an approximate 100(1−α)% (0 <
α < 1) confidence interval for the mean is computed by

R̂(SP) ± t|SP|−1,1−α/2

√
Ŝ2(SP)

|SP| , (8)

where t|SP|−1,1−α/2 is the Student t-distribution having
|SP| − 1 degrees of freedom.

4 EVALUATION OF THE APPROACH

We evaluate our approach by studying its performance in
analyzing a model of a distributed information service system
adapted from the model in (Muntz and Lui 1994). The
example model describes the propagation of faults across
the components of the system. We augment the original
model with synchronized transitions among the components
to describe how faults are propagated through the system.
In addition, we increase the number of front-end modules
in order to model the occurrence of a fault only when a
majority of the modules are corrupted. We also model double
redundancy in the processing units by adding an additional
module for every module in the original processing units.
After describing the model, we discuss the performance and
accuracy of the approach.

4.1 Model Description

The information service system consists of six front-end
modules that interact with four processing units. Each pro-
cessing unit consists of redundant components, including
two processors, two switches, two memory units, and two
databases. Each of the components has its own repair facil-
ity. The components all go through the cycle of Working,
Corrupted, Failed, and Repaired. For the reliability model,
the repair facility is excluded. The stochastic activity net-
work (SAN) model of the system is shown in Figure 1.
Many of the model parameter values are given in (Lam,
Buchholz, and Sanders 2004), except for the values of the
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redundant components because there are too many to list
all of them.

Fault propagation in the system is modeled as follows:

• When a majority of the six front-end modules are
corrupted, the front-end is considered faulty, and
it may subsequently propagate the error to any
of the four processing units in which there are
two working processors. Propagation occurs via
the synchronized activities between the front-end
and the processors in the processing units. The
front-end or any of the processors may disable the
synchronized activities. After propagating the error
to a processing unit, the front-end may remain in
the faulty state and continue to propagate errors to
other working processing units until the majority
fails or are repaired or there are no more working
processing units to propagate the error.

• When both processors in a processing unit are
corrupted, they may propagate the error to their
working switches via a synchronized activity. Any
of the involved components may disable the syn-
chronized activity. After the error propagation, the
processors remain in the corrupted state until they
fail.

• When both switches of a processing unit are cor-
rupted, they may propagate their errors to the work-
ing memory units via a synchronized activity. Any
of these components may disable the activity. Af-
ter propagating the error, the switches remain in
the corrupted state until they fail.

• When both memory units of a processing unit are
corrupted, they may propagate their errors to the
working databases via a synchronized activity. Any
of these components may disable the activity. After
propagating the error, the memory units remain in
the corrupted state until they fail.

The model has five components: the front-end and
4 processing units. Each unit contains two processors, a
switch, a memory unit, and a database. We analyze the
model to compute the system reliability and availability.
We compute the reliability measure at transient time point
1.0 and the availability measure at transient time point 0.1
when all components in the model are in the working state.

4.2 Experimental Results

We conducted all of our experiments on a workstation
that had the AMD Athlon XP 2700+ processor running at
2.17 GHz with 512 MB of RAM. The operating system
was Red Hat Linux 9.0 with mounted file systems. We
compiled our implementation using the compiler g++ 3.3
with optimization flag -O3 only.
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Figure 1: SAN Model for Evaluating the Availability of a Distributed Information Service System
In order to evaluate the quality of the simulation
results, we initially analyzed the model for the guar-
anteed lower and upper bounds on the exact solutions
using the approach in (Lam, Buchholz, and Sanders
2004). For the point availability measure, the bounds are
[9.786854×10−1, 9.985875×10−1] and take 6135.23 sec-
onds to compute. For the reliability measure, the bounds
are [9.836687 × 10−1, 9.852736 × 10−1] and take 487.09
seconds to compute.

The path-based simulation results are 9.9839562118×
10−1 ± 5.3630001139 × 10−5 for the point availability
(computed in 12.738 seconds) and 9.8353716323×10−1 ±
9.9889749668 × 10−4 for reliability (computed in 10.960
seconds).

The simulation results for point availability were ob-
tained at a 95% confidence level and 6.0E − 5 absolute
confidence interval width. The results for reliability were
obtained at a 95% confidence level and 1.0E − 3 absolute
confidence interval width. For all simulation experiments,
our simulator terminated only when the computed confi-
dence intervals fell below these specified ones.

Figures 2(a) and (b) present the above results in a graph-
ical format for easier comparison of the performance and
quality of the solutions obtained using the analytical path-
based approach and the path-based simulation approach.
In the figures, the bars are not lined up vertically so that
the error bars can be distinguished clearly. The vertical
axes show the measures that were computed, and the ex-
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act solution lies somewhere between the upper and lower
bounds computed by the analytical path-based approach.
The number next to each bar indicates the time, in seconds,
taken by the corresponding approach.

As shown by the intersection of the error bars for
the path-based simulation approach and the bounding bars,
the path-based simulator is capable of estimating the true
solutions quite accurately. In Figure 2(a), note that the
analytical approach took more than 6100 seconds to compute
the bounds, and yet they are not tight. Thus, given the quality
of the estimated solutions, the path-based simulator takes
much less time than the analytical approach for both models.

5 CONCLUSION AND FUTURE WORK

In this paper, we presented a novel path-based simulation
approach for analyzing very large Markov models. The
approach raises the abstraction level of trajectory analysis
to the higher level of component analysis. In doing so, we
gain two benefits: first, sets of trajectories are simultane-
ously traversed to improve the quality of the solution for a
given number of traversals, and second, the approach works
more efficiently by not having to manage event lists. As
shown in Figure 2, the solutions estimated by the path-based
simulation approach are quite accurate as compared with
the guaranteed bounds on the true solutions. In addition,
the simulation approach is much faster than the analytical
approach by several orders of magnitude.
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Figure 2: Comparison of the Performance and Quality of the Solutions Obtained Using the Analytical Path-Based Approach
and the Path-Based Simulation Approach
Although the results shown in this paper for the path-
based simulation approach look promising, there is much
work left to be done to further improve the approach. Cur-
rently, a sample estimate is computed from an abstract path
of a specific length. Since each abstract path is computed
from intermediate subpaths, we can obtain a smaller variance
in the estimate by utilizing the intermediate results from
the subpaths. Moreover, at the component level, equivalent
paths can be identified and exploited easily to reduce further
the number of paths that have to be computed. Finally, eval-
uated paths can be memorized so that they do not have to
be re-evaluated (i.e., sampling without replacement). This
capability will help the approach to explore a larger model
space and will improve the convergence toward the specified
error tolerance more quickly. In all, these improvements
will help to improve further the quality of the estimated
solution and the performance of the approach.
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