
Proceedings of the 2005 Winter Simulation Conference
M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, eds.

APPROXIMATE DYNAMIC PROGRAMMING IN MULTI-SKILL CALL CENTERS

Ger Koole
Auke Pot

Department of Mathematics
De Boelelaan 1081a

Vrije Universiteit
Amsterdam, 1081HV, THE NETHERLANDS
ABSTRACT

We consider a multi-skill call center consisting of specialists
and fully cross-trained agents. All traffic is inbound and
there is a waiting queue for each skill type. Our objective is
to obtain good call routing policies. In this paper we use the
so-called policy iteration (PI) method. It is applied in the
context of approximate dynamic programming (ADP). The
standard PI method requires the exact value function, which
is well known from dynamic programming. We remark that
standard methods to obtain the value function suffer from
the curse of dimensionality, i.e., the number of states grows
exponentially with the size of the call center. Therefore,
we replace the real value function by an approximation
and we use techniques from ADP. The value function is
approximated by simulating the system. We apply this
method to our call routing problem, yielding very good
results.

1 INTRODUCTION

In this paper we consider a multi-skill call center having
specialists and generalists and skill- and group-dependent
service rates. We define specialists as agents with exactly
one skill and generalists as agents with all type of skills.
Note that group-dependent service rates are realistic because
often specialists work faster than generalists. In addition,
different priorities are assigned to call types. A priority
is implemented as a cost for holding a call in the queue
during one unit of time. The holding costs for high priority
calls are considered higher than for low priority calls. By
minimizing these costs the queue length of jobs with a high
priority will decrease and waiting times will get shorter. We
are interested in the associated routing policies for calls.
These policies dictate the assignment of calls to agents.

Good routing policies help call centers to reduce the
number of calls in the system, which is a way to improve
the service level. Consider a multi-skill call centers, with
576
agents having different skill sets. It is common that at an
arrival of a call different agents with different skill sets are
available that can all handle this call. The decision about
the agent that is chosen influences the long-run average
number of jobs in the system.

Obtaining optimal routing policies for multi-skill call
centers is a difficult problem to solve analytically. Hardly
any structural results exist. Some are given in Chevalier,
Shumsky, and Tabordon (2004) (in Appendix A). However,
they consider a model without queues and without priorities.
(They do consider group- and skill-dependent service rates.)
Their results are difficult to extend to our model. Therefore,
we focus on numerical methods.

The system is modeled as a Markov process and the
determination of routing policies becomes a Markov de-
cision problem. Dynamic programming (DP), see Put-
erman (1994), offers straightforward techniques to solve
Markov decision problems, both analytically and numer-
ically. Therefore it is also capable of handling dynamic
routing in multi-server queueing systems numerically. How-
ever, a shortcoming of DP is the fact that high-dimensional
systems such as most call centers are not tractable because
the state space becomes too large. This is called the curse of
dimensionality, see Bellman (1961). Examples with more
than ten agents and two skills can not be solved success-
fully with the standard techniques such as value iteration
and matrix multiplication (see Tijms (1986)). This paper
addresses call centers with more agents and more skills. We
explore the potential of approximate dynamic programming
(ADP) to obtain results for these call centers. We will show
that ADP is an efficient and effective way for obtaining dy-
namic routing policies. This method is able to solve routing
policies of call centers that could not be solved before. The
advantage of ADP is that it suffers less from the curse of
dimensionality, because it allows us to traverse only a subset
of all states. It has been shown several times that ADP
reduces the complexity without much loss of performance
and accuracy. It reduces both the computation time and the



Koole and Pot
memory usage. The last one becomes almost zero. The
game Tetris is an example of a successful implementation
and treated in Farias and Van Roy (1994). However also in
many cases ADP was not a success, some are mentioned in
de Farias and Van Roy (2004). There are several reasons
for this, for example the computation times get too long
or the value function has a structure that is too difficult to
approximate. This will be explained at a later point in this
paper, after the different techniques have been discussed.
More references to the literature about ADP are also given
at a later point in this paper.

The method used for the optimization is one-step policy
improvement in conjunction with an approximation method,
being discussed in Section 3.1. However we will already
give a brief description and introduction. One-step policy
improvement starts with calculating the value function, well-
known from DP, under an initial policy. It is obtained by
solving the so-called Poisson equation. The solution of this
equation gives next to the value function also the average cost
of the system, which will serve as a performance measure of
the system. Next, one-step policy improvement is executed
and yields an improved policy. The system performance
will be measured under the new policy that results from
the one-step policy improvement. Several methods will be
discussed.

In the context of ADP, the solution of the Poisson
equation is approximated by replacing the value function
by a simple structure and fitting the structure as close as
possible. The approximation of the value function is used
for the one-step policy improvement. The technique that
we consider for the approximation is presented in Section
4.

The structure of this paper is as follows. Section 2 de-
scribes the model and also discussses the control parameters
and the dynamics. In section 3 the call center is modeled as
a Markov Decision Process (MDP) and policy improvement
is discussed. Section 4 treats ADP, including:

• a numerical analysis in order to find a structure for
the value function such that policy improvement
is most effective,

• the estimation of the coefficients of the approxi-
mation function by minimizing the Bellman-error

• and the numerical results for call centers with two
and three skills.

Concluding remarks and plans for future research are given
in Section 6.

Despite the fact that the number of skills in our numerical
examples are moderate and that there is only one group of
generalists, we believe that the results are still interesting.
Chevalier, Shumsky, and Tabordon (2004) show that a bit
of flexibility can improve the service level a lot. Their
conclusion is that optimal staffing requires that 20 percent
57
Figure 1: Call Center Model

of all agents is cross-trained, the remainder is specialist.
This shows that, despite our model includes flexibility by
only one group of generalists, high performance can still
be obtained. Concerning routing, they consider only a
specific type of routing policies; calls are first assigned to
specialists and only if all specialists are busy to generalists.
They prove that this policy is optimal in blocking systems
with specialists working faster than generalists and without
call priorities. However, the queues and call priorities from
our model make routing much more complicated. This paper
proposes a method to obtain routing policies for these cases.

2 MODEL

The model, with M skills, is depicted in Figure 1. The jobs
of each type arrive according to separate Poisson processes.
There is one group of specialists for each type and one
group of generalists, who have all M skills. Jobs of each
skill type are served according to a first-in-first-out service
discipline. Each job is served exactly once, either by a
specialist or a generalist. This is determined by the routing
policy and is discussed in Section 2.1.

The service times are exponentially distributed and
the parameters of the groups with specialists are μi , i ∈
{1, 2, ..., M}. Generalists work successively on calls of
different types, with parameter μ̄i in the case of a type
i call. The service rates are next to skill-dependent also
group-dependent because in reality specialists often work
faster than generalists. But we do not make an assumption
on this, according to the model also generalists are allowed
to work faster than specialists.

The number of specialists in the group with skill i is
denoted with Si and S̄ denotes the total number of generalists.
The state space is defined such that it is possible that calls
7



Koole and Pot
are directed to generalist while keeping specialists idle and
vice versa. It consists of 2M components:

x := (x1, x2, ..., xM, x̄1, x̄2, ..., x̄M)

xi (i ∈ {1, 2, ..., M}) is the total number of jobs in the
queue and the number of jobs served by specialists of
group i. Variable x̄i is the number of generalists that work
on type i jobs. Because there are S̄ generalists we have
x̄1 + x̄2 + ...+ x̄M ≤ S̄. According to the definition of xi it
is not possible to queue jobs while keeping specialists idle.
The state space will be denoted by X and it contains all
feasible states.

There are linear holding costs for each type: hi, i ∈
{1, 2, ..., M}. The objective of our analysis is minimization
of the long-run average holding costs of the waiting cus-
tomers in each queue. The control parameters are described
in the next section.

Our model is an extension of the one studied in Örmeci
(2003), which treats the case with M = 2 without waiting
rooms. Instead of holding costs there are different rewards
for each type of call included. They show that under
certain conditions the optimal policy of the assignment to
generalists can be characterized as a monotonic treshold
policy. In Örmeci (2003) no answer is given to the question
if the optimal policy is work-conserving because a loss
model is considered.

2.1 Policy

The performance of our call centers is controlled by a routing
policy R. It dictates the assignment of calls to agents and
is state-dependent. We call the policy for a particular state
an action R : x → a and will write ax ≡ R(x) when the
meaning of R is clearly defined. Each action describes the
transition at an arrival or service completion of a specialist
or a generalist for each call type. Only the moments of
a transition are relevant because the state is memoryless
(remind that all distributions are exponential).

For simplicity we define the action set in such a way that
at most one job from one queue is assigned to a generalist
at the moment of a state transition. This yields an action
vector that is composed of three elements. The different
components will be discussed next.

The job assignment policy at an arrival of type i in
state x is defined as

ax
i :=

{
0 : generalist
1 : specialist or queued

.

The value 0 means that the job of type i is assigned to a
generalist, resulting in a transition to state x + ēi . If the
action is 1 two possibities exist, depending on the state: the
job is assigned to a specialist if one is available or queued.
578
Sometimes only one action is possible, for example when
S1 = 0 or x̄1 + x̄2 + ... + x̄M = S̄. To prevent that the
system reaches illegal states, we always take

ax
i =

⎧⎪⎪⎨
⎪⎪⎩

1 :
∑

i

x̄i = S̄

0 : Si = 0,
∑

i

x̄i < S̄
.

At a service completion of a specialist from type i in
state x there are two possibilities

sx
i :=

{
0 : idle
1 : type i

.

The value 0 indicates idling and in the case of value 1
the specialist receives another job of type i. Note that if
a specialist of type i finishes a job and the queue is not
empty, the decision about the assignment of the first call
in the queue is the same as when this call would arrive
instantaneously.

At a service completion of a generalist in state x the
generalist can undertake several actions

s̄x
i :=

⎧⎨
⎩

0 : idle
j : type j

−1 : random type 1,2,.. or M

.

This choice depends on the job type i of the finished call. We
note that an optimal policy does not necessarily randomize.
Randomization is supported because we need that the initial
policy is allowed to randomize. In the first case (0) the
generalist becomes idle and the new state is x− ēi , meaning
that a generalist that serves a type i call finishes. In the
second case (j ) a call from queue j is assigned, with a
transition to x−ej −ēi+ēj , meaning that the queue length of
type j jobs becomes one job shorter, a generalist that serves
a type i job finishes and a generalist starts to serve a job of
type j . Finally, the value -1 means a random selection from
the job types 1,2,...,M, with equal probability. A special
case is

s̄x
i =

{
0 : xi = 0, ∀i

0 : S̄ = 0
.

3 OPTIMIZATION

The dynamics of the system can be described using dy-
namic programming. An introduction to Markov Decision
Processes is given in Puterman (1994). We refer to this
book for background information on dynamic programming
and algorithms for policy improvement.



Koole and Pot
The value function for a fixed policy can be expressed
as the solution of the Poisson equation

v(x) + g = c(x) +
∑
y

p(x, ax, y)v(y), (1)

with p(x, ax, y) the transition probability (after uniformiza-
tion see Lippman (1975)) of going from state x to state y

according to action ax , c(x) is de immediate cost of the
transition, g the average cost and v(x) the value of state x.
In more detail, we have (after moving all terms of v(x) to
the left-hand side)

M∑
i=1

(λi + μi min{xi, Si} + μ̄i x̄i )v(x) + g = c(x)+
M∑
i=1

(λiv(x + ei)a
x
i + λiv(x + ēi )(1 − ax

1 ))+
M∑
i=1

(μi min{xi, Si}v((x − ei)
+)+

μ̄i x̄i[v((x − ēi )
+)I{s̄x

i = 0}+
M∑

j=1

v((x − ej − ēi + ēj )
+)I{s̄x

i = −1}/M
M∑

j=1

v((x − ej − ēi + ēj )
+)I{s̄x

i = j}])

with the cost function c(x) defined as

c(x) :=
M∑
i=1

hi(xi − Si)
+,

i.e., the holding costs times the queue lengths.
A job of type i arrives with rate λi and is assigned to a

specialist or a generalist according to action ai . The group
with specialists of type i finishes jobs with rate min{xi, Si}μi

when there are min{xi, Si} agents busy and (Si −xi)
+ agents

idle. Generalists can work on both types of jobs. When
they finish a job of type i, a decision has to be made about
the next type of job, which is specified by action s̄i .

3.1 Policy Improvement

Before optimization the system is evaluated under an initial
policy R0. The initial policy from the numerical examples
is defined as follows. A call is first routed to a specialist.
If all specialists of the call type are busy, then it is routed
to a generalist. If all generalists are busy too, the call is
queued. When a generalist completes a call, the next call
is assigned randomly from the non-empty queues.
579
Given the initial value function v0, the actions of the
one-step improved policy are defined as:

ax := arg min
a

{c(x) +
∑
y

p(x, a, y)v0(y)} ∀x.

The right-hand side contains the relative values for each
state if first the optimal action is chosen and next the system
evolves according to the initial policy. We will discuss this
in more detail for our model.

Concerning arrivals in state {x : Si > 0, x̄1 + x̄2 +
... + x̄M < S̄} the optimal action ax

i is not trivial, since an
assignment to either a specialist or a generalist is possible. If
μi > μ̄i and the holding costs are equal, we expect that it is
optimal to route the arriving call first to a specialist, as shown
in Chevalier, Shumsky, and Tabordon (2004) for the blocking
model. If no generalist is available the only possible action
is to queue the job. We will also mention a few situations
in which the routing problem becomes difficult. In the first
place, in states that satisfy xi < Si , x̄1 + x̄2 + ... + x̄M < S̄

and μi < μ̄i for some i. Then specialist and generalists
are available and generalists work faster. In the second
place, in states that satisfy x̄1 + x̄2 + ...+ x̄M < S̄, μi > μ̄i

for multiple i and different holding costs or service rate
per type. Then it is possible that the optimal policy is not
work-conserving. The optimal action, with respect to the
value function v, is determined according to

ax
i =

{
0 : v(x + ēi ) > v(x + ei)

1 : v(x + ēi ) ≤ v(x + ei)
.

The action is chosen that gives the lowest future costs. The
meaning of 0 and 1 was given in Section 2.1.

Concerning the service completions of generalists, the
relevant states are {x : x̄i > 0}. We introduce

v(x, i, j) ≡ v(x − ēi + (ēj − ej )) ∀x̄i , xj > 0.

It is the value of the new state after x by the transition that
a generalist finishes a type i job and starts serving a type
j job. The optimal action is determined according to

sx
i =

{
0 : v(x, i, 0) < v(x, i, j) ∀j : xj > Sj

j : v(x, i, j) ≤ v(x, i, k) ∀k ∈ {0, 1, ..., M}

From a numerical analysis of realistic situations we
conclude that if specialists work faster than generalists,
then near optimal policies are possible by considering the
following class of policies:

• Specialists are kept busy as much as possible.
• If the queue length exceeds a treshold, generalists

start working. As a result, generalists are some-
times kept idle while there is work in at least one



Koole and Pot
queue, but not in all of them. (This type of propa-
gation is also possible by reserving generalists for
the most attractive job types, for example via a
treshold on the number of busy generalists.)

• When the queue length increases, the priority of
that type increases too (for stability).

We also investigated this by applying value iteration (Put-
erman 1994) to a few small call center instances. The case
that generalists work faster than specialists is less realistic,
but does occur in our numerical examples. We can expect
that the policies become more complicated. But still, we ob-
served that in all realistic cases giving priority to specialists
above generalists yields almost optimal policies.

3.2 Performance Evaluation

Evaluating routing policies requires a numerical method.
In our analysis the average cost is considered as the main
performance measure. The policies of the smaller instances
are analyzed by the power series algorithm (PSA). The
PSA was introduced in Hooghiemstra, Keane, and van de
Ree (1988), see Blanc (1987) for an overview. It is a
numerical method to calculate the value function or the
stationary probabilities. It considers the value function as
a polynomial function of the arrival rates. This makes it
possible to calculate the associated coefficients recursively.
The examples that are not tractable, due to the curse of
dimensionality, are evaluated with simulation.

4 APPROXIMATE DYNAMIC PROGRAMMING

Bertsekas and Tsitsiklis (1996) is essentially concerned with
approximate dynamic programming methods. Our focus is
on one of them, namely the Bellman-error method. Section
4.1 is devoted to the minimization of the Bellman error. This
method requires that an approximation structure is found
for v, which we denote by ṽ. In Section 4.2 more insight
is obtained in the structure of ṽ. It is achieved by fitting
ṽ to the real value function. As we already mentioned the
state space is very big and not computationally tractable.
We are forced to consider a finite number of states and to
ignore the remaining states. Several ways are explored in
Section 4.3. Finally, the algorithm is presented in Section
4.4.

4.1 Bellman-Error Minimization

Bertsekas and Tsitsiklis (1996) describe in chapter 6.10 a
method for fitting the value function ṽ. It will be described
in this section. In summary, with this method we find an
approximation for v as in Equation (1). This is accom-
plished by plugging in the structure from Equation (2) and
determining the best coefficients.
580
In more detail, let us define the Bellman error as

D(x, r) := ṽ(x, r) − c(x) + g̃ −
∑
y

p(x, ax, y)ṽ(y, r),

derived from Equation (1). Our goal is to minimize

min
r

∑
x

w(x) (D(x, r))2 ,

with w(x) a weight that is used for fine-tuning and defined
as

w(x) := ρxe ρ ∈ (0, 1).

In our numerical analysis the unknown g̃, representing the
average cost, is roughly estimated with a short simulation
run. This is called a 2-phase method, see de Farias and Van
Roy (2003).

The remainder of this section deals with the estima-
tion of the unknown coefficients from Equation (2). The
minimization is achieved with the Gauss-Newton method,
based on linearizing ṽ(x, r) around r . In more detail we
update r to r ′ according to

r ′ := r − γw(x)
∑
x

D(x, r)∇D(x, r)

= r − γw(x)
∑
x

D(x, r)

(∑
y

p(x, ax, y)[∇ṽ(y, r) − ∇ṽ(x, r)]
)

with γ denoting the stepsize and ∇D(x, r) the gradient of
D(x, r) with respect to r .

This method is related to temporal-difference learning,
see Tsitsiklis and Van Roy (1997). The main difference
is that temporal-difference learning is an online procedure:
the estimates of the unknown coefficients are updated while
the system evolves. In contrast, ADP methods require that
a sample of states is available in advance, the so-called set
of representative states (see Section 4.3).

The expression D(x, r) becomes zero when the structure
of Equation (2) matches the real value function. As an
exercise and a check, our implementation was verified by
implementing ADP for the M/M/1 queue. This yielded
very accurate results.

For the stepsize γ we take a simple rule. The parameter
is initialized with a positive value and the algorithm starts.
When no improvement is found or r is oscilating, γ is
multiplied with a scalar between 0 and 1. The algorithm
goes further until the stop criterium is satisfied again, and
so forth. It stops when γ becomes smaller than a certain
value or the maximum number of iterations is reached.



Koole and Pot
4.2 A Sufficient Structure for Approximating The Value
Function

We aim to obtain a polynomial structure for the value function
that is accurate enough for one step of policy improvement.
This is analyzed by fitting the v̄ to the real value function
and measuring the mean-square error. We prefer a simple
structure and consider a value function of the form, which
is a basis function (see Bertsekas and Tsitsiklis (1996),
Section 3.1.1)

ṽ(x, r) =
M∑
i=1

K∑
k=1

(r
(k)
i xk

i + r̄
(k)
i x̄k

i ) (2)

with r
(k)
i the unknown coefficient of order k and associated

with variable xi and r̄
(k)
i the unknown coefficient of order

k and associated with variable x̄i . We omit more extended
structures, for example with products of variables, to prevent
the complexity from increasing and thereby resulting in very
long computation times. Moreover, our conclusion is that the
fit is already very accurate if we take M = 2. Alternatively,
the variables xi can be split into two parts: the queue length
and the number of specialists that are busy. This would
increase the number of basis variables from 2MK to 3MK .
Our experience is that, in conjunction with ADP, it does
not yield significantly better results and, more important,
the computation times get longer. We investigated this by
considering a call center with zero specialists. In that case,
xi denotes the queue length.

4.3 Simulating the Set of Representative States

As we mentioned before there are infinitely many states.
Even if we truncate the state space at a certain level, the
number of states is huge.

ADP does not require that the sum of D(x, r) is mini-
mized over all states. With ADP we are allowed to choose
a smaller set of states. It turned out that this is possible
without much loss in accuracy. But the choice of represen-
tative states is of crucial importance for the performance
of ADP. We experienced that to obtain good results it is
not necessary to traverse the whole state space, which is
inifitely big. Instead, we generate the set of representative
states in two different ways:

• Sample path: By means of simulation a sample
path is generated with q events. This is a random
evolvement of the state during some time interval.
The states that are traversed during the sample path
are taken as the set of representative states. Every
state is picked according to a Bernoulli distributed
variable with parameter p. If the variable takes
zero it is ignored. If it takes one, the state is
581
included and during the algorithm the Bellman
error is calculated for that state. The generated
set of states is kept fixed during the algorithm.
The algorithm in combination with this method is
denoted as ADP1.

• Optimized: The goal is to compose a set of states
such that after minimization of the Bellman error of
these states a satisfying policy is found. Initially a
very small set of representative states is composed
randomly, containing only four or five elements.
In the algorithm this set is optimized by removing
and adding states iteratively, such that the number
of elements stays the same. To determine the state
to be removed we minimize the Bellman error
of the remaining states and evaluate the one-step
improved policy by simulation. The addition of
a new state, which replaces the removed state,
occurs similarly; a number of states is evaluated
and the best state is selected. States are generated
by means of simulation. We refer to this method
by ADP2.

The composition of the set with representative states (the
sample/realization) is crucial for success. Therefore we
apply ADP with different seeds for the random number
generator.

Remind that with ADP1 and ADP2 the set of represen-
tative states is composed by means of a simulation run. We
define the level of a state as the total number of calls in the
system. A property of the model is that states from either
high level states or low level states are not frequently visited
during these runs. We observed that the approximations are
less accurate for these states and can yield bad actions with
one-step policy improvement. Therefore, we introduce M−
as the lowest level of states with actions being changed
according to the one-step improved policy and the highest
level will also be denoted with M+.

4.4 Algorithm

With the knowledge that we obtained so far we compose the
algorithm. We start with the discussion of ADP1, consisting
of the following steps:

1. Choose the initial policy and generate the set of
representative states as described in Section 4.3.
Suitable parameters are given in Section 5.

2. Determine the average cost by simulation.
3. Apply ADP conform Section 4.1.
4. Execute one-step policy improvement, see Section

3.1. Go to step 1 if the outcome is not satisfying.
5. Fine-tune M− and M+ afterwards by simulation

and try different weights for the states by changing
ρ such that the average cost is further minimized.



Koole and Pot
ADP2 integrates ADP1 with a method to optimize the
set of representative states, which is achieved by local search.
Details are already given in Section 4.3. The difference with
ADP1 is in the first place a smaller set of representative
states and in the second place an extra loop in order to
optimize this set.

Each of the algorithms yields a one-step improved
policy. Note that instead of calculating and storing the
policy explicitly, it can online be derived from ṽ.

5 NUMERICAL EXAMPLES

In this section we discuss the numerical examples, catego-
rized into two- and three-skilled call centers. All of them
are solved by minimizing the Bellman error and using the
gradient method that we described.

In Table 1 results are presented of 6 instances with two
skills and three agent groups (M = 2). Each column corre-
sponds with one call center instance. The rows are grouped
together: the upper block contains the model parameters
and the lower part presents the performance measures. If
we look at the second column from the left (instance 1),
we read that under the initial policy the average cost is 7.8,
against 3.6 under the optimal policy. With ADP1 we obtain
a policy with an average of 4.1 per unit of time and with
ADP2 an average of 3.7.

Table 2 shows the results of three call centers with three
skills and four agent groups (M = 3). With respect to the
initial policy, ADP reduces the average cost with almost
fifty percent. Because the state spaces of these examples are
huge, it is not possible to obtain and evaluate the optimal
policies.

Some parameters are kept constant. With value iteration
the state space is truncated at level 125. Concerning the
gradient method, the initial stepsize γ is 0.2 and the scalar
is 1.15−1. Parameter K is fixed at 2. With ADP1 the values
p = 0.00005 (the parameter of the Bernoulli distribution)
and q = 2500000 events gave satisfying results.

Several runs are executed for each example, until the
long-run average cost is about 50 percent of the average
cost that corresponds with the initial policy. Remind that
the resulting policies are evaluated by means of simulation
or by using the power series algorithm. Our experience is
that the outcomes per run vary a lot and are often even
worse than under the initial policy. On average about ten
runs were necessary with ADP1 to find the results presented
in the table. The computation times are several minutes per
instance, consisting of multiple runs.

In Section 3.1 we listed a number of properties that
describe the structure of an optimal policy. To validate
the quality of the policies found with ADP, we compose
manually, by trial and error and using these rules, dynamic
routing policies. The quality of the resulting policies was
582
Table 1: Examples with 2 Skills
Examples

1 2 3 4 5 6
h1 .5 2 2 2 .5 .5
h2 2 .5 .5 .2 2 2
λ1 2.5 1.5 1.8 1.6 4.3 7
λ2 2.5 1.5 1.8 1.6 4.3 7
μ1 1 .5 .25 .25 .5 .5
μ2 1 .5 .25 .25 .5 .5
μ̄1 .25 .4 .3 .3 .13 .13
μ̄2 1.8 .6 .2 .2 .38 .38
S1 2 1 2 6 7 11
S2 2 1 2 6 7 11
S̄ 4 6 12 4 14 25

g0 7.8 1.89 7.4 2.20 5.6 4.7
g̃1 (adp1) 4.1 1.17 3.8 1.38 3.5 3.0
g̃1 (adp2) 3.7 1.16 3.8 1.30 3.2 2.4

g (opt) 3.6 1.15 3.6 1.18 2.9 > 2.2

Table 2: Examples with 3 Skills
Examples

1 2 3
(h1, .., h3) (.5,2,.5) (.5,2,.5) (2,.2,1)
(λ1, .., λ3) (2.5,..,2.5) (4.3,..,4.3) (1.6,..,1.6)

(μ1, .., μ3) (.5,..,.5) (.5,..,.5) (.25,..,.25)
(μ̄1, .., μ̄3) (.13,.9,.13) (.13,.38,.13) (.3,.2,.15)
(S1, .., S3) (4,..,4) (7,..,7) (6,5,4)

S̄ 12 21 8
g0 14.0 10.5 14.7

g̃1 (adp1) 7.0 5.5 8.1
g̃1 (adp2) 6.6 5.2 8.5

above our expectation. They were almost as good as the
results obtained with ADP1.

6 CONCLUDING REMARKSAND FUTUREWORK

Methods for analyzing multi-skill call centers suffer from
the curse of dimensionality. With approximate dynamic
programming the curse of dimensionality does not give
any trouble. Dynamic policies are obtained for bigger call
centers than was possible before.

Using basic functions of order two (see Section 4.2) is
sufficient to obtain numerically near-optimal policies. This
was investigated by fitting second-order polynomials to the
real value function. However, according to our experience,
the minimization of the Bellman error yields approximations
that are less accurate than the one obtained with the real
value function. Thus, there exists second-order polynomials
that approach the real value function closer than the one we
obtained with ADP. It shows that there is space left over
for further improvements.

We experienced that the choice/composition of repre-
sentative states is a crucial factor for success. It is in our
opinion interesting for further research, to understand the
relation between the choice of representative states and the



Koole and Pot
accuracy of the fit better. This could eventually result in
a smaller set of representative states, a lower number of
’trials’ and reduce the computation times significantly, by
which it would become easier to apply ADP to bigger call
centers.

From our experiments it follows that generating sample
paths by simulation is an effective way to compose the set
of representative states, denoted as ADP1. We run the
algorithm several times with different sets of representative
states. This is necessary for obtaining good policies because
the policies are very sensitive for the composition of the
set with representative states.

ADP2 is a totally different approach: the set of rep-
resentative states is optimized by local search, such that
the quality of the policies is maximized. The results are
good. In comparison to the initial policy, which assigns
calls first to specialists, the weighted-average queue-lengths
are reduced with about 50 percent.

The quality of the policies with ADP1 are satisfying, but
not good. We experienced that it is not difficult to compose
routing policies manually such that the performance is almost
as good as with ADP1. We conclude that the algorithm
ADP2 is superior to ADP1. Within a reasonable amount of
time we solved the examples close to optimality.

In future work we will extend the analysis to the general
setting of multi-skill routing in inbound call centers. There
are several issues to start with. In the first place, the
performance depends to some extend on the type of gradient
method. It seems to be worth to study the literature to find
more effective methods that reduce the computation times,
which may be desired for the analysis of bigger call center.
In the second place, another direction is to improve the
structure of the basis function or to change its definition
by adding more variables. Finally, the state space could be
divided into multiple regions and separate functions could
be fitted for each region, see for example Poupart, Patrascu,
and Schuurmans (2002).

REFERENCES

Bellman, R. 1961. Adaptive control processes: A guided
tour. Princeton University Press.

Bertsekas, D., and J. Tsitsiklis. 1996. Neuro-dynamic pro-
gramming. Athena Scientific.

Blanc, J. 1987. On a numerical method for calculating state
probabilities for queueing systems with more than one
waiting line. Journal of Computational and Applied
Mathematics 20:119–125.

Chevalier, P., R. Shumsky, and N. Tabordon. 2004. Routing
and staffing in large call centers with specialized and
fully flexible servers. Submitted to Manufacturing and
Service Operations Management.

de Farias, D., and B. Van Roy. 2003. Approximate linear
programming for average-cost dynamic programming.
583
In Advances in Neural Information Processing Systems
15: MIT Press.

de Farias, D., and B. Van Roy. 2004. On constraint sampling
in the linear programming approach to approximate dy-
namic programming. Mathematics of Operations Re-
search 29(3):462–478.

Farias, V., and B. Van Roy. 1994. Tetris: A study of random-
ized constraint sampling. to appear in Probabilistic and
Randomized Methods for Design Under Uncertainty.

Hooghiemstra, G., M. Keane, and S. van de Ree. 1988.
Power series for stationary distributions of coupled
processor models. SIAM Journal on Applied Mathe-
matics 48:1159–1166.

Lippman, S. 1975. Applying a new device in the opti-
mization of exponential queueing systems. Operations
Research 23:687–710.

Örmeci, E. 2003. Dynamic admission control in a call center
with one shared and two dedicated service facilities.
unpublished.

Poupart, P., C. Patrascu, and D. Schuurmans. 2002. Piece-
wise linear value function approximation for factored
MDPs. In Proceedings of the Eighteenth National Con-
ference on AI, 292–299.

Puterman, M. 1994. Markov decision processes. Wiley.
Tijms, H. 1986. Stochastic models. an algorithmic approach.

Wiley.
Tsitsiklis, J., and B. Van Roy. 1997. An analysis of temporal-

difference learning with function approximation. IEEE
Transactions on Automatic Control 42(5):674–690.

AUTHOR BIOGRAPHIES

GER KOOLE is a professor in the Department of Math-
ematics at the Vrije Universiteit Amsterdam. He grad-
uated in 1992 from Leiden University, and held post-
doc position at CWI (Amsterdam) and INRIA (Sophia
Antipolis). He is interested in the theory and appli-
cations of controlled queueing systems. His email ad-
dress is <koole@few.vu.nl>, and his web page is
<http://www.math.vu.nl/˜koole>.

AUKE POT is a PhD student at the Vrije Universiteit
Amsterdam. He is working on call center planning,
especially skill-based routing. His e-mail address is
<sapot@few.vu.nl>, and his web page is <http:
//www.math.vu.nl/˜sapot>.


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print



