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ABSTRACT

It is commonly assumed that the arrival process of customers
to a service system is a nonhomogeneous Poisson process.
Call center data often refute this assumption, and several
authors have postulated a doubly-stochastic Poisson process
for arrivals instead. We develop approximations for both
the long-run fraction of calls answered quickly, and the
distribution of the fraction of calls answered quickly within
a short period. We also perform a computational study to
evaluate the approximations and improve our understanding
of such systems.

1 INTRODUCTION

Workforce management in telephone call centers is largely
dependent on strong workforce planning and management
(Mehrotra 1997, Cleveland and Mayben 1997), as typically
60-80% of a call center’s budget is spent on the labor costs
associated with the agents who handle customer phone calls.
Conversely, it is well documented that in many call center
environments there are significant hidden costs and risks
associated with delivering service quickly (Ittig 1994, Ittig
2002, Pullman and Moore 1999).

Call center workforce planning and management in-
volves three levels of analysis and decision-making:

• “Long Run" Planning (typically 6-12 months in
advance),

• “Short Term" Scheduling (typically 1-2 weeks in
advance), and

• “Real Time" Schedule Adjustments.

All of these workforce management processes depend
explicitly on the ability to accurately translate demand for
service (measured in terms of call volumes and call handling
times) into a demand for agents (which depends on waiting
time distribution objectives defined by management as well
as forecasted workload).
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The conventional approach to this translation is to model
call queues as “Stationary, Independent Period-by-Period,"
(SIPP) as described in Green et al. (2001). The SIPP
approach divides the planning horizon into a series of periods
(time intervals), e.g., Monday 8 - 8:30am. Within each
period a stationary queueing model is analyzed to provide
estimates of performance in that period.

The arrival processes within periods are usually modeled
as independent Poisson Processes, with an arrival rate that is
assumed to be deterministic and fixed throughout the period.
Agent requirements for each period are then determined from
steady-state equations that are based on the forecasted arrival
and service rates, and target service objective for that period.

There are a number of potentially significant problems
associated with the SIPP approach. We believe that the
most significant problem is the assumption of a determin-
istic arrival rate for each period. Recent empirical studies
(notably Brown et al. 2005 and Avramidis et al. 2004)
have suggested that there is often significant variability in
call center arrival rates. We show that if this variability is
not accounted for in the determination of the number of
servers, then understaffing and poor service quality (that is,
long customer waiting times and high abandonment rates)
can result.

In this paper we examine the impact of randomly varying
arrival rates on call center system performance. In particular,
we compute performance approximations for the case where,
in each instance of a particular period, the arrival rate is
first sampled from a distribution, and then arrivals in the
period occur according to a homogeneous Poisson process
with that arrival rate.

Our performance approximations are related to the frac-
tion of calls answered within a given time limit. In contrast,
Harrison and Zeevi (2005) and Whitt (2004) adopt an “eco-
nomic” model where costs are assumed for abandoned calls,
waiting times of customers and agents. They then minimize
cost over the choice of staffing levels.

It is important to distinguish the randomly-varying ar-
rival rate behavior discussed in this paper from the random-
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ness arising from forecast uncertainty. In such a case, the
arrival rate for a period is assumed to be a deterministic
quantity, but it is not known with certainty. This case often
arises in one-time planning, when, for example, a new prod-
uct is introduced. The appropriate long-run performance
measure may differ in this case, as discussed in Steckley
et al. (2005). (This case is called the “uncertain arrival
rate” case in that paper.) We do not discuss that case further
here.

In Section 2, we develop our approximations for long-
run performance, and the distribution of performance in a
single period. In Section 3, we describe a set of experiments
designed to evaluate the quality of our performance ap-
proximations. We then compare these performance approx-
imations with simulation results and explain the observed
trends. Conclusions and suggestions for future research are
presented in Section 4.

To better understand the model of call arrivals we treat
in this paper we describe a particular example originally
proposed in Whitt (1999). In this model, the arrival process
on a given day is Poisson with arrival rate function B(λ(s) :
s ≥ 0), where (λ(s) : s ≥ 0) is a “profile” describing the
relative intensities of arrivals, and B is a random “busyness”
parameter indicating how busy the day is. To simplify the
analysis we assume that λ(·) is constant within each period.
We use this model for the experiments in Section 3 but the
analytic results in Section 2 do not rely on this particular
choice of model.

2 COMPUTING PERFORMANCE WITH
RANDOMLY VARYING ARRIVAL RATES

For a given period, the key long-run performance measure is
the long-run fraction of customers that receive satisfactory
service. A customer receives satisfactory service if her delay
in queue is at most τ seconds. Common choices for τ are
20 seconds (a moderate delay) and 0 seconds (no delay).
For much of what follows, we focus on a single period
(e.g., 10am - 10.15am) in the day, arbitrarily representing
this time period as time 0 through time t . Let �i denote
the real-valued random arrival rate within this period on
day i. (A period may only occur once each week, such as
the period Monday from 8 - 8:15am. In this case, the term
“day i” should be interpreted as the ith realization of the
period.)

Let Si denote the number of satisfactory calls (calls
that are answered within the time limit τ ) out of a total of
Ni calls that are received in the period on day i. Notice that
here we consider any call that abandons to be unsatisfactory.
Some planners prefer to ignore calls that abandon within
very short time frames. There is a difference, but it is not
important for our discussion.
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Over n days, the fraction of satisfactory calls is

∑n
i=1 Si∑n
i=1 Ni

.

Assume that days are i.i.d., the staffing level is fixed through-
out, and EN1 < ∞. (Assuming days are i.i.d. ignores the
inter-day correlations seen in Brown et al. (2005) and Steck-
ley et al. (2005). More general dependence structures can
be captured in essentially the same framework.) The last
assumption holds if E�1 < ∞. Dividing both the numera-
tor and denominator by n and taking the limit as n → ∞,
the strong law then implies that the long-run fraction of
satisfactory calls is

ES1

EN1
. (1)

This ratio gives performance as a function of staffing level.
But how do we compute it?

First note that

EN1 = EE[N1|�1]
= E[�1t]
= tE�1, (2)

so that EN1 is easily computed. Computing ES1 is more
difficult. We again condition on �1 to obtain ES1 = Es(�),
where s(λ) is the conditional expected number of satisfactory
calls in the period, conditional on �1 = λ. Our initial goal
is an expression for s(λ).

Fix the arrival rate to be deterministic and equal to λ

(for now). Let X(·; λ) = (X(s; λ) : s ≥ 0) be a Markov
process used to model the call center when there is a fixed
arrival rate λ. In specialized cases one can take X to be
the process giving the number of customers in the system,
but it may be more complicated. Suppose that a customer
arriving at time s will receive satisfactory service if and
only if X(s; λ) ∈ B for some distinguished set of states B.

Example 1 A common model of a call center is
an M/M/c + M queue, i.e., the Erlang-A model. There
are c servers, service times are exponentially distributed,
and the arrival process is Poisson. Customers are willing
to wait an exponentially-distributed amount of time (the
“patience time”) in the queue, and abandon if they do not
reach a server by that time. Here we take X(s; λ) to be
the number of customers in the system at time s. Then
X is a continuous-time Markov chain (CTMC). Suppose
that a service is considered satisfactory if and only if the
customer immediately reaches a server. Then we can take
B = {0, 1, 2, ...., c − 1}, i.e., a service is satisfactory if and
only if the number of customers in the system is c − 1 or
less when the customer arrives.

Example 2 Consider the same model as in the pre-
vious example, but now define a service to be satisfactory if
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and only if the customer reaches a server in at most τ > 0
seconds so long as she doesn’t abandon. The state space
of the CTMC defined in the previous example is no longer
rich enough to determine, upon a customer arrival, whether
that customer will receive satisfactory service or not. We
turn to a different Markov process in such a case. Without
loss of generality, suppose that as soon as a customer ar-
rives, the patience and service times for that customer are
sampled and therefore known. Since customers are served
in FIFO order we can determine, for every customer that
has arrived by time s, whether that customer will abandon
or not, and if not which agent the customer will be served
by. Let Vi(s; λ) denote the “work in process” for agent
i at time s, i = 1, . . . , c. The quantity Vi(s; λ) gives the
time required for agent i to complete the service of all cus-
tomers in the system at time s that are, or will be, served by
agent i. Let X(s; λ) be the vector (Vi(s; λ) : 1 ≤ i ≤ c).
The process X(·; λ) = (X(s; λ) : s ≥ 0) is a Markov pro-
cess, albeit a rather complicated one, and we can take
B = {v : minc

i=1 vi ≤ τ }, so that a service is satisfactory if
and only if at least one server will be available to answer
a call within τ seconds of a customer’s arrival.

Let Pϕ(·) denote the probability measure when the
Markov process has initial distribution ϕ. Let ν and π be,
respectively, the distribution of the Markov process at time
0 and the stationary distribution (assumed to exist and be
unique). Proposition 1 serves as a foundation for the use
of steady-state approximations for performance measures in
both the deterministic and random arrival rate contexts. The
proof of this result is based on an application of “Poisson
arrivals see time averages” results; see Steckley et al. (2005).

Proposition 1 Under the conditions above,

s(λ) = λ

∫ t

0
Pν(X(s; λ) ∈ B) ds.

If ν = π , so that the Markov process is in steady-state at
time 0, then

s(λ) = λtf (λ),

where f (λ) = Pπ(X(0; λ) ∈ B) is the steady-state proba-
bility that the system is in state B. We can interpret f (λ) as
the long-run fraction of customers that receive satisfactory
service.

2.1 Steady-State Approximations

Suppose that we adopt the steady-state approximation s(λ) ≈
λtf (λ). Here λt is the expected number of customer arrivals
in the period and f (λ) is the long-run fraction of customers
that receive satisfactory service. From (1) and (2), we see
that

ES1

EN1
= Es(�1)

tE�1
≈ E[�1f (�1)]

E�1
. (3)
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The fact that one should weight f (�) by the arrival rate
in (3) is well known. It is implicit (and at times explicit) in
the work of Harrison and Zeevi (2005) and Whitt (2004) for
example. Chen and Henderson (2001) did not perform this
weighting in their analysis, so their results do not directly
apply to the RVAR case, in contrast to what is claimed
there.

What are the consequences of ignoring a randomly-
varying arrival rate when predicting performance in a call
center? In that case we would first estimate a deterministic
arrival rate. The most commonly used estimates converge
to E�1 as the data size increases. We then estimate per-
formance as f (E�1).

Together with (3), Proposition 2 below establishes that
if f is decreasing and concave over the range of �1, then
we will overestimate performance if a random arrival rate is
ignored. The function f is, in great generality, decreasing
in λ. For many models it is also concave, at least in the
region of interest; see Chen and Henderson (2001).

Proposition 2 Suppose that f is decreasing and
concave on the range of �1. Then

E[�1f (�1)]
E�1

≤ f (E�1).

Proof: We have that

E[�1f (�1)] ≤ (E�1)(Ef (�1)) (4)

≤ (E�1)f (E�1) (5)

establishing the result. The inequality (4) follows since f

is decreasing (see, e.g., Whitt 1976), and (5) uses Jensen’s
inequality. �

For certain models and distributions of �1, we may be
able to compute (3) exactly. In general though, this will
not be possible. In such a case, we can use some numerical
integration technique. The problem is quite straightfor-
ward since f is typically easily computed and the integral
E[�1f (�1)] is one-dimensional.

We now turn from long-run performance to short-run
performance. We want to determine the distribution of
S1/N1, the fraction of satisfactory calls in a single period
[0, t] of a single day. (We define 0/0 = 1.) Our approach
is to condition on �, the arrival rate for the period.

Suppose that conditional on �, the period is long enough
that the fraction of calls answered on time is close to its
steady-state mean f (�). This transformation of the random
variable � is our first approximation. It ignores the “process
variability” that arises even for a fixed arrival rate.

We can refine this approximation to take into account
process variability. The key to the refinement is a central
limit theorem (CLT) for S1/N1 assuming a fixed λ. The
CLT should hold in great generality, as argued in Steckley
et al. (2005). Here we establish the CLT under strong



Steckley, Henderson, and Mehrotra
conditions, and provide a computable expression for the
variance in the process.

Let the arrival rate λ be fixed. Suppose that our goal
is to answer calls immediately. Suppose further that the
number-in-system process X = (X(s) : s ≥ 0) can be
modeled as an irreducible continuous-time Markov chain
on the finite state space {0, 1, . . . , d}, where d > c. (It is
not essential that the state space be finite, but it allows us
to avoid verifying regularity conditions.) Let M(s) be the
number of transitions by time s, and let Y = (Yn : n ≥ 0)

be the embedded discrete-time Markov chain. Then we can
write

S1

N1
≈ UM(t)

VM(t)

, (6)

where

Un = 1

n

n∑
i=1

I (Yi = Yi−1 + 1, Yi−1 ≤ c − 1) and

Vn = 1

n

n∑
i=1

I (Yi = Yi−1 + 1).

Here Un gives the fraction of the first n transitions that
correspond to an arriving customer finding a server available.
Similarly, Vn gives the fraction of the first n transitions that
correspond to an arrival joining the system. Notice that Vn

does not count blocked customers. This is why the relation
in (6) is not an equality. When d is large enough that few
customers are turned away, the approximation should be
very good.

Theorem 1 Under the assumptions given above,

√
λs

(
UM(s)

VM(s)

− u

v

)
⇒ N(0, σ 2(λ))

as s → ∞, where u, v and σ 2(λ) are specified in the proof
below.
Proof: The proof has 3 steps. The key step is to establish
the joint CLT

√
n

((
Un

Vn

)
−

(
u

v

))
⇒ N(0, 	) (7)

as n → ∞, where N(0, 	) denotes a Gaussian random
vector with mean 0 and covariance matrix 	, and u, v and
	 are specified below. The final 2 steps consist of applying
a random time change and then the delta method.

To establish (7) we apply a Markov chain CLT (see, e.g.,
Meyn and Tweedie (1993), Theorem 17.4.4). That result
applies only to univariate processes, but the result easily
extends to multivariate processes through an application
of the Cramér-Wold device (see, e.g., Billingsley (1968),
Theorem 7.7). Consider the (irreducible, finite-state-space)
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Markov chain Ỹ = (Ỹi : i ≥ 0), where Ỹi = (Yi, Yi+1). We
can write

Un − u = 1

n

n−1∑
i=0

h̃1(Ỹi) and

Vn − v = 1

n

n−1∑
i=0

h̃2(Ỹi),

where

h̃1(x, y) = I (y = x + 1, x ≤ c − 1) − u and

h̃2(x, y) = I (y = x + 1) − v.

Let π̃ be the stationary distribution of Ỹ . We choose
u and v to be steady-state means, so that π̃ h̃i =∑

(x,y) π̃(x, y)h̃i(x, y) = 0 for i = 1, 2. Let P̃ be the

transition matrix of Ỹ , and let g̃1 and g̃2 solve Poisson’s
equation

P̃ g̃i (x, y) = g̃i (x, y) − h̃i (x, y),

for i = 1, 2 and all (x, y). We then obtain (7), where

	ij = Eπ̃ [(g̃i(Ỹ1) − P̃ g̃i (Ỹ0))(g̃j (Ỹ1) − P̃ g̃j (Ỹ0))]
= Eπ̃ [g̃i (Ỹ0)h̃j (Ỹ0) + h̃i (Ỹ0)g̃j (Ỹ0)

−h̃i (Ỹ0)h̃j (Ỹ0)].

The second equality follows as in Meyn and Tweedie (1993),
(Equation 17.47).

In fact, we obtain a stronger result, namely a functional
CLT. This latter observation, together with the random-time-
change result (Billingsley 1968, Theorem 17.1), allows us
to conclude that

√
M(s)

((
UM(s)

VM(s)

)
−

(
u

v

))
⇒ N(0, 	)

as s → ∞. Now, M(s)/s → γ as s → ∞ a.s., where
γ is the long-run rate of transitions in the continuous-
time Markov chain X. The converging-together lemma
(Billingsley 1968, Problem 1, p. 28) then implies that

√
γ s

((
UM(s)

VM(s)

)
−

(
u

v

))
⇒ N(0, 	)

as s → ∞.
The final step applies the delta method (e.g., Billingsley

(1968), Problem 2, p. 34), using the function φ(x, y) = x/y,
to conclude that

√
γ s

(
UM(s)

VM(s)

− u

v

)
⇒ N(0, η2),
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where

η2 = ∇φ(u, v)T 	∇φ(u, v)

= 	11 − 2(u/v)	12 + (u/v)2	22

v2 .

Setting σ 2(λ) = λη2/γ yields the result. �

Equation (6) and Theorem 1 establish that conditional on
�, the fraction S1/N1 is approximately normally distributed
with mean f (�) and variance σ 2(�)/�t . So we can
approximate the distribution of S1/N1 by the normal mixture
N(f (�), σ 2(�)/�t).

Remark 1 The variance of this normal mixture is

Var f (�) + E
σ 2(�)

�t
,

which can be viewed as a decomposition of the variance
into contributions from arrival rate uncertainty and process
uncertainty respectively.

To compute the distribution of this normal mixture we
need to be able to compute the constant σ 2(λ), which in
turn depends on γ and η2 (which also depend on λ). The
following formulae are useful in this regard. They exploit
the strong relationships between the 2-step Markov chain
Ỹ and the single-step Markov chain Y , and between the
continuous-time Markov chain X and its embedded chain Y .
Let β(i) denote the rate at which the CTMC X leaves state
i, and let πX and πY denote the steady-state distributions
associated with X and Y respectively. Since

πX(y) = πY (y)/β(y)∑
z πY (z)/β(z)

,

it follows that

γ =
d∑

y=0

πX(y)β(y) =
(

d∑
z=0

πY (z)/β(z)

)−1

.

Note that πX or πY are easily computed, and therefore so
is γ .

We also need to compute u and v. These are given by

u =
c−1∑
i=0

πY (i)PY (i, i + 1) and

v =
d−1∑
i=0

πY (i)PY (i, i + 1),

where PY is the transition matrix of Y .
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Finally, recall that for 1 ≤ i, j ≤ 2

	ij = Eπ̃ [g̃i (Ỹ0)h̃j (Ỹ0) + h̃i (Ỹ0)g̃j (Ỹ0)

−h̃i (Ỹ0)h̃j (Ỹ0)]
=

∑
x,y

πY (x)PY (x, y)[g̃i (x, y)h̃j (x, y)

+h̃i (x, y)g̃j (x, y) − h̃i (x, y)h̃j (x, y)].

It remains to specify how to compute g̃i (x, y). Define

hi(x) = Exh̃i(x, Y1) =
d∑

y=0

h̃i (x, y)PY (x, y)

to be the “smoothed” version of h̃i , for i = 1, 2 and
x = 0, . . . , d. There are multiple solutions to the equations
defining g̃i , all of which differ by an additive constant. In
what follows we use one such solution for g̃i , which is

g̃i (x, y) =
∞∑

k=0

E(x,y)h̃i (Yk, Yk+1)

= h̃i (x, y) +
∞∑

k=1

E(x,y)h̃i (Yk, Yk+1)

= h̃i (x, y) +
∞∑

k=1

E(x,y)hi(Yk)

= h̃i (x, y) + gi(y),

where

gi(y) =
∞∑

k=0

Eyhi(Yk)

solves (PY − I )gi(y) = −hi(y) for all y, and has the
property that πY gi = 0. It is therefore possible to compute
gi from these latter relations, and then substitute back to
obtain g̃i .

2.2 Simulation-Based Estimates

The approximations for long-run and short-run performance
described above may be inappropriate, either because the
steady-state approximations for time-dependent quantities
may be inaccurate for a non-negligible set of arrival rates, or
because the true system is not well modelled by simple mod-
els for which steady-state results are readily computed. It is
natural to then turn to simulation to compute performance
measures.

In terms of long-run performance, we have already noted
that the problem reduces to computing ES1, the expected
number of satisfactory calls in a particular period. This is
straightforward using simulation. One can simply generate
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the arrival rate process, � say, and then conditional on the
realized value, simulate the call center for the day, giving
a realization of S1. Repeating this process in i.i.d. fashion
gives S1, . . . , Sn say, which can be averaged to give an
estimate of ES1.

For short-run performance, we wish to compute the
distribution of S1/N1. This random variable does not have
a (Lebesgue) density since it is supported on the rationals. Its
probability mass function is also uninformative. Therefore,
we would probably estimate a moderately coarse histogram
(say, with bins of width �x = 0.01). The height of the bin
[x, x + �x] is proportional to F(x + �x) − F(x), where
F is the distribution function of S1/N1. Hence, estimating
this histogram is equivalent to estimating the distribution
function at the fixed set of points �x, 2�x, . . . , 1. This
estimation is straightforward based on i.i.d. observations
(S1, N1), and one can apply standard results (e.g., Ross
1996, pp. 360–363) to compute tolerance bounds for F .

3 EXPERIMENTAL INSIGHTS

We conducted experiments to examine performance given
uncertainty in the arrival rate. Specifically, we wanted to
determine which factors impact the performance measures
discussed in §2, assess the quality of the approximations as
compared to the simulation-based estimates of performance,
and learn more about the behavior of systems with a random
arrival rate. The factors we chose to examine included (a)
the level of variability in the (Poisson) arrival rate; (b)
the duration of the (exponential) service times; and (c) the
(exponential) rate at which customers abandon the system.

Note that we continue to focus our analysis on a single
period. The design of the experiment is discussed in §3.1
and the results are presented in §3.2.

3.1 Experimental Design

For our experiments, we model the call center as an
M/M/c+M queue (i.e., the Erlang-A model) with a random
arrival rate �. We adopt the Whitt (1999) model discussed
earlier in which the arrival rate in the ith instance of the
period is given by Biλ, where the Bis are i.i.d. We model
Bi as uniform with mean 1 so that � is uniform with mean
λ. We chose the uniform distribution because it is simple
and it effectively illustrates the essential ideas. One could
easily substitute a more realistic distribution. The choice
of the endpoints of the uniform distribution are discussed
below.

For these experiments, we have set the length of the
period at one hour. A call is defined to have received
satisfactory service if it is answered immediately, i.e., τ = 0.

Using both the analytic approximations discussed above
and the corresponding simulation models, we estimate the
performance measures discussed in §2.1 and §2.2 for a
571
number of scenarios. The simulations were modelled and
run using software developed by Eric Buist and Pierre
L’Ecuyer (Buist and L’Ecuyer 2005), which was chosen for
its ease of modeling call center operations and capturing
the desired performance statistics, as well as its very fast
simulation run times.

The scenarios are summarized in Table 1. We vary the
expected number of calls per hour (λ). We also vary the
variability in the arrival rate in terms of a quantity we call
the variance factor. The variance factor is defined as the
ratio of the variance of the number of calls per hour under
the random arrival rate � and the variance of the number
of calls per hour given a deterministic arrival rate λ. The
level of the variance factor then determines the endpoints
of the uniform distribution for � and thus determines the
variability of �. Finally, we allow the mean service time
and mean abandonment time to vary.

The range of variance factors (as well as arrival rates
and average handle times) included in these experiments is
based on the actual historical data from four diverse call
centers that we have studied; additional details and examples
from this dataset are presented in Steckley et al. (2005).

In Table 1 a variance factor of one corresponds to the
case in which the arrival rate is deterministic and equal to λ.
An abandonment rate of 0 corresponds to the case in which
there is no abandonment, in which case the call center is
modeled as an M/M/c queue.

Table 1: Experimental Design
Factor Levels

Mean number of calls per hour (λ) 250
1000
4000

Variance factor 1
3
6

Service rate per hour (μ) 12
6

Abandonment rate per hour (θ ) 0
6
12

For each scenario, we selected the number of servers
c to be the minimum value so that the long-run fraction
of calls that are served immediately for a system with a
deterministic arrival rate λ is at least 90%.

For the simulations, we used an extensive warm-up
period. The parameter settings (arrival rate, service time
distribution, abandonment time distribution) for the warm-
up period were identical to those used in the simulation of
the actual period for which data was captured. Therefore,
our data reflects steady-state performance.
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3.2 Results

Both the simulation-based estimates and steady-state ap-
proximations for long-run performance (long-run fraction
of satisfactory calls) are reported in Table 2. The simulation
results are accurate to approximately 2 decimal places, and
so are reported only to that accuracy. Due to space consid-
erations we present only selected scenarios. This selection
illustrates the essential characteristics and trends seen in the
results as a whole.

Table 2: Simulation-Based Estimates and Approxima-
tions (in Parentheses) of Long-Run Performance

Variance factor
λ μ θ 1 3 6

0.91 0.87 0.82250 12 0
(0.91) (0.87) (0.81)
0.90 0.87 0.821000 12 0

(0.90) (0.87) (0.82)
0.91 0.88 0.834000 12 0

(0.90) (0.87) (0.82)
0.91 0.85 0.761000 6 0

(0.91) (0.84) (0.76)
0.89 0.87 0.841000 12 6

(0.90) (0.87) (0.84)
0.90 0.88 0.861000 12 12

(0.91) (0.89) (0.86)

The approximations and simulation-based estimates are
very similar. We expect such agreement since the simu-
lated period should exhibit steady-state behavior after the
extensive warm-up we used.

When the variance factor is one so that there is no
variability in the arrival rate, the long-run fraction of sat-
isfactory calls is very close to 0.9. This is because the
number of servers c is specifically chosen so that the long-
run fraction of satisfactory calls will be at least 0.9 in this
case. When the variance factor is strictly greater than one,
so that there is variability in the arrival rate, the long-run
fraction of satisfactory calls is less than 0.9 as suggested
by Proposition 2. We also see that the more variable the
arrival rate, the worse the performance. We see that the
degradation can be significant. It is on the order of 5% -
10% for some of the cases.

The results also indicate that abandonment reduces the
negative impacts of variability in the arrival rate. To under-
stand this, note that in a no-abandonment model, customers
with long waiting times remain in the system, creating a
“chain reaction” of waiting for future customers. In con-
trast, with abandonment, these customers leave the system
quickly, thereby avoiding the chain reaction encountered in
a no-abandonment model. This reasoning suggests that the
same trend would be observed if we had instead defined a
572
call to have received satisfactory service if the call does not
abandon and is answered within τ > 0 seconds. Although
we believe this trend holds in general, in some cases in
which τ is very large and the rate of abandonment θ is also
very large, the abandoning calls may actually drive down
the long-run fraction of satisfactory calls.

For short-run performance, we turn to the distribution
of S1/N1, the fraction of satisfactory calls in a single in-
stance of the period. We have two possible approximations
for this distribution. The first is given by the distribu-
tion of f (�). The second is given by the distribution
of N(f (�), σ 2(�)/�t). Figure 1 plots the simulation-
based estimate of the distribution (histogram) along with
the the density of the two approximations for a particular
case. The final bar of the histogram corresponds to the
observed S1/N1 ratios that were exactly one. The density
of N(f (�), σ 2(�)/�t) has been truncated at one and the
probability of the truncated region has been plotted as a
“histogram" bar just to the right of one. The density of
f (�) is obtained by smoothing a histogram of f (�), which
explains its slightly irregular appearance.
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Figure 1: Plots of the Distribution Estimates when λ =
1000, μ = 12, c = 97, θ = 0, and the Variance Factor
of 3

The simulation-based histogram shows that the distri-
bution of S1/N1 has a spike around one and a skewed left
tail for the given staffing level. We saw the same general
shape for all the scenarios in which there is variability in
the arrival rate. The shape indicates that it is quite likely
that performance for a single instance of the period will
be excellent with the fraction of satisfactory calls greater
than 0.9. But with a significant probability, the fraction of
satisfactory calls will be less than 0.9 and can be as bad as
0.5.

The approximations in Figure 1 track the simulation-
based results fairly well. The normal mixture approximation
is a much better estimate in the left tail.
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To better understand the general shape of the distribution
when there is variability in the arrival rate, consider Figure
2 which plots the mean f (·) and variance σ 2(·)/(·)t of
the normal mixture over the support of the arrival rate
distribution for the case plotted in Figure 1. When the
arrival rate is small, the mean is very close to one and the
variance is very small. This corresponds to the situation
in which the call center is comfortably overstaffed and
nearly all calls receive satisfactory service. For such λ,
N(f (λ), σ 2(λ)/λt) has a very concentrated density in the
neighborhood of one. The larger arrival rates result in lower
means and higher variances. This corresponds to a situation
in which the call center is understaffed and performance
becomes more variable. In such cases, N(f (λ), σ 2(λ)/λt)

takes on small values and is more dispersed.

1000
0

0.2

0.4

0.6

0.8

1

λ

f(λ)

σ2(λ)/tλ

Figure 2: Plot of f (·) and σ 2(·)/t (·) for the Scenario
of Figure 1

In Figure 3, we present a plot of the various estimates
for the case in which all parameters are the same, except
the variance factor which has increased to 6. There is now
an even greater skew in the left tail, which means that there
is higher probability of disastrous performance for a single
instance of a period. In fact, as variability in the arrival
rate becomes extremely large (variance factor ≥ 50), the
distribution of S1/N1 becomes bimodal with one mode at 1
and the other at 0. Intuitively, the arrival rate distribution is
so spread out that it rarely takes on values that our staffing
level is designed to handle, instead taking values that are
either very large, or very small relative to the staffing level.
Therefore, performance is either very poor, or very good,
with little chance of moderate performance.

Further examination of Figures 1 and 3 suggests that
the approximations improve as variability in the arrival rate
increases. Indeed, we saw this trend in the other scenarios in
our experimental design. To understand this trend, first note
that the normal approximation for S1/N1 is provably good
when the periods are long, but deteriorates as the periods
become shorter. For shorter periods, N1 can be small with
573
0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

1

2

3

4

5

6

S
1
/N

1

de
ns

ity

simulation−based estimate
f(Λ)

N(f(Λ),σ2(Λ)/tΛ)

Figure 3: Plots of the Distribution Estimates when λ =
1000, μ = 12, c = 97, θ = 0, and the Variance Factor
of 6

high probability. As a consequence, the actual distribution
of S1/N1 will exhibit a right skew. Note that the right skew
will be less for small λ since S1/N1 then clusters around one.
But for any deterministic λ, there will be a discrepancy in
the symmetric normal approximation and the right-skewed
actual distribution. When the arrival rate � is random we
smooth the normal approximation over the possible values
of � to get our approximation N(f (�), σ 2(�)/�t). The
approximation is essentially a kernel density estimate with
local bandwidth σ 2(·)/t (·). Figure 2 shows that for large λ,
where the discrepancy between the normal approximation
and actual distribution is significant, σ 2(λ)/t (λ) is relatively
large and we smooth more heavily. For smaller λ when the
discrepancy is less significant, we do less smoothing. As a
result, the approximation gets visually tighter.

To examine the effect of abandonment on short-run
performance, we plot the density of N(f (�), σ 2(�)/�t)

for a particular scenario with, and without, abandonment in
Figure 4. The densities are very similar around one but the
density corresponding to abandonment is less skewed to the
left. Similar characteristics are seen in the simulation-based
histogram and the distribution of f (�). The intuition here
is the same as for the effect of abandonment on long-run
performance.

4 CONCLUSIONS

We have developed approximations for both long-run per-
formance (a single number) and short-run performance (a
distribution), where performance is measured in terms of the
fraction of calls answered within a reasonable time frame.
The long-run approximations perform very well. The short-
run approximations are good, and improve as the variability
in the arrival rate increases. For many parameter regimes
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Figure 4: Plot of N(f (�), σ 2(�)/�t) when θ = 0 and
θ = 12, with λ = 1000, μ = 12, c = 97, and the
Variance Factor = 6

it is important to take into account the process variability
exhibited through the function σ 2(·). Not doing so leads
to underestimation of the tail behavior.

The short-run performance measures provide valuable
information to managers, partly because they clarify the
variability in performance that one might expect in a single
period: We expect good periods and bad periods, and our
results quantify how often good and bad periods will arise.
They are also valuable because financial contracts are often
based on short-run performance figures, and therefore the
distribution of short-run performance is extremely important.

Several avenues for future research suggest themselves.

• Service times are often better modeled as log-
normal random variables than exponential random
variables. For such cases, can one obtain exact val-
ues or approximations for the mean and variance
functions f and σ 2?

• Can one obtain the functions f and σ 2 when per-
formance is measured instead as the fraction of
calls that are answered within τ > 0 seconds?
(We only treated the τ = 0 case.)

• How does employee absenteeism fit into this frame-
work? Presumably, with a random number of
servers, in addition to a random arrival rate, the
strong-law approximation would be even better.
This seems to be the view of Harrison and Zeevi
(2005) and Whitt (2004) who use fluid-model ap-
proximations, which are akin to our strong-law
approximation, in their work.
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