
Proceedings of the 2005 Winter Simulation Conference
M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, eds.

A JAVA LIBRARY FOR SIMULATING CONTACT CENTERS

Eric Buist
Pierre L’Ecuyer

Département d’Informatique et de Recherche Opérationnelle
Université de Montréal, C.P. 6128, Succ. Centre-Ville

Montréal (Québec), H3C 3J7, CANADA

ter
ers
d
tion
of
s,
ce,
n

eral
eir
tor
ial

ter

ip-
be-
003

in-
use
fax,

o

at
not
me

g

me

rved

ined
t is
, a
an

ave
ame

ts.
an
bers

ons
ters,
f
e

eric
m-
ch

-
rs
ls
ny
an-

eat
del-
ult,

-
or
as
ava
,

ABSTRACT

ContactCenters is a Java library for writing contact cen
simulators. It supports multi-skill and blend contact cent
with complex and arbitrary routing, dialing policies, an
arrival processes. The programmer can alter the simula
logic in many ways, without modifying the source code
the library. A simulator can interoperate with other librarie
e.g., for optimization and statistical analysis. Performan
flexibility, and extensibility are the main goals of its desig
and implementation. In this paper, we present the gen
architecture of the library, its main components and th
interaction. We give an example of a contact center simula
and provide comparisons with a widely used commerc
simulation system also offering facilities for contact cen
simulation.

1 INTRODUCTION

A contact centeris a set of resources (communication equ
ment, employees, computers, etc.) providing an interface
tween customers and a business (Mehrotra and Fama 2
Gans, Koole, and Mandelbaum 2003). Acontact repre-
sents a customer’s request for some service such as
formation, subscription, order, etc. Customers may
various media for contacting a business: telephone,
mail, or Internet.

Inbound contactsare initiated by customers trying t
communicate with the business. A customer can beblocked,
i.e., receive a busy signal, if all phone lines are used
the time he calls. He can also be queued if service can
be started immediately. A queued customer may beco
impatient and abandon without receiving service.

Outbound contactsare initiated by agents contactin
customers, or by apredictive dialermaking phone calls by
trying to anticipate the number of free agents at the ti
contacted customers are reached. Aright party connect
occurs when an outbound contact is successful. Amis-
s

556
,

matchrepresents a successful contact that cannot be se
immediately.

Modern contact centers useskill-basedrouting for pro-
cessing different types of requests when each agent is tra
for handling only a subset of these types. Each contac
assigned a type (or skill). Before reaching an agent
customer must indicate his needs: callers interact with
interactive voice response(IVR) unit while Internet users
enter data in a Web form. Outbound contacts can also h
a type, since all customers are not contacted for the s
reason.

The agents are partitioned in agent groups or skill se
All agents in a group share the same skills, i.e., they c
serve the same types of contacts (although some mem
may be more efficient than others).

Queueing theory can be used to derivate approximati
for estimating the performance measures of contact cen
but only for models that oversimplify the complexities o
real-life systems for which only simulation can provid
accurate results.

A contact center can of course be modeled using gen
simulation tools, but that could be a very large progra
ming task for complex models. Specialized software, su
as Rockwell’sArena Contact Center Edition(Bapat 2003),
or NovaSim’sccProphet(NovaSim 2003) can ease mod
eling significantly. Supporting multi-skill contact cente
with complex routing policies, these point-and-click too
provide convenient graphical user interfaces (GUIs). Ma
common performance measures can be estimated, and
imations can help debugging models. However, the gr
number of software layers reduces performance, and mo
ing some aspects not supported by the tool is often diffic
complicated, and can lead to inefficient code.

TheContactCenterssoftware tool introduced here pro
vides facilities to construct an event-driven simulator f
an almost arbitrary contact center. It is implemented
a package of Java classes, built on top of the SSJ J
simulation library (L’Ecuyer, Meliani, and Vaucher 2002
L’Ecuyer and Buist 2005, L’Ecuyer 2004), which provide

Buist and L’Ecuyer

ild-
del
ith
nd
pre-
es,

ral

ral-
ing
sup
ce,
ete
ns

ith
d

cts

he
n-

ost
-

04,
a
re

ial
is
to
be
ive
ols,
ty
of

ient)

ew

ey
f a
li-
of

ns
of
by

g
ed

be
ce.

ct
om-
-

et-

n

In
er-
gh
ent
e

ds
h as
tc.,
tely

In
at
ed

rs,
ed

d

ses
he
ing
he

e,
n
act
ay

m.

A
e

no
a fast and robust simulation engine. It provides basic bu
ing blocks which can be combined and extended to mo
various systems with great detail. Generic simulators w
a lot of flexibility can be constructed with the package a
specific ones are already available. Each contact, re
sented by an entity (i.e., an object) with several attribut
is simulated individually for maximal flexibility. Its path in
the system can be arbitrarily complex: waiting in seve
queues, getting served by several agents, etc.

The Java base offers the advantages of a gene
purpose, widely-used, and well-supported programm
language. The package can be extended easily to
port additional logic and scenarios. By using inheritan
this extension can usually be achieved without compl
rewriting of new components. Thanks to the optimizatio
of modern Java Virtual Machines, simulators written w
ContactCentersrun several times faster than if implemente
with the leading commercial simulation software produ
(see Section 4).

Contact centers are often simulated with t
aim of optimizing some performance measures u
der a set of constraints; e.g., to find a least-c
staffing or routing under quality-of-service con
straints (Atlason, Epelman, and Henderson 20
Cez̧ik and L’Ecuyer 2004). This typically requires
large number of simulation runs, so CPU times a
important in that context. While some commerc
simulation tools provide an optimizer whose logic
typically hidden, special purpose optimizers adapted
call centers are usually more efficient. They can easily
accessed (or programmed) in Java. Using Java also g
easy access to external libraries such as GUI building to
statistical and optimization software, etc. The flexibili
offered by the library also facilitates the implementation
variance reduction techniques and gradient (or subgrad
estimators (Atlason, Epelman, and Henderson 2003).

The next section of this paper provides an overvi
of the architecture ofContactCentersby presenting the el-
ementary components and briefly summarizing how th
interact. Section 3 contains a commented example o
contact center simulator. It illustrates how to use the
brary. Section 4 compares the performance with that
a commercial simulation tool. Section 5 gives indicatio
on planned future work. A complete documentation
all classes, and several additional examples, are given
Buist and L’Ecuyer (2005) and Buist (2005).

2 GENERAL ARCHITECTURE

The main goal of theContactCenterslibrary is to provide a
flexible, extensible, and powerful framework for simulatin
a large variety of contact centers. Flexibility is obtain
by constructing small independent components that can
combined as needed, and extended by using inheritan
557
-

s

Elementary components include contacts, conta
sources, waiting queues, and agent groups. These c
ponents can interact without requiring much informa
tion about each other via theobserversdesign pattern
(Gamma, Helm, Johnson, and Vlissides 1998). In that s
ting, an observableobject, also calledbroadcaster, can
broadcast information to a list of registered listeners know
at runtime only. Alistener, also called anobserver, is an
object receiving information from these broadcasters.
Java, listeners are required to implement a particular int
face used by the broadcaster to transmit information throu
specified methods. In our implementation, each compon
of the library defines its own listener interface to avoid th
necessity of type casting by the observers.

2.1 The Simulation Periods

In contact center models, time is usually divided into perio
of 15 to 60 minutes, between which model parameters suc
the number of agents in each group, arrival rates of calls, e
may change. Sometimes, data must be collected separa
for the different periods. In the simulation,period-change
eventstake care of triggering the appropriate changes.
our implementation, this is done via the observer pattern:
the beginning of each period, an event notifies all register
period-changelisteners, who in turn make the appropriate
adjustments to the model parameters, statistical collecto
etc., under their control. Both fixed-sized and variable-siz
periods are supported.

In ContactCenters, we assume that the center is opene
duringP periods, called themain periods. Main periodp,
for p = 1, . . . , P , corresponds to a time interval[tp−1, tp),
where 0 ≤ t0 < · · · < tP . Since the simulation must
often start before the center opens and stop after it clo
(e.g., incoming calls could start getting queued before t
center opens and calls in process or in the queue at clos
time must be completed), we add two extra periods: T
preliminary period [0, t0), during which the center is not
yet open, and thewrap-up period[tP , tP+1], which goes
from the time the center closes to the timetP+1 at which
the simulation is over.

2.2 The Contacts

A contact is represented by a data object of classContact ,
with fields corresponding to attributes such as arrival tim
type identifier, priority, etc. At any time, the simulator ca
access these attributes and modify most of them. A cont
entity corresponds to a single customer, but a customer m
need to make several contacts before leaving the syste

A contact can be associated with atrunk group, i.e., a
bank of communication channels such as phone lines.
channel is like a resource which is allocated for the tim
the contact is in the system. Contacts arriving when

Buist and L’Ecuyer

ult,
city

by
s
with
dom
e ar
tion

to
ro-

pon
se

in
the
r-

tant
ed

le-
Fo

riva
ion.
es
ic-
d
d
con
ply

g
tor)
tact

as-

act
on-
ed,

t-
r of
m’s
list
as-
so
age

ess
ility
te o
ect

and
elay
and
cess
or
uled

ers
ht
may

el-
ent,
eing
.g.,
ded
ted,
ued
uter
ly.
t
ing
face
ded

l is

this
ent

ed
s of

a
t
is
ffi-
For
ity
ator
ck
bi-
rch
ions
be

ave,
communication channel is available are blocked. By defa
no trunk group is associated with contacts, avoiding capa
limitation.

One is free to define any desired custom attribute
creating a subclass ofContact and adding new fields. Thi
permits, e.g., to associate costs or random numbers
contacts. For instance, generating all the required ran
variates at the construction of a contact, even when som
unused, may be useful for random number synchroniza
for variance reduction.

2.3 The Contact Sources

Contact sourcesdetermine when contact objects need
be created, according to specific (stochastic) arrival p
cesses. Each concrete arrival process must corres
to an algorithm for generating inter-arrival times. The
times could depend on the entire state of the system
a complicated way, but they often depend only on
simulation time and previous inter-arrival times. Cu
rently, only the Poisson process with piecewise-cons
arrival rate and doubly stochastic variations of it describ
by Avramidis, Deslauriers, and L’Ecuyer (2004) are imp
mented, but many other processes could be added.
each process, the first arrival is scheduled when the ar
process is started, often at the beginning of the simulat

The factorydesign pattern is used to allow the sourc
to construct contacts without knowing their types expl
itly. The ContactFactory interface specifies a metho
called newInstance returning a newly-constructed an
configured contact object. A contact source can create
tacts from any class that implements this interface sim
by invoking thisnewInstance method. Thus, changin
the type of contact (and the name of its explicit construc
requires no change to the implementation of the con
source.

When a new contact occurs, it is instantiated by the
sociated factory and broadcast to the registerednew-contact
listeners. Then the next arrival is scheduled. Each cont
source is assigned a factory that typically constructs c
tacts of a single type. All contact sources can be initializ
started, and stopped.

A predictive dialer is normally used to generate ou
bound calls. The dialer’s policy determines the numbe
calls to try on each occasion (as a function of the syste
state), and supplies a list to extract them from. This
could be produced by a contact factory and is often
sumed to be infinite for simplicity. Such lists could al
be constructed from customer contacts who left a mess
who were disconnected, etc.

For each call extracted from the dialer list, a succ
test is performed. This test succeeds with a probab
being fixed or depending on the tested call, and the sta
the system. Successful calls represent right party conn
558
e

d

r
l

-

,

f
s

whereas failed calls represent wrong party connects
connection failures. The dialer generates a random d
representing the time between the beginning of dialing
the success or failure. This delay may depend on the suc
indicator, the call itself, the current time, etc. An event f
broadcasting the call to registered listeners is then sched
to occur at the time of success or failure.

The dialer defines separate lists of new-contact listen
for right party connects, and failed calls. Usually, only rig
party connects reach the router, but statistical collectors
need to listen to failed calls as well.

2.4 Waiting Queues

A WaitingQueue represents a data structure whose
ements are waiting contacts. To support abandonm
rather than contact objects, the queue contains events b
scheduled to happen at the time of automatic removal, e
abandonment, disconnection, etc. After a contact is ad
at the end of the queue, its dequeue event is construc
and scheduled if a maximal queue time is available. Que
contacts can also be removed manually, e.g., by the ro
when the service can begin, or enumerated sequential

A registeredwaiting-queue listenercan be notified abou
added and removed contacts. All the information be
transmitted through the dequeue event, the listener inter
remains unchanged even if new attributes need to be ad
to the event in the future. The reason of the remova
available for listeners through an integer called thedequeue
type, encapsulated in the dequeue event. For example,
permits statistical collectors to distinguish abandonm
from disconnection.

Two data structures are available for storing queu
contacts, each implemented in concrete subclasse
WaitingQueue . The standard waiting queue uses
linked list for First In First Out (FIFO) and Last In Firs
Out (LIFO) queues. When the number of priorities
finite and small, priority queues can be implemented e
ciently by combining several standard waiting queues.
complex priority schemes, the library provides a prior
queue using a red black tree with a user-defined compar
specifying how to order pairs of contacts. A red bla
tree (Cormen, Leiserson, Rivest, and Stein 2001) is a
nary tree with automatic balancing for more stable sea
speed. All these waiting queues use the Java Collect
Framework, and allow the internal data structure to
replaced if needed.

2.5 Agent Groups

An agent groupi, represented by an instance ofAgent-
Group , containsNi(t) ∈ N members at simulation time
t . Among these agents,Ni,i (t) are idle, andNb,i (t) are
busy. Since agents terminate their service before they le

Buist and L’Ecuyer

y
n a

ts a
ed
be

n
ted

ely

s

s
be

nts
stic
tate

er
can

an
tac

uni-
ther
the

s is
nal
e,
ent

for
tact
hen
the
ng
be
ed
to
ns

As
er

ot
tor
e

er,
nt

ate
an
a

and
ng
ign

ents

ve
an
al
l.
its
d

e
se.
o
be

For

en
uter
ed
ps,
e

by
g
es
ar

idle
ts.
ay
or

-
d
ot
we can haveNi(t) < Nb,i (t), in which caseNg,i (t) =
Nb,i (t) − Ni(t) ghost agentsneed to disappear after the
finish their work. As a result, the true number of agents i
groupi at timet is given byNi(t)+Ng,i (t). New contacts
are not accepted by the group whenNi(t) ≤ Nb,i (t). Since
Nb,i (t) includes the ghost agents, we have

Ni(t) + Ng,i (t) = Nb,i (t) + Ni,i (t). (1)

Some idle agents may be unavailable to serve contac
some times during their shift. They can be taking unplann
breaks, going to the bathroom, etc. These details can
modeled in the simulation if the appropriate informatio
is available. But in practice, they are often approxima
by various models such as an efficiency factorεi ∈ [0, 1],
which corresponds to the fraction of agents being effectiv
busy or available to serve contacts. IfNb,i (t) = 0, the
number of free agentsNf ,i (t) available to serve contacts i
given by Nf ,i (t) = round(εiNi(t)) where round(·) rounds
its argument to the nearest integer. IfNb,i (t) > 0, the
number of busy members of the group,Nb,i (t) − Ng,i (t),
needs to be subtracted to getNf ,i (t). This yields:

round(εiNi(t)) + Ng,i (t) = Nb,i (t) + Nf ,i (t). (2)

If εi = 1, Nf ,i (t) = Ni,i (t) and we are back to (1). Thi
elementary efficiency model is provided because it can
used without simulating individual agents. When age
are differentiated, other more complex and more reali
models can easily be implemented by manipulating the s
of agents during simulation.

The service of a contact is divided in two steps. Aft
communicating with a customer (first step), an agent
perform after-contact work (second step), e.g., update
account, take some notes, etc. After the first step, the con
may exit the system (and release the allocated comm
cation channel if necessary), or be transferred to ano
agent. However, the agent becomes free only after
second step (if any) is over. The end of these step
scheduled using a simulation event that contains additio
information about the service. As for the waiting queu
service can be terminated automatically through the ev
or manually through methods ofAgentGroup . Special
indicators tell us which type of termination has occured
each step. These facilities are useful to construct con
centers supporting preemptive service. For example, w
the router receives a new phone call, it can interrupt
work of an agent answering an e-mail. This e-mail, alo
with information on the remaining service time, can
stored in a waiting queue for the service to be resum
later. The termination-type indicators permit the router
differentiate service terminations from service interruptio
for statistical collecting purposes.
559
t

t

Registeredagent-group listenerscan be notified when
Ni(t) changes, when a service starts, and when it ends.
with the waiting queue, the simulation event is used rath
than a temporary object to transmit information.

By default, for better efficiency, an agent group does n
contain an object for each agent, preventing the simula
from differentiating them. Individual agents can of cours
be simulated by creating groups with a single memb
but regrouping the agents can be useful for more efficie
routing. The subclassDetailedAgentGroup offers an
implementation where each individual agent is a separ
object with its own characteristics. Each such agent c
be added to or removed from a group at any time during
simulation.

2.6 Routers

A router, called anautomatic call distributor(ACD) for
call centers, can be any class listening to new contacts,
assigning them to agent groups or adding them to waiti
queues. The router listens to service terminations to ass
queued contacts to free agents and to waiting queue ev
for statistical collection and overflow support.

The library provides theRouter class as a convenience
tool, but since the elementary components do not ha
information on the structure of the router, the user c
implement his own routing facilities if needed. Sever
routing systems could exist in parallel in a single mode
For example, the current router requires Java code for
logic, but new systems could be defined for a XML-base
logic with routing scripts constructed using a GUI. Th
former solution is faster, but the latter may be easier to u

For statistical collection, it is generally not sufficient t
listen to end of services directly, because a contact can
handled by several agents before leaving the system.
contacts to be counted correctly, anexited-contact listener
can be registered with a router which knows exactly wh
they abandon, are blocked, and are served. The default ro
implementation provides facilities to register new and exit
contact listeners, connect waiting queues and agent grou
and helper methods for implementing routing policies. Th
routing policy itself must be implemented in a subclass
defining fields for the data and implementing or overridin
methods for the routing logic. The router needs schem
for agent and contact selections, and it can optionally cle
waiting queues when the contact center does not have
or busy agents capable of serving the waiting contac
Algorithms to process dequeued and served contacts m
also be needed in complex systems supporting overflow
service by multiple agents.

The library provides a few predefined poli
cies inspired from Whitt and Wallace (2004) an
Koole, Pot, and Talim (2003). These policies do n

Buist and L’Ecuyer

y

or

ps

d
ore
hm
of

sic

nd
a

iva

s
If
If

a
nly

2
of
p 1
.d.

ach

ed
ent
als

all
nt
en

m

d

vice

all
and

u-

y

on,

ts,
s.
nter
ues,
ers
ate

e,

and

red
ent

ce

ss
ters
riod
ly
cover all possible scenarios, but flexibility is achieved b
allowing subclasses ofRouter to be created.

A first class of policies uses ordered lists as follows. F
each contact typek, thetype-to-groupmapdefines an ordered
list ik,1, ik,2, . . . of agent groups. For each agent groupi,
the group-to-type mapdefines an ordered listki,1, ki,2, . . .

of contact types. These lists indicate which agent grou
can serve a contact of typek and which contact types can
be served by agents in groupi, respectively. The order of
the elements can be used to define priorities.

In a second type of policy, aranks matrixassigns a
rank or priorityr(i, k) to contacts of typek served by agents
in group i. If the rank is∞, contacts of typek cannot
be served by agents in groupi. Otherwise, the smaller is
r(i, k), the higher is the priority of contact typek for agents
in groupi. This structure allows equal priorities to exist, an
avoids consistency problems, but routing policies are m
complex. When ranks are equal, a secondary algorit
must be used for tie breaking, reducing the performance
the simulator.

3 EXAMPLE OF A SIMULATOR

We present a small example to illustrate some of the ba
tools provided by theContactCenterslibrary. We consider
a center with three contact types, two agent groups, a
three two-hour periods. Contacts arrive according to
Poisson process with randomized piecewise-constant arr
rate Bλk,p for contact typek during periodp, where the
λk,p are constant whileB is a gamma random variable with
mean 1 and variance 1/α0, which represents the busynes
of the day (Avramidis, Deslauriers, and L’Ecuyer 2004).
B > 1, the arrival rate of contacts is higher than usual.
B < 1, it is lower than usual.

When a contact arrives, an agent is selected from
group depending on its type. Contacts of type 0 can o
be served by agents in group 0 while contacts of type
can only be served by agents in group 1. Contacts
type 1 are served by agents in group 0, or agents in grou
if no agents are free in group 0. Service times are i.i
exponential variables with mean 1/µp for contacts arriving
during periodp.

Agents in each groupi are not differentiated, andNi(t)

changes between periods while being constant within e
period. IfNb,i (t) ≥ Ni(t) at some timet , ongoing services
are finished, but new contacts are not accepted untilNb,i (t) <

Ni(t).
A contact that cannot be served immediately is add

to a waiting queue corresponding to its type. Abandonm
is supported, with patience times that are i.i.d. exponenti
with mean 1/νp for contacts arriving during periodp.

Suppose we are interested in the long-term over
service level and the occupancy ratio of the first age
group. These quantities are defined as follows. For a giv
560
l

constants > 0 which can be interpreted as the maximu
acceptable waiting time in the queue, letX be the total
number of served contacts,Xg(s) the number of served
contacts having waited less thans, Y the total number
of contacts having abandoned, andYb(s) the number of
contacts having abandoned after waiting at leasts. The
service levelis defined as

g(s) = E[Xg(s)]
E[X + Yb(s)] .

The occupancy ratioof an agent groupi is defined as

oi =
E

[∫ T

0 Nb,i (t) dt
]

E
[∫ T

0 (Ni(t) + Ng,i (t)) dt
] ,

whereT = tP+1 is the time at which all contacts are serve
after the end of the day. We also estimateE[Xg,k,p(s)],
the expected number of served contacts meeting the ser
level requirement, for contacts of typek arrived during
periodp, for eachk andp.

Figure 1 presents the code implementing this sm
model. Its first part declares constants and variables,
creates objects to set up the program. Themain method,
located at the end of the second part, constructs a sim
lator usingnew SimpleMSK() , triggers the simulation
by calling simulate , and displays statistical results b
usingprintStatistics . Thesimulate method calls
simulateOneDay n times whilesimulateOneDay ini-
tializes the system for a new replication, starts the simulati
and collects some observations.

For simplicity, parameters are encoded into constan
although real-life simulators should read them from file
The simulator declares the components of the contact ce
such as the arrival processes, agent groups, waiting que
and router, which do not compute any statistic. Count
and statistical collectors are declared separately to estim
the performance measures of interest only. ForX, Xg(s),
Y , andYb(s), simple integers are sufficient for this exampl
but a matrix is needed forXg,k,p(s). Thecountersare used
to compute per-replication values whereas thestatistical
probescollect these values to get averages, variances,
confidence intervals across replications.

The constructorSimpleMSK() , at the bottom of the
first page of the program, creates the components decla
in fields, and links them together. The period-change ev
is constructed withP +2 = 5 periods, i.e., one preliminary
period, three main periods, and one wrap-up period. Sin
t0 = 0, the preliminary period has a duration of 0.

For each contact type, a factory and an arrival proce
are constructed. The arrival process automatically regis
as a period-change listener to be notified when a new pe
starts. This will allow the arrival rate to be automatical

Buist and L’Ecuyer
// Import declarations

public class SimpleMSK {
// All times are in minutes
static final int K = 3; // Number of contact types
static final int I = 2; // Number of agent groups
static final int P = 3; // Number of periods
static final double PERIODDURATION = 120.0; // Two hours
// LAMBDA[k][p] gives the arrival rate for type k in period p
static final double[][] LAMBDA =

{ { 0, 4.2, 5.3, 3.2, 0 }, { 0, 5.1, 4.3, 4.8, 0 }, { 0, 6.3, 5.2, 4.8 , 0 } };
static final double ALPHA0 = 28.7; // Gamma param. for busyness
static final double[] M U = { 0.5, 0.5, 0.6, 0.4, 0.4 }; // Service rate for each period
static final double[] N U = { 0.3, 0.3, 0.4, 0.2, 0.2 }; // Abandonment rate for each period
static final double AWT = 20/60.0; // Acceptable waiting time (20 sec.)
// NUMAGENTS[i][p] gives the number of agents for group i in period p
static final int[][] NUMAGENTS = { { 0, 12, 18, 9, 9 }, { 0, 15, 20, 11, 11 } };
// Routing table, TYPETOGROUPMAP[k] and GROUPTOTYPEMAP[i] contain ordered lists
static final int[][] TYPETOGROUPMAP = { { 0 }, { 0, 1}, { 1 } };
static final int[][] GROUPTOTYPEMAP = { { 1, 0 }, { 2, 1 } };
static final double LEVEL = 0.95; // Level for confidence intervals
static final int NUMDAYS = 10000; // Number of replications

PeriodChangeEvent pce; // Event marking the beginning of each period
PiecewiseConstantPoissonArrivalProcess[] arrivProc

= new PiecewiseConstantPoissonArrivalProcess[K];
AgentGroup[] groups = new AgentGroup[I];
WaitingQueue[] queues = new WaitingQueue[K];
Router router;
RandomVariateGen sgen; // Service times generator
RandomVariateGen pgen; // Patience times generator
RandomVariateGen bgen; // Busyness generator

// Counters
int numGoodSL, numServed, numAbandoned, numAbandonedAfterAWT;
double[][] numGoodSLKP = new double[K][P];
GroupVolumeStat vstat; // Integral of the occupancy ratio

// statistical collectors
Tally served = new Tally ("Number of served contacts");
Tally abandoned = new Tally ("Number of contacts having abandoned");
MatrixOfTallies goodSLKP = new MatrixOfTallies

("Number of contacts meeting target service level",
new String[] { "Type 0", "Type 1", "Type 2" },
new String[] { "Period 0", "Period 1", "Period 2" });

RatioTally serviceLevel = new RatioTally ("Service level");
RatioTally occupancy = new RatioTally ("Occupancy ratio");

SimpleMSK() {
// One dummy preliminary period, P main periods, and one wrap-up period,
// main periods start at time 0.
pce = new PeriodChangeEvent (PERIODDURATION , P + 2, 0);
for (int k = 0; k < K; k++) // For each contact type

arrivProc[k] = new PiecewiseConstantPoissonArrivalProcess
(pce, new MyContactFactory (k), LAMBDA[k], new MRG32k3a());

bgen = new GammaGen (new MRG32k3a(), new GammaDist (ALPHA0, ALPHA0));
for (int i = 0; i < I; i++) groups[i] = new AgentGroup (pce, NUMAGENTS[i]);
for (int q = 0; q < K; q++) queues[q] = new StandardWaitingQueue();
sgen = MultiPeriodGen.createExponential (pce, new MRG32k3a(), MU);
pgen = MultiPeriodGen.createExponential (pce, new MRG32k3a(), NU);
router = new SingleFIFOQueueRouter (TYPETOGROUPMAP, GROUPTOTYPEMAP);
for (int k = 0; k < K; k++) arrivProc[k].addNewContactListener (router);
for (int i = 0; i < I; i++) router.setAgentGroup (i, groups[i]);
for (int q = 0; q < K; q++) router.setWaitingQueue (q, queues[q]);
router.addExitedContactListener (new MyContactMeasures());
vstat = new GroupVolumeStat (groups[0]);

}

Figure 1: Example of A Contact Center Simulator
561

Buist and L’Ecuyer
// Creates the new contacts
class MyContactFactory implements ContactFactory {

int type;
MyContactFactory (int type) { this.type = type; }
public Contact newInstance() {

Contact contact = new Contact (type);
contact.setDefaultServiceTime (sgen.nextDouble());
contact.setDefaultPatienceTime (pgen.nextDouble());
return contact;

}
}

// Updates counters when a contact exits
class MyContactMeasures implements ExitedContactListener {

public void blocked (Router router, Contact contact, int bType) {}
public void dequeued (Router router, WaitingQueue.DequeueEvent ev) {

++numAbandoned;
if (ev.getContact().getTotalQueueTime() >= AWT) ++numAbandonedAfterAWT;

}
public void served (Router router, AgentGroup.EndServiceEvent ev) {

++numServed;
Contact contact = ev.getContact();
if (contact.getTotalQueueTime() < AWT) {

++numGoodSL;
int period = pce.getPeriod (contact.getArrivalTime()) - 1;
if (period >= 0 || period < P) ++numGoodSLKP[contact.getTypeId()][period];

}
}

}

void simulateOneDay() {
Sim.init(); pce.init();
doubl e b = bgen.nextDouble(); // Busyness factor for today
for (int k = 0; k < K; k++) arrivProc[k].init (b);
for (int i = 0; i < I; i++) groups[i].init();
for (int q = 0; q < K; q++) queues[q].init();
numGoodSL = numServed = numAbandoned = numAbandonedAfterAWT = 0; vstat.init();
for (int k = 0; k < K; k++) for (in t p = 0; p < P; p++) numGoodSLKP[k][p] = 0;
for (int k = 0; k < K; k++) arrivProc[k].start();
pce.start(); Sim.start(); // Simulation runs here
pce.stop();
served.add (numServed); abandoned.add (numAbandoned); goodSLKP.add (numGoodSLKP);
serviceLevel.add (numGoodSL, numServed + numAbandonedAfterAWT);
double Nb = vstat.getStatNumBusyAgents().sum(); // Integral of N_b0(t)
doubl e N = vstat.getStatNumAgents().sum(); // Integral of N_0(t)
double Ng = vstat.getStatNumGhostAgents().sum(); // Integral of N_g0(t)
occupancy.add (Nb , N + Ng);

}

// Simulate n independent days
void simulate (int n) {

served.init(); abandoned.init(); goodSLKP.init();
serviceLevel.init(); occupancy.init();
for (int r = 0; r < n; r++) simulateOneDay();

}

public void printStatistics() {
System.out.println (served.reportAndCIStudent (LEVEL, 3));
System.out.println (abandoned.reportAndCIStudent (LEVEL, 3));
System.out.println (serviceLevel.reportAndCIDelta (LEVEL, 3));
System.out.println (occupancy.reportAndCIDelta (LEVEL, 3));
for (int k = 0; k < K; k++)

System.out.println (goodSLKP.rowReportAndCIStudent (k, LEVEL, 3));
}

public static void main (String[] args) {
SimpleMS K s = new SimpleMSK(); s.simulate (NUMDAYS); s.printStatistics();

}
}

Figure 1: Example of A Contact Center Simulator (continued)

562

Buist and L’Ecuyer

ator
tes
the
ber
ters

ry

he
ate
ich

ti-
nt to
cific
on-
for

iod-

ods
t

in

ap

re
ues,
ed-
n.

ls
. It
rve

ute

e
the
atio.

rst
nt.
te
al
ize

and
al

the
.
nt a
ted

he

e
ry.
val
lue
e
nce
ed
tact
les

he
ds
If
e,
re
ns

to

.
ed,
red
act
er
se
,

for
ree
r

g-

fi-
ut
e

act
is
., a

e

1.
al
p
iate

at
ts
changed from period to period. The busyness gener
bgen is then constructed for generating gamma varia
using inversion. Constructing the agent groups requires
period-change event, and an array containing the num
of agents for each period. Each agent group also regis
as a period-change listener forNi(t) to be automatically
updated during the simulation. During the prelimina
period, Ni(t) = 0 for all i, while during the wrap-up
period, Ni(t) corresponds to the number of agents in t
last main period. A second constructor is available to cre
an agent group not using a period-change event, for wh
Ni(t) must be changed manually.

Service and patience times are generated usingsgen
and pgen which are random variate generators for mul
ple periods. Such generators use a period-change eve
determine the current period and selects a period-spe
generator to get random values. The generic way for c
structing them is to create a random variate generator
each period and give the array of generators, with a per
change event, to the constructor ofMultiPeriodGen .
For some distributions such as exponential, helper meth
such ascreateExponential are available to construc
the generators more conveniently; this method is used
the constructor to initializesgen andpgen .

For the router to be constructed, a type-to-group m
and a group-to-type map are needed. The selectedSingle-
FIFOQueueRouter class affects how these structures a
used. Note how the arrival processes, the waiting que
and the agent groups are linked to the router. An exit
contact listener is also connected for statistical collectio

The vstat object is used for computing the integra
needed for the occupancy ratio in the first agent group
internally registers as an agent-group listener to obse
and integrateNi(t), Ng,i (t), Nf ,i (t), Ni,i (t), and Nb,i (t).
Although this is not used in this example, it can also comp
Nb,i,k(t), the number of busy agents in groupi serving
contacts of typek, if K is given to the constructor. Th
program could also compute the occupancy ratio in
second agent group as well as the overall occupancy r

The heart of the program is thesimulateOneDay
method located in the middle of the second page. It fi
initializes the simulation clock and the period-change eve
All contact center elements are then initialized to elimina
any side effect from previous replications. The arriv
processes are initialized with a busyness factor to random
the arrival rates. All the statistical counters are reset to 0,
the volume calculator is reset, which initializes the intern
“accumulators” that compute the integrals. Starting
arrival processes usingstart schedules the first arrivals
The period-change event is started, scheduling an eve
time 0 for the first main period, and the simulator is star
usingSim.start , which starts executing events.

When an arrival process triggers an arrival, t
newInstance method implemented inMyContact-
563
t

Factory , shown at the top of the second page of th
program, is called on the corresponding contact facto
One factory object has been constructed for each arri
process, the only difference between them being the va
of the type field. The factory constructs a contact of th
appropriate type and generates a service time and a patie
time. Each random value is associated with the return
contact object. The arrival process broadcasts the con
to the router, generates a new arrival time and schedu
the next arrival.

When a contact of type 0 arrives, the router takes t
element 0 of the type-to-group map, which correspon
to an ordered list containing the agent group 0 only.
Nf ,0(t) > 0, the contact is served immediately. Otherwis
it is added to waiting queue 0. Contacts of type 2 a
treated similarly. For contacts of type 1, the router obtai
an ordered list containing 0 and 1. IfNf ,0(t) > 0, the
contact is served immediately. Otherwise, it overflows
the next agent group in the list. IfNf ,1(t) > 0, the contact
is served. Otherwise, it is added at the end of queue 1

When an agent within group 0 becomes free or is add
the router uses the group-to-type map to obtain its orde
list, {1, 0}. The chosen router selects the queued cont
with the longest waiting time rather than using the ord
induced by the list. The longest waiting time is used becau
of the selected routing policy; by using a different policy
i.e., a different subclass ofRouter , another selection rule
could be enforced. If the waiting queues accessible
agents in group 0 contain no contact, the agent remains f
until new arrivals occur. Agents in group 1 have simila
contact selection rules.

Each contact exiting the system is notified to the re
istered exited-contact listener. Theblocked method does
nothing because the capacity of the contact center is in
nite by default. When a contact leaves the queue witho
service, a new abandonment is counted. If its waiting tim
is greater than or equal tos, an abandonment after the
acceptable waiting time is also counted. When a cont
is served, a new service is counted. If its waiting time
small enough, it is also counted as a good contact, i.e
contact meeting service level requirement.

For a good contact to be counted innumGoodSLKP,
the main period of its arrival must be determined. Th
getPeriod method returns a value in the range 1, . . . , P

which is converted to a main period index by subtracting
If the main period index is negative or greater than or equ
to P , the arrival occurred during the preliminary or wrap-u
periods, and the event is ignored. Otherwise, the appropr
element of the matrix is incremented.

The contact center closes at timetP = 120P = 360
(after 6 hours of operation). Since the arrival ratesλk,P+1
are 0 for allk, the arrival processes stop automatically
the beginning of the wrap-up period. All queued contac
are then served before the simulation stops.

Buist and L’Ecuyer

led
d

rvice
ion.
urs

ge
ple

r
r
cial
els.
ter
a
the

ve
rs

the
d to

lish
ish-
the
on,

d ar
ver,

can
ore
ts’
xity

ng
nts.
nist
ach
orm
red.

is
s are

with
t
ties
ena,
es.

f a
els
get
For
vel
the

nd
cts
are

va
ime
are
te
dent

n
rally
rk

uns
nder
e
ered
and
d if
ned

uling

ber
the
ed,

ty of

ate
and
ave
with

e-
cy.
eth-
ing
es

GP-
rant
Since the end of the wrap-up period is not schedu
as an event, thestop method is used to notify registere
period-change listeners afterSim.start() returns. Com-
puted observations are added to collectors and the se
level and occupancy ratio are computed for the replicat

If occupancy ratio was estimated for opening ho
only, the integrals would have to be obtained at timetP
rather than timeT ; this requires a custom period-chan
listener, which we avoided to keep the program as sim
as possible.

4 SPEED COMPARISON WITH A
COMMERCIAL PRODUCT

To evaluate the performance of theContactCentersli-
brary, we compare it with Rockwell’sArena Contact Cente
Edition 8.0 (Rockwell Automation, Inc. 2005), using fou
models provided as examples with the latter commer
product. We provide a brief summary of these four mod
More details can be found in the Arena Contact Cen
Edition User’s Guide. In all examples, arrivals follow
Poisson process with a constant arrival rate through all
simulation, except for the first (main) period.

Telethondeals with the organization of a pledge dri
local public radio station. From 6AM to 10AM, voluntee
process contacts to manage donations. Donors have
possibility to abandon or being disconnected and aske
leave a message.

Bilingual represents a contact center serving an Eng
and a Spanish populations. English-speaking, Span
speaking, and bilingual agents are available to serve
contacts. The system is slightly more complex than Teleth
because customers have the option to contact back an
only routed to agents capable of serving them. Howe
specialists do not have priority over bilingual agents.

Bank represents a bank model where each agent
process all contact types but handles its specialty m
efficiently. This multi-skill contact center models agen
preferences and has approximately the same comple
level as Bilingual.

Teamworkmodels a contact center with complex routi
logic in which a contact is processed by several age
Many customers abandon after waiting for a receptio
while many others are disconnected when trying to re
technical support. Some agents are required to perf
after-contact work after the served contact is transfer
Although this model supports a single contact type, it
more complex than the three other ones, since contact
served by multiple agents.

Each of these four models has been implemented
ContactCentersand simulated forn = 1000 independen
replications. CPU times have been obtained using facili
from SSJ. The four examples were also executed in Ar
in batch mode, to get the fastest possible execution tim
564
e

Since Arena does not compute the execution time o
model directly, an external program executing the mod
through Component Object Model (COM) was used to
the system time which approximates the CPU time.
maximal accuracy of the system times, no other user-le
tasks than the Arena simulation were performed on
machine during the tests.

Table 1 compares the performance of theContactCen-
terssamples with that ofArena. For each table entry, we fi
the required CPU time on the left and the number of conta
processed per second on the right. The reported times
computed on an AMD Athlon Thunderbird 1000MHz. Ja
times are computed under Linux, using Sun Java Runt
Environment (JRE) 1.4.2 and 1.5.0 while Arena times
computed under Microsoft Windows XP. To approxima
the number of contacts per second, the model-depen
expected number of arrivals over all replications,nE[A], is
divided by the estimated CPU time.

ContactCentersruns approximately 25 times faster tha
Arena on these examples. The execution times gene
increase with the complexity of the model. The Teamwo
model is more complex than the other examples, but it r
faster than Telethon under Arena and faster than Bank u
ContactCenters. The explanation is that in Teamwork, th
abandonment rate is very high, because contacts are filt
by the two-servers queue modeling the receptionists,
contacts directed to technical support are disconnecte
no agent is available. The processing time of an abando
contact is smaller, because the service requires sched
an extra event or allocating and releasing a resource.

For both systems, performance depends on the num
of contacts to be processed as well as their path into
system. It also depends on the routing policy being us
whose performance depends on the size and complexi
the contact center.

5 CONCLUSION

The library ContactCenters is flexible enough to simul
practically any model of a contact center using Java
SSJ. Some examples from the Arena User’s Guide h
been easy to implement and they execute faster than
the commercial tool.

In the future, we plan to experiment with variance r
duction techniques that could improve simulation efficien
We also plan to test various subgradients computation m
ods for optimization. The current generic simulator us
XML for parameter files will be maintained, and new on
may be constructed for other contact center designs.

ACKNOWLEDGMENTS

This research was supported by grants number O
0110050 and CRDPJ-251320 from NSERC-Canada, a g

Buist and L’Ecuyer
Table 1: Performance of the ContactCenters Library Compared with Arena

Example E[A] Arena JRE1.4 JRE1.5
Telethon 1000 4m23s 3802/s 10s 103950/s 10s 102040/s
Bilingual 5000 23m39s 3523/s 48s 104866/s 44s 112969/s
Bank 3600 23m57s 2505/s 48s 75774/s 46s 78947/s
Teamwork 7000 22m56s 5087/s 1m23s 83923/s 1m23s 84592/s
nd
ec-
et

ts
g the

Us-
ex

ce,

04.
ne

4.

od-
u-
in,

rie
er’s
che
g.

ll
n.

in.

98.
ted
ley.
le-
rch
n-

cs

.
-
t

th
n

A

ce
M.

ion
In
ce

r’s

l-

l-
-

e
ng,
ail

t
ni-
arch
in
asi-
ce
te-
n in
from Bell Canada via the Bell University Laboratories, a
grant number 00ER3218 from NATEQ-Québec to the s
ond author. We thank Athanassios Avramidis, Mehm
Tolga Cez̧ik and Wyean Chan for their helpful commen
on the design of ContactCenters classes, and for testin
constructed simulators during software development.

REFERENCES

Atlason, J., M. A. Epelman, and S. G. Henderson. 2003.
ing simulation to approximate subgradients of conv
performance measures in service systems. InProceed-
ings of the 2003 Winter Simulation Conference, ed.
S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Morri
1824–1832: IEEE Press.

Atlason, J., M. A. Epelman, and S. G. Henderson. 20
Call center staffing with simulation and cutting pla
methods.Annals of Operations Research127:333–358.

Avramidis, A. N., A. Deslauriers, and P. L’Ecuyer. 200
Modeling daily arrivals to a telephone call center.Man-
agement Science50 (7): 896–908.

Bapat, V. 2003. The arena product family: Enterprise m
eling solutions. InProceedings of the 2003Winter Sim
lation Conference, ed. S. Chick, P. J. Sánchez, D. Ferr
and D. J. Morrice, 210–217: IEEE Press.

Buist, E. 2005. Conception et implantation d’une librai
pour la simulation de centres de contacts. Mast
thesis, Département d’Informatique et de Recher
Opérationnelle, Université de Montréal. Forthcomin

Buist, E., and P. L’Ecuyer. 2005.ContactCenters: A Java
library for simulating contact centers. Software user’s
guide, forthcoming.

Cez̧ik, M. T., and P. L’Ecuyer. 2004. Staffing multiski
call centers via linear programming and simulatio
submitted.

Cormen, T. H., C. E. Leiserson, R. L. Rivest, and C. Ste
2001, September.Introduction to algorithms. second
ed. MIT Press.

Gamma, E., R. Helm, R. Johnson, and J. Vlissides. 19
Design patterns: Elements of reusable object-orien
software. second ed. Reading, Mass.: Addison-Wes

Gans, N., G. Koole, and A. Mandelbaum. 2003. Te
phone call centers: Tutorial, review, and resea
prospects.Manufacturing and Service Operations Ma
agement5:79–141.
565
Koole, G., A. Pot, and J. Talim. 2003. Routing heuristi
for multi-skill call centers. InProceedings of the 2003
WinterSimulationConference, 1813–1816: IEEE Press

L’Ecuyer, P. 2004.SSJ: A Java library for stochastic sim
ulation. Software user’s guide, Available online a
<www.iro.umontreal.ca/˜lecuyer> .

L’Ecuyer, P., and E. Buist. 2005. Simulation in Java wi
SSJ. InProceedings of the 2005 Winter Simulatio
Conference. submitted.

L’Ecuyer, P., L. Meliani, and J. Vaucher. 2002. SSJ:
framework for stochastic simulation in Java. InPro-
ceedings of the 2002 Winter Simulation Conferen,
ed. E. Yücesan, C.-H. Chen, J. L. Snowdon, and J.
Charnes, 234–242: IEEE Press.

Mehrotra, V., and J. Fama. 2003. Call center simulat
modeling: Methods, challenges, and opportunities.
Proceedings of the 2003Winter Simulation Conferen,
135–143: IEEE Press.

NovaSim 2003. ccProphet — simulate your call cente
performance. Available online via<www.novasim.
com/CCProphet/> .

Rockwell Automation, Inc. 2005. Arena simulation. Avai
able online via<www.arenasimulation.com> .

Whitt, W., and R. B. Wallace. 2004. A staffing a
gorithm for call centers with skill-based rout
ing. working paper. Available online at<www.
columbia.edu/˜ww2040/poolingMSOMrevR.
pdf> .

AUTHOR BIOGRAPHIES

ERIC BUIST is a M.Sc. Student at the Université d
Montréal. His main interests are software engineeri
object-oriented programming, and simulation. His e-m
address is<buisteri@IRO.UMontreal.CA> .

PIERRE L’ECUYER is Professor in the Départemen
d’Informatique et de Recherche Opérationnelle, at the U
versité de Montréal, Canada. He holds the Canada Rese
Chair in Stochastic Simulation and Optimization. His ma
research interests are random number generation, qu
Monte Carlo methods, efficiency improvement via varian
reduction, sensitivity analysis and optimization of discre
event stochastic systems, and discrete-event simulatio
general. He obtained the prestigiousE. W. R. Steaciefel-
lowship in 1995-97 and aKillam fellowship in 2001-03. His
web page is<www.iro.umontreal.ca/˜lecuyer> .

<www.iro.umontreal.ca/~lecuyer>
http://www.iro.umontreal.ca/~lecuyer
<www.novasim.
http://www.novasim.com/CCProphet/
com/CCProphet/>
http://www.novasim.com/CCProphet/
<www.arenasimulation.com>
http://www.arenasimulation.com
<www.
http://www.columbia.edu/~ww2040/poolingMSOMrevR.pdf
columbia.edu/~ww2040/poolingMSOMrevR.
http://www.columbia.edu/~ww2040/poolingMSOMrevR.pdf
pdf>
http://www.columbia.edu/~ww2040/poolingMSOMrevR.pdf
<buisteri@IRO.UMontreal.CA>
mailto:buisteri@IRO.UMontreal.CA
<www.iro.umontreal.ca/~lecuyer>
http://www.iro.umontreal.ca/~lecuyer

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

