Proceedings of the 2005 Winter Simulation Conference

M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, eds.

A JAVA LIBRARY FOR SIMULATING CONTACT CENTERS

Eric Buist
Pierre L'Ecuyer

Département d’Informatique et de Recherche Opérationnelle
Université de Montréal, C.P. 6128, Succ. Centre-Ville
Montréal (Québec), H3C 3J7, CANADA

ABSTRACT

ContactCenters is a Java library for writing contact center
simulators. It supports multi-skill and blend contact centers
with complex and arbitrary routing, dialing policies, and
arrival processes. The programmer can alter the simulation
logic in many ways, without modifying the source code of
the library. A simulator can interoperate with other libraries,
e.g., for optimization and statistical analysis. Performance,
flexibility, and extensibility are the main goals of its design
and implementation. In this paper, we present the general
architecture of the library, its main components and their

matchrepresents a successful contact that cannot be served
immediately.

Modern contact centers uskill-basedrouting for pro-
cessing different types of requests when each agent is trained
for handling only a subset of these types. Each contact is
assigned a type (or skill). Before reaching an agent, a
customer must indicate his needs: callers interact with an
interactive voice respons@VR) unit while Internet users
enter data in a Web form. Outbound contacts can also have
a type, since all customers are not contacted for the same
reason.

The agents are partitioned in agent groups or skill sets.

interaction. We give an example of a contact center simulator All agents in a group share the same skills, i.e., they can

and provide comparisons with a widely used commercial
simulation system also offering facilities for contact center
simulation.

1 INTRODUCTION

A contact centers a set of resources (communication equip-
ment, employees, computers, etc.) providing aninterface be-

serve the same types of contacts (although some members
may be more efficient than others).

Queueing theory can be used to derivate approximations
for estimating the performance measures of contact centers,
but only for models that oversimplify the complexities of
real-life systems for which only simulation can provide
accurate results.

A contact center can of course be modeled using generic

tween customers and a business (Mehrotra and Fama 2003,simulation tools, but that could be a very large program-

Gans, Koole, and Mandelbaum 2003). dontact repre-

sents a customer’s request for some service such as in-

formation, subscription, order, etc. Customers may use
various media for contacting a business: telephone, fax,
mail, or Internet.

Inbound contactsre initiated by customers trying to
communicate with the business. A customer cahlbeked
i.e., receive a busy signal, if all phone lines are used at
the time he calls. He can also be queued if service cannot
be started immediately. A queued customer may become
impatient and abandon without receiving service.

Outbound contactare initiated by agents contacting
customers, or by predictive dialermaking phone calls by
trying to anticipate the number of free agents at the time
contacted customers are reached.right party connect
occurs when an outbound contact is successfulmia-

556

ming task for complex models. Specialized software, such
as Rockwell'sArena Contact Center Editio(Bapat 2003),

or NovaSim’'sccProphet(NovaSim 2003) can ease mod-
eling significantly. Supporting multi-skill contact centers
with complex routing policies, these point-and-click tools
provide convenient graphical user interfaces (GUIs). Many
common performance measures can be estimated, and an-
imations can help debugging models. However, the great
number of software layers reduces performance, and model-
ing some aspects not supported by the tool is often difficult,
complicated, and can lead to inefficient code.

The ContactCentersoftware tool introduced here pro-
vides facilities to construct an event-driven simulator for
an almost arbitrary contact center. It is implemented as
a package of Java classes, built on top of the SSJ Java
simulation library (L'Ecuyer, Meliani, and Vaucher 2002,
L'Ecuyer and Buist 2005, L'Ecuyer 2004), which provides

Buist and L'Ecuyer

a fast and robust simulation engine. It provides basic build-
ing blocks which can be combined and extended to model
various systems with great detail. Generic simulators with
a lot of flexibility can be constructed with the package and

specific ones are already available. Each contact, repre-

sented by an entity (i.e., an object) with several attributes,
is simulated individually for maximal flexibility. Its path in
the system can be arbitrarily complex: waiting in several
gueues, getting served by several agents, etc.

The Java base offers the advantages of a general-

purpose, widely-used, and well-supported programming

Elementary components include contacts, contact
sources, waiting queues, and agent groups. These com-
ponents can interact without requiring much informa-
tion about each other via thebserversdesign pattern
(Gamma, Helm, Johnson, and Vlissides 1998). In that set-
ting, an observableobject, also callecbroadcaster can
broadcast information to a list of registered listeners known
at runtime only. Alistener, also called arobserver is an
object receiving information from these broadcasters. In
Java, listeners are required to implement a particular inter-
face used by the broadcaster to transmit information through

language. The package can be extended easily to sup-specified methods. In our implementation, each component

port additional logic and scenarios. By using inheritance,
this extension can usually be achieved without complete
rewriting of new components. Thanks to the optimizations
of modern Java Virtual Machines, simulators written with
ContactCentersun several times faster than if implemented
with the leading commercial simulation software products
(see Section 4).

Contact centers are often simulated with the
aim of optimizing some performance measures un-

der a set of constraints; e.g., to find a least-cost
staffing or routing under quality-of-service con-
straints (Atlason, Epelman, and Henderson 2004,

Cezik and L'Ecuyer 2004). This typically requires a
large number of simulation runs, so CPU times are
important in that context. While some commercial
simulation tools provide an optimizer whose logic is
typically hidden, special purpose optimizers adapted to
call centers are usually more efficient. They can easily be

of the library defines its own listener interface to avoid the
necessity of type casting by the observers.

2.1 The Simulation Periods

In contact center models, time is usually divided into periods
of 15to 60 minutes, between which model parameters such as
the number of agents in each group, arrival rates of calls, etc.,
may change. Sometimes, data must be collected separately
for the different periods. In the simulatioperiod-change
eventstake care of triggering the appropriate changes. In
our implementation, this is done via the observer pattern: at
the beginning of each period, an event naotifies all registered
period-changeisteners who in turn make the appropriate
adjustments to the model parameters, statistical collectors,
etc., under their control. Both fixed-sized and variable-sized
periods are supported.

In ContactCenterswe assume that the center is opened

accessed (or programmed) in Java. Using Java also givesduring P periods, called thenain periods Main periodp,

easy access to external libraries such as GUI building tools,

statistical and optimization software, etc. The flexibility
offered by the library also facilitates the implementation of

forp=1,..., P, corresponds to a time intervial,_1, 7,),
where 0< 19 < --- < tp. Since the simulation must
often start before the center opens and stop after it closes

variance reduction techniques and gradient (or subgradient) (e.g., incoming calls could start getting queued before the

estimators (Atlason, Epelman, and Henderson 2003).

The next section of this paper provides an overview
of the architecture o€ontactCenterdy presenting the el-
ementary components and briefly summarizing how they
interact.
contact center simulator. It illustrates how to use the li-
brary. Section 4 compares the performance with that of
a commercial simulation tool. Section 5 gives indications
on planned future work. A complete documentation of

center opens and calls in process or in the queue at closing
time must be completed), we add two extra periods: The
preliminary period [0, #p), during which the center is not
yet open, and thevrap-up period[zp, tp+1], Which goes

Section 3 contains a commented example of a from the time the center closes to the time 1 at which

the simulation is over.

2.2 The Contacts

all classes, and several additional examples, are given by A contact is represented by a data object of clagstact |,

Buist and L'Ecuyer (2005) and Buist (2005).
2 GENERAL ARCHITECTURE
The main goal of th&€€ontactCenterdibrary is to provide a

flexible, extensible, and powerful framework for simulating
a large variety of contact centers. Flexibility is obtained

with fields corresponding to attributes such as arrival time,
type identifier, priority, etc. At any time, the simulator can
access these attributes and modify most of them. A contact
entity corresponds to a single customer, but a customer may
need to make several contacts before leaving the system.
A contact can be associated withtrank group i.e., a
bank of communication channels such as phone lines. A

by constructing small independent components that can be channel is like a resource which is allocated for the time

combined as needed, and extended by using inheritance.

557

the contact is in the system. Contacts arriving when no

Buist and L'Ecuyer

communication channel is available are blocked. By default, whereas failed calls represent wrong party connects and
no trunk group is associated with contacts, avoiding capacity connection failures. The dialer generates a random delay

limitation.

One is free to define any desired custom attribute by
creating a subclass @fontact and adding new fields. This
permits, e.g., to associate costs or random numbers with
contacts. For instance, generating all the required random

variates at the construction of a contact, even when some are

unused, may be useful for random number synchronization
for variance reduction.

2.3 The Contact Sources

Contact sourcegsletermine when contact objects need to

be created, according to specific (stochastic) arrival pro- A WaitingQueue
Each concrete arrival process must correspondements are waiting contacts.

cesses.
to an algorithm for generating inter-arrival times. These
times could depend on the entire state of the system in
a complicated way, but they often depend only on the
simulation time and previous inter-arrival times. Cur-

rently, only the Poisson process with piecewise-constant
arrival rate and doubly stochastic variations of it described
by Avramidis, Deslauriers, and L'Ecuyer (2004) are imple-

mented, but many other processes could be added. For

each process, the first arrival is scheduled when the arrival
process is started, often at the beginning of the simulation.

Thefactory design pattern is used to allow the sources
to construct contacts without knowing their types explic-
itly. The ContactFactory interface specifies a method
called newlinstance returning a newly-constructed and
configured contact object. A contact source can create con-
tacts from any class that implements this interface simply
by invoking thisnewlnstance method. Thus, changing
the type of contact (and the name of its explicit constructor)
requires no change to the implementation of the contact
source.

When a new contact occurs, it is instantiated by the as-
sociated factory and broadcast to the registes-contact
listeners Then the next arrival is scheduled. Each contact
source is assigned a factory that typically constructs con-
tacts of a single type. All contact sources can be initialized,
started, and stopped.

A predictive dialeris normally used to generate out-
bound calls. The dialer’s policy determines the number of
calls to try on each occasion (as a function of the system’s
state), and supplies a list to extract them from. This list
could be produced by a contact factory and is often as-
sumed to be infinite for simplicity. Such lists could also

be constructed from customer contacts who left a message,

who were disconnected, etc.

representing the time between the beginning of dialing and
the success or failure. This delay may depend on the success
indicator, the call itself, the current time, etc. An event for
broadcasting the call to registered listeners is then scheduled
to occur at the time of success or failure.

The dialer defines separate lists of new-contact listeners
for right party connects, and failed calls. Usually, only right
party connects reach the router, but statistical collectors may
need to listen to failed calls as well.

2.4 Waiting Queues

represents a data structure whose el-

To support abandonment,
rather than contact objects, the queue contains events being
scheduled to happen at the time of automatic removal, e.g.,
abandonment, disconnection, etc. After a contact is added
at the end of the queue, its dequeue event is constructed,
and scheduled if a maximal queue time is available. Queued
contacts can also be removed manually, e.g., by the router
when the service can begin, or enumerated sequentially.

Aregisteredvaiting-queue listenetan be notified about
added and removed contacts. All the information being
transmitted through the dequeue event, the listener interface
remains unchanged even if new attributes need to be added
to the event in the future. The reason of the removal is
available for listeners through an integer calleddiegueue
type encapsulated in the dequeue event. For example, this
permits statistical collectors to distinguish abandonment
from disconnection.

Two data structures are available for storing queued
contacts, each implemented in concrete subclasses of
WaitingQueue The standard waiting queue uses a
linked list for First In First Out (FIFO) and Last In First
Out (LIFO) queues. When the number of priorities is
finite and small, priority queues can be implemented effi-
ciently by combining several standard waiting queues. For
complex priority schemes, the library provides a priority
gueue using a red black tree with a user-defined comparator
specifying how to order pairs of contacts. A red black
tree (Cormen, Leiserson, Rivest, and Stein 2001) is a bi-
nary tree with automatic balancing for more stable search
speed. All these waiting queues use the Java Collections
Framework, and allow the internal data structure to be
replaced if needed.

2.5 Agent Groups

For each call extracted from the dialer list, a success An agent groupi, represented by an instance Afent-

test is performed. This test succeeds with a probability
being fixed or depending on the tested call, and the state of

Group, containsN;(r) € N members at simulation time
t. Among these agentsy;;(¢) are idle, andNp;(t) are

the system. Successful calls represent right party connectsbusy. Since agents terminate their service before they leave,

558

Buist and L'Ecuyer

we can haveN;(t) < Np;(t), in which caseNg;(t) = Registeredagent-group listenersan be notified when
Np,i () — N;(r) ghost agentsieed to disappear after they N;(r) changes, when a service starts, and when it ends. As
finish their work. As a result, the true number of agents in a with the waiting queue, the simulation event is used rather
groupi at timer is given byN; (r) + Ng;(t). New contacts than a temporary object to transmit information.

are not accepted by the group wh¥p(r) < Np;(¢). Since By default, for better efficiency, an agent group does not
Np.i (¢) includes the ghost agents, we have contain an object for each agent, preventing the simulator
from differentiating them. Individual agents can of course

Ni(t) + Ng;(t) = Np;(t) + Nj;(1). (1) be simulated by creating groups with a single member,

but regrouping the agents can be useful for more efficient

Some idle agents may be unavailable to serve contacts atrouting. The subclasBetailedAgentGroup offers an
some times during their shift. They can be taking unplanned implementation where each individual agent is a separate
breaks, going to the bathroom, etc. These details can be object with its own characteristics. Each such agent can
modeled in the simulation if the appropriate information be added to or removed from a group at any time during a
is available. But in practice, they are often approximated simulation.
by various models such as an efficiency factpe [0, 1],
which corresponds to the fraction of agents being effectively 2.6 Routers
busy or available to serve contacts. Ny ;(t) = O, the
number of free agentds ; (r) available to serve contactsis A router, called anautomatic call distributor(ACD) for

given by N ; (1) = round; N; (t)) where round) rounds call centers, can be any class listening to new contacts, and
its argument to the nearest integer. N ;(r) > O, the assigning them to agent groups or adding them to waiting
number of busy members of the grouiy; () — Ny (1), gueues. The router listens to service terminations to assign
needs to be subtracted to g¥t; (). This yields: gueued contacts to free agents and to waiting queue events
for statistical collection and overflow support.
rounde; N; (1)) + Ng,;(t) = Np;(t) + Nt;(t). (2) The library provides th®outer class as a convenience

tool, but since the elementary components do not have
If € =1, Nf;(r) = Nj;(r) and we are back to (1). This information on the structure of the router, the user can
elementary efficiency model is provided because it can be implement his own routing facilities if needed. Several
used without simulating individual agents. When agents routing systems could exist in parallel in a single model.
are differentiated, other more complex and more realistic For example, the current router requires Java code for its
models can easily be implemented by manipulating the state logic, but new systems could be defined for a XML-based

of agents during simulation. logic with routing scripts constructed using a GUI. The
The service of a contact is divided in two steps. After former solution is faster, but the latter may be easier to use.
communicating with a customer (first step), an agent can For statistical collection, it is generally not sufficient to

perform after-contact work (second step), e.g., update an listen to end of services directly, because a contact can be
account, take some notes, etc. After the first step, the contacthandled by several agents before leaving the system. For
may exit the system (and release the allocated communi- contacts to be counted correctly, arited-contact listener
cation channel if necessary), or be transferred to another can be registered with a router which knows exactly when
agent. However, the agent becomes free only after the theyabandon, are blocked, and are served. The default router
second step (if any) is over. The end of these steps is implementation provides facilities to register new and exited
scheduled using a simulation event that contains additional contact listeners, connect waiting queues and agent groups,
information about the service. As for the waiting queue, and helper methods for implementing routing policies. The
service can be terminated automatically through the event routing policy itself must be implemented in a subclass by
or manually through methods okgentGroup . Special defining fields for the data and implementing or overriding
indicators tell us which type of termination has occured for methods for the routing logic. The router needs schemes
each step. These facilities are useful to construct contact for agent and contact selections, and it can optionally clear
centers supporting preemptive service. For example, when waiting queues when the contact center does not have idle
the router receives a new phone call, it can interrupt the or busy agents capable of serving the waiting contacts.
work of an agent answering an e-mail. This e-mail, along Algorithms to process dequeued and served contacts may
with information on the remaining service time, can be also be needed in complex systems supporting overflow or
stored in a waiting queue for the service to be resumed service by multiple agents.

later. The termination-type indicators permit the router to The library provides a few predefined poli-
differentiate service terminations from service interruptions cies inspired from Whitt and Wallace (2004) and
for statistical collecting purposes. Koole, Pot, and Talim (2003). These policies do not

559

Buist and L'Ecuyer

cover all possible scenarios, but flexibility is achieved by
allowing subclasses dRouter to be created.

Afirst class of policies uses ordered lists as follows. For
each contact typk, thetype-to-group magefines an ordered
list ix 1, ix2, ... Of agent groups. For each agent graup
the group-to-type maplefines an ordered lig; 1, ki 2, . ..
of contact types. These lists indicate which agent groups
can serve a contact of tygeand which contact types can
be served by agents in grouprespectively. The order of
the elements can be used to define priorities.

In a second type of policy, eanks matrixassigns a
rank or priorityr (i, k) to contacts of typé served by agents
in groupi. If the rank isco, contacts of typet cannot
be served by agents in grodp Otherwise, the smaller is
r(i, k), the higher is the priority of contact tygefor agents
in groupi. This structure allows equal priorities to exist, and
avoids consistency problems, but routing policies are more
complex. When ranks are equal, a secondary algorithm
must be used for tie breaking, reducing the performance of
the simulator.

3 EXAMPLE OF A SIMULATOR

We present a small example to illustrate some of the basic
tools provided by theContactCenterdibrary. We consider

a center with three contact types, two agent groups, and
three two-hour periods. Contacts arrive according to a

Poisson process with randomized piecewise-constant arrival by calling simulate

rate Big,, for contact typek during periodp, where the
Ak, p are constant whil& is a gamma random variable with
mean 1 and variance/dg, which represents the busyness
of the day (Avramidis, Deslauriers, and L'Ecuyer 2004). If
B > 1, the arrival rate of contacts is higher than usual. If
B < 1, it is lower than usual.

When a contact arrives, an agent is selected from a
group depending on its type. Contacts of type 0 can only
be served by agents in group O while contacts of type 2
can only be served by agents in group 1. Contacts of

constants > 0 which can be interpreted as the maximum
acceptable waiting time in the queue, I8t be the total
number of served contacts{y(s) the number of served
contacts having waited less than Y the total number
of contacts having abandoned, alig(s) the number of
contacts having abandoned after waiting at leastThe
service leveis defined as

E[Xg(s)]

8= EX + roo)]’

The occupancy ratioof an agent group is defined as

. E [T N (1) dt]

E [foT(N; (1) + Ng,i(1)) dr]’

whereT = tp,1 is the time at which all contacts are served
after the end of the day. We also estimadigXg . ,(s)],

the expected number of served contacts meeting the service
level requirement, for contacts of type arrived during
period p, for eachk and p.

Figure 1 presents the code implementing this small
model. Its first part declares constants and variables, and
creates objects to set up the program. Ti&in method,
located at the end of the second part, constructs a simu-
lator usingnew SimpleMSK() , triggers the simulation
, and displays statistical results by
usingprintStatistics . Thesimulate method calls
simulateOneDay ntimeswhilesimulateOneDay ini-
tializes the system for a new replication, starts the simulation,
and collects some observations.

For simplicity, parameters are encoded into constants,
although real-life simulators should read them from files.
The simulator declares the components of the contact center
such as the arrival processes, agent groups, waiting queues,
and router, which do not compute any statistic. Counters
and statistical collectors are declared separately to estimate

type 1 are served by agents in group 0, or agents in group 1 the performance measures of interest only. KorXg(s),

if no agents are free in group 0. Service times are i.i.d.
exponential variables with mear(/1, for contacts arriving
during periodp.

Agents in each groupare not differentiated, and; (r)

Y, andYp(s), simple integers are sufficient for this example,
but a matrix is needed fa¥ . ,(s). Thecountersare used

to compute per-replication values whereas ttatistical
probescollect these values to get averages, variances, and

changes between periods while being constant within each confidence intervals across replications.

period. If Np;(¢) > N;(¢) at some time, ongoing services
are finished, but new contacts are not acceptedNpji(r) <
Ni(t).

A contact that cannot be served immediately is added
to a waiting queue corresponding to its type. Abandonment
is supported, with patience times that are i.i.d. exponentials
with mean ¥v, for contacts arriving during periog.

Suppose we are interested in the long-term overall
service level and the occupancy ratio of the first agent
group. These quantities are defined as follows. For a given

560

The constructoiSimpleMSK() , at the bottom of the
first page of the program, creates the components declared
in fields, and links them together. The period-change event
is constructed withP 4+ 2 = 5 periods, i.e., one preliminary
period, three main periods, and one wrap-up period. Since
to = 0, the preliminary period has a duration of 0.

For each contact type, a factory and an arrival process
are constructed. The arrival process automatically registers
as a period-change listener to be notified when a new period
starts. This will allow the arrival rate to be automatically

Buist and L'Ecuyer

/I Import declarations

public class SimpleMSK {
/I All times are in minutes

static final int K = 3; /I Number of contact types
static final int | = 2; /I Number of agent groups
static final int P = 3; /I Number of periods
static final double PERIODDURATION = 120.0; /I Two hours

/I LAMBDA[K][p] gives the arrival rate for type k in period p
static final double[][] LAMBDA

{{04253320}{05143480}{0635248 0} %}
static final double ALPHAO 28.7; /I Gamma param. for busyness
static final double[] M U = { 0.5, 05 0.6, 0.4, 0.4 }; /I Service rate for each period
static final double[] N U = { 0.3, 0.3, 0.4, 0.2, 0.2 }; /I Abandonment rate for each period
static final double AWT = 20/60.0; /I Acceptable waiting time (20 sec.)
/I NUMAGENTS]i][p] gives the number of agents for group i in period p
static final int[]] NUMAGENTS ={{0 12, 18, 9,9} {0, 15 20, 11, 11 } }

/I Routing table, TYPETOGROUPMAP[K] and GROUPTOTYPEMAPIi] contain ordered lists
static final int[]] TYPETOGROUPMAP {{ O } {0 1} {1}}
11}

static final int[][] GROUPTOTYPEMAP - ({1,701} {2

static final double LEVEL = 0.95; /I Level for confidence intervals
static final int NUMDAYS = 10000; /I Number of replications
PeriodChangeEvent pce; /I Event marking the beginning of each period

PiecewiseConstantPoissonArrivalProcess|] arrivProc

= new PiecewiseConstantPoissonArrivalProcess[K];
AgentGroup[] groups = new AgentGroupll];
WaitingQueue[] queues = new WaitingQueue[K];
Router router;

RandomVariateGen sgen; /I Service times generator
RandomVariateGen pgen; /I Patience times generator
RandomVariateGen bgen; /I Busyness generator

/I Counters

int numGoodSL, numServed, numAbandoned, numAbandonedAfterAWT;

double[][] numGoodSLKP = new double[K][P];

GroupVolumeStat vstat; /I Integral of the occupancy ratio

/I statistical collectors
Tally served = new Tally ("Number of served contacts");
Tally abandoned = new Tally ("Number of contacts having abandoned");
MatrixOfTallies goodSLKP = new MatrixOfTallies
("Number of contacts meeting target service level",
new String[] { "Type 0", "Type 1", "Type 2" },
new String[] { "Period 0", "Period 1", "Period 2" });
RatioTally serviceLevel = new RatioTally ("Service level);
RatioTally occupancy = new RatioTally ("Occupancy ratio");

SimpleMSK() {
/l One dummy preliminary period, P main periods, and one wrap-up period,
/I main periods start at time O.
pce = new PeriodChangeEvent (PERIODDURATION , P + 2, 0);
for (int k = 0; k < K; k++) /I For each contact type
arrivProclk] = new PiecewiseConstantPoissonArrivalProcess
(pce, new MyContactFactory (k), LAMBDA[k], new MRG32k3a());
bgen = new GammaGen (new MRG32k3a(), new GammabDist (ALPHAO, ALPHAO));
for (inti = 0; i <[i++) groups[i] = new AgentGroup (pce, NUMAGENTS]i]);
for (int g = 0; g < K; g++) queues[q] = new StandardWaitingQueue();
sgen = MultiPeriodGen.createExponential (pce, new MRG32k3a(), MU);
pgen = MultiPeriodGen.createExponential (pce, new MRG32k3a(), NU);
router = new SingleFIFOQueueRouter (TYPETOGROUPMAP, GROUPTOTYPEMAP);

for (int k = 0; k < K; k++) arrivProc[k].addNewContactListener (router);
for (inti = 0; i < I; i++) router.setAgentGroup (i, groups[i]);
for (int g = 0; g < K; g++) router.setWaitingQueue (q, queues[q]);

router.addExitedContactListener (new MyContactMeasures());
vstat = new GroupVolumeStat (groups[0]);

Figure 1: Example of A Contact Center Simulator

561

Buist and L'Ecuyer

/I Creates the new contacts
class MyContactFactory implements ContactFactory {
int type;
MyContactFactory (int type) { this.type = type; }
public Contact newlnstance() {
Contact contact = new Contact (type);
contact.setDefaultServiceTime (sgen.nextDouble());
contact.setDefaultPatienceTime (pgen.nextDouble());
return contact;
}
}

/I Updates counters when a contact exits
class MyContactMeasures implements ExitedContactListener {
public void blocked (Router router, Contact contact, int bType) {}
public void dequeued (Router router, WaitingQueue.DequeueEvent ev) {
++numAbandoned:;
if (ev.getContact().getTotalQueueTime() >= AWT) ++numAbandonedAfterAWT;

public void served (Router router, AgentGroup.EndServiceEvent ev) {
++numServed,;
Contact contact = ev.getContact();
if (contact.getTotalQueueTime() < AWT) {
++numGoodSL;
int period = pce.getPeriod (contact.getArrivalTime()) - 1;
if (period >= 0 || period < P) ++numGoodSLKP[contact.getTypeld()][period];

}
}

void simulateOneDay() {
Sim.init(); pce.init();
doubl e b = bgen.nextDouble(); /I Busyness factor for today

for (int k = 0; k < K; k++) arrivProc[Kk].init (b);

for (inti = 0; i < I; i++) groupsli].init();

for (int g = 0; g < K; g++) queues[q].init();

numGoodSL = numServed = numAbandoned = numAbandonedAfterAWT = 0; vstat.init();
for (int k = 0; k < K k++) for in tp =0; p < P; p++) numGoodSLKP[K][p] = O;
for (int k = 0; k < K; k++) arrivProclK].start();

pce.start(); Sim.start(); /I Simulation runs here

pce.stop();

served.add (numServed); abandoned.add (numAbandoned); goodSLKP.add (numGoodSLKP);
serviceLevel.add (numGoodSL, numServed + numAbandonedAfterAWT);
double Nb = vstat.getStatNumBusyAgents().sum(); // Integral of N_bO(t)
doubl e N = vstat.getStatNumAgents().sum(); /I Integral of N_O(t)
double Ng = vstat.getStatNumGhostAgents().sum(); // Integral of N_gO(t)
occupancy.add (Nb , N + Ng);
}

/I Simulate n independent days

void simulate (int n) {
served.init(); abandoned.init(); goodSLKP.init();
serviceLevel.init(); occupancy.init();
for (intr =0; r <n r++) simulateOneDay();

public void printStatistics() {
System.out.println (served.reportAndCIStudent (LEVEL, 3));
System.out.printin (abandoned.reportAndCIStudent (LEVEL, 3));
System.out.printin (serviceLevel.reportAndCiDelta (LEVEL, 3));
System.out.println (occupancy.reportAndCiDelta (LEVEL, 3));
for (int k = 0; k < K; k++)
System.out.printlin (goodSLKP.rowReportAndCIStudent (k, LEVEL, 3));

public static void main (String[] args) {
SimpleMSK s = new SimpleMSK(); s.simulate (NUMDAYS); s.printStatistics();

Figure 1: Example of A Cont&ct Center Simulator (continued)
5

Buist and L'Ecuyer

changed from period to period. The busyness generator Factory , shown at the top of the second page of the
bgen is then constructed for generating gamma variates program, is called on the corresponding contact factory.
using inversion. Constructing the agent groups requires the One factory object has been constructed for each arrival
period-change event, and an array containing the number process, the only difference between them being the value
of agents for each period. Each agent group also registers of the type field. The factory constructs a contact of the

as a period-change listener fof; (¢) to be automatically
updated during the simulation. During the preliminary
period, N;(t) = 0 for all i, while during the wrap-up
period, N;(t) corresponds to the number of agents in the
last main period. A second constructor is available to create
an agent group not using a period-change event, for which
N;(t) must be changed manually.

Service and patience times are generated usien
and pgen which are random variate generators for multi-

appropriate type and generates a service time and a patience
time. Each random value is associated with the returned

contact object. The arrival process broadcasts the contact
to the router, generates a new arrival time and schedules
the next arrival.

When a contact of type O arrives, the router takes the
element 0 of the type-to-group map, which corresponds
to an ordered list containing the agent group O only. If
Nto(t) > 0, the contact is served immediately. Otherwise,

ple periods. Such generators use a period-change event toit is added to waiting queue 0. Contacts of type 2 are

determine the current period and selects a period-specific
generator to get random values. The generic way for con-
structing them is to create a random variate generator for
each period and give the array of generators, with a period-
change event, to the constructor bfultiPeriodGen

For some distributions such as exponential, helper methods

such asreateExponential are available to construct
the generators more conveniently; this method is used in
the constructor to initializegen andpgen.

For the router to be constructed, a type-to-group map
and a group-to-type map are needed. The sel&itegle-
FIFOQueueRouter class affects how these structures are
used. Note how the arrival processes, the waiting queues,
and the agent groups are linked to the router. An exited-
contact listener is also connected for statistical collection.

Thevstat object is used for computing the integrals
needed for the occupancy ratio in the first agent group. It
internally registers as an agent-group listener to observe
and integrateV; (t), Ng;(t), Nt ;(t), Ni;(t), and Np;(1).
Although this is not used in this example, it can also compute
Np,i k(t), the number of busy agents in groupserving
contacts of typek, if K is given to the constructor. The
program could also compute the occupancy ratio in the
second agent group as well as the overall occupancy ratio.

The heart of the program is th@mulateOneDay
method located in the middle of the second page. It first
initializes the simulation clock and the period-change event.
All contact center elements are then initialized to eliminate
any side effect from previous replications. The arrival

treated similarly. For contacts of type 1, the router obtains
an ordered list containing 0 and 1. N;o(r) > O, the
contact is served immediately. Otherwise, it overflows to
the next agent group in the list. N; 1(r) > O, the contact

is served. Otherwise, it is added at the end of queue 1.

When an agent within group 0 becomes free or is added,
the router uses the group-to-type map to obtain its ordered
list, {1, 0}. The chosen router selects the queued contact
with the longest waiting time rather than using the order
induced by the list. The longest waiting time is used because
of the selected routing policy; by using a different policy,
i.e., a different subclass dRouter , another selection rule
could be enforced. If the waiting queues accessible for
agents in group 0 contain no contact, the agent remains free
until new arrivals occur. Agents in group 1 have similar
contact selection rules.

Each contact exiting the system is notified to the reg-
istered exited-contact listener. Thiocked method does
nothing because the capacity of the contact center is infi-
nite by default. When a contact leaves the queue without
service, a new abandonment is counted. If its waiting time
is greater than or equal to, an abandonment after the
acceptable waiting time is also counted. When a contact
is served, a new service is counted. If its waiting time is
small enough, it is also counted as a good contact, i.e., a
contact meeting service level requirement.

For a good contact to be counted iomGoodSLKP
the main period of its arrival must be determined. The
getPeriod method returns a value in the range 1, P

processes are initialized with a busyness factor to randomize which is converted to a main period index by subtracting 1.

the arrival rates. All the statistical counters are resetto 0, and
the volume calculator is reset, which initializes the internal

“accumulators” that compute the integrals. Starting the

arrival processes usingtart schedules the first arrivals.

The period-change event is started, scheduling an event at

time 0 for the first main period, and the simulator is started
using Sim.start , which starts executing events.

When an arrival process triggers an arrival, the
newinstance method implemented ifMyContact-

563

If the main period index is negative or greater than or equal
to P, the arrival occurred during the preliminary or wrap-up
periods, and the eventis ignored. Otherwise, the appropriate
element of the matrix is incremented.

The contact center closes at timg = 120P = 360
(after 6 hours of operation). Since the arrival ratgs 1
are 0 for allk, the arrival processes stop automatically at
the beginning of the wrap-up period. All queued contacts
are then served before the simulation stops.

Buist and L'Ecuyer

Since the end of the wrap-up period is not scheduled Since Arena does not compute the execution time of a
as an event, thetop method is used to notify registered model directly, an external program executing the models
period-change listeners aft8im.start() returns. Com- through Component Object Model (COM) was used to get
puted observations are added to collectors and the servicethe system time which approximates the CPU time. For
level and occupancy ratio are computed for the replication. maximal accuracy of the system times, no other user-level

If occupancy ratio was estimated for opening hours tasks than the Arena simulation were performed on the

only, the integrals would have to be obtained at tirpe machine during the tests.

rather than timer'; this requires a custom period-change Table 1 compares the performance of @entactCen-

listener, which we avoided to keep the program as simple terssamples with that of Arena. For each table entry, we find

as possible. the required CPU time on the left and the number of contacts
processed per second on the right. The reported times are

4 SPEED COMPARISON WITH A computed on an AMD Athlon Thunderbird 1000MHz. Java

COMMERCIAL PRODUCT times are computed under Linux, using Sun Java Runtime

Environment (JRE) 1.4.2 and 1.5.0 while Arena times are

To evaluate the performance of thHeontactCentersli- computed under Microsoft Windows XP. To approximate

brary, we compare it with Rockwellarena Contact Center the number of contacts per second, the model-dependent
Edition 8.0 (Rockwell Automation, Inc. 2005), using four expected number of arrivals over all replication&[A], is
models provided as examples with the latter commercial divided by the estimated CPU time.
product. We provide a brief summary of these four models. ContactCentersuns approximately 25 times faster than
More details can be found in the Arena Contact Center Arena on these examples. The execution times generally
Edition User's Guide. In all examples, arrivals follow a increase with the complexity of the model. The Teamwork
Poisson process with a constant arrival rate through all the model is more complex than the other examples, but it runs
simulation, except for the first (main) period. faster than Telethon under Arena and faster than Bank under
Telethondeals with the organization of a pledge drive ContactCentersThe explanation is that in Teamwork, the
local public radio station. From 6AM to 10AM, volunteers abandonment rate is very high, because contacts are filtered
process contacts to manage donations. Donors have theby the two-servers queue modeling the receptionists, and
possibility to abandon or being disconnected and asked to contacts directed to technical support are disconnected if
leave a message. no agent is available. The processing time of an abandoned
Bilingual represents a contact center serving an English contact is smaller, because the service requires scheduling
and a Spanish populations. English-speaking, Spanish- an extra event or allocating and releasing a resource.
speaking, and bilingual agents are available to serve the For both systems, performance depends on the number
contacts. The systemiis slightly more complex than Telethon, of contacts to be processed as well as their path into the
because customers have the option to contact back and aresystem. It also depends on the routing policy being used,
only routed to agents capable of serving them. However, whose performance depends on the size and complexity of
specialists do not have priority over bilingual agents. the contact center.
Bank represents a bank model where each agent can
process all contact types but handles its specialty more 5 CONCLUSION
efficiently. This multi-skill contact center models agents’
preferences and has approximately the same complexity The library ContactCenters is flexible enough to simulate
level as Bilingual. practically any model of a contact center using Java and
Teamworkmodels a contact center with complexrouting SSJ. Some examples from the Arena User's Guide have
logic in which a contact is processed by several agents. been easy to implement and they execute faster than with
Many customers abandon after waiting for a receptionist the commercial tool.
while many others are disconnected when trying to reach In the future, we plan to experiment with variance re-
technical support. Some agents are required to perform duction techniques that could improve simulation efficiency.
after-contact work after the served contact is transferred. We also plan to test various subgradients computation meth-
Although this model supports a single contact type, it is ods for optimization. The current generic simulator using
more complex than the three other ones, since contacts areXML for parameter files will be maintained, and new ones
served by multiple agents. may be constructed for other contact center designs.
Each of these four models has been implemented with
ContactCentersand simulated fom = 1000 independent ~ ACKNOWLEDGMENTS
replications. CPU times have been obtained using facilities
from SSJ. The four examples were also executed in Arena, This research was supported by grants number OGP-
in batch modeto get the fastest possible execution times. 0110050 and CRDPJ-251320 from NSERC-Canada, a grant

564

Buist and L'Ecuyer

Table 1: Performance of the ContactCenters Library Compared with Arena

Example | E[A] Arena JRE1.4 JRE1.5

Telethon 1000 | 4m23s 3802/9 10s 103950/9 10s 102040/9
Bilingual 5000 | 23m39s 3523/ 48s 104866/9 44s 112969/9
Bank 3600 | 23m57s 2505/ 48s 75774/s 46s 78947/
Teamwork| 7000 | 22m56s 5087/s 1m23s 83923/9 1m23s 84592/g

from Bell Canada via the Bell University Laboratories, and
grant number 00ER3218 from NATEQ-Québec to the sec-
ond author. We thank Athanassios Avramidis, Mehmet
Tolga Cejk and Wyean Chan for their helpful comments

on the design of ContactCenters classes, and for testing the

constructed simulators during software development.
REFERENCES

Atlason, J., M. A. Epelman, and S. G. Henderson. 2003. Us-
ing simulation to approximate subgradients of convex
performance measures in service system®rbceed-
ings of the 2003 Winter Simulation Conferenesal.

S. Chick, P. J. Sanchez, D. Ferrin, and D. J. Morrice,
1824-1832: IEEE Press.

Atlason, J., M. A. Epelman, and S. G. Henderson. 2004.
Call center staffing with simulation and cutting plane
methodsAnnals of Operations Researt7:333—-358.

Avramidis, A. N., A. Deslauriers, and P. L'Ecuyer. 2004.
Modeling daily arrivals to a telephone call centdan-
agement Sciencg0 (7): 896-908.

Bapat, V. 2003. The arena product family: Enterprise mod-
eling solutions. IProceedings of the 2003 Winter Simu-
lation Conferenceed. S. Chick, P. J. Sanchez, D. Ferrin,
and D. J. Morrice, 210-217: IEEE Press.

Buist, E. 2005. Conception et implantation d'une librairie
pour la simulation de centres de contacts. Master's
thesis, Département d’Informatique et de Recherche
Opérationnelle, Université de Montréal. Forthcoming.

Buist, E., and P. LEcuyer. 200%ontactCenters: A Java
library for simulating contact centersSoftware user’s
guide, forthcoming.

Cezik, M. T., and P. L'Ecuyer. 2004. Staffing multiskill
call centers via linear programming and simulation.
submitted.

Cormen, T. H., C. E. Leiserson, R. L. Rivest, and C. Stein.
2001, Septembeintroduction to algorithms second
ed. MIT Press.

Gamma, E., R. Helm, R. Johnson, and J. Vlissides. 1998.
Design patterns: Elements of reusable object-oriented
software second ed. Reading, Mass.: Addison-Wesley.

Gans, N., G. Koole, and A. Mandelbaum. 2003. Tele-
phone call centers: Tutorial, review, and research
prospectsManufacturing and Service Operations Man-
agement5:79-141.

565

Koole, G., A. Pot, and J. Talim. 2003. Routing heuristics
for multi-skill call centers. InProceedings of the 2003
Winter Simulation Conferenc&813—-1816: IEEE Press.

L'Ecuyer, P. 2004SSJ: A Java library for stochastic sim-
ulation. Software user's guide, Available online at
<www.iro.umontreal.ca/"lecuyer> .

L'Ecuyer, P., and E. Buist. 2005. Simulation in Java with
SSJ. InProceedings of the 2005 Winter Simulation
Conferencesubmitted.

L'Ecuyer, P., L. Meliani, and J. Vaucher. 2002. SSJ: A
framework for stochastic simulation in Java. Rio-
ceedings of the 2002 Winter Simulation Conference
ed. E. Yicesan, C.-H. Chen, J. L. Snowdon, and J. M.
Charnes, 234-242: IEEE Press.

Mehrotra, V., and J. Fama. 2003. Call center simulation
modeling: Methods, challenges, and opportunities. In
Proceedings of the 2003 Winter Simulation Conference
135-143: IEEE Press.

NovaSim 2003. ccProphet — simulate your call center’s
performance. Available online vigwww.novasim.
com/CCProphet/>

Rockwell Automation, Inc. 2005. Arena simulation. Avail-
able online via<xwww.arenasimulation.com>

Whitt, W., and R. B. Wallace. 2004. A staffing al-
gorithm for call centers with skill-based rout-
ing. working paper. Available online akwww.
columbia.edu/"ww2040/poolingMSOMrevR.
pdf> .

AUTHOR BIOGRAPHIES

ERIC BUIST is a M.Sc. Student at the Université de
Montréal. His main interests are software engineering,
object-oriented programming, and simulation. His e-mail
address is<buisteri@IRO.UMontreal . CA>

PIERRE L'ECUYER is Professor in the Département
d’Informatique et de Recherche Opérationnelle, at the Uni-
versité de Montréal, Canada. He holds the Canada Research
Chair in Stochastic Simulation and Optimization. His main
research interests are random number generation, quasi-
Monte Carlo methods, efficiency improvement via variance
reduction, sensitivity analysis and optimization of discrete-
event stochastic systems, and discrete-event simulation in
general. He obtained the prestigiodsW. R. Steacié¢el-
lowship in 1995-97 and Killam fellowship in 2001-03. His

web page isswww.iro.umontreal.ca/"lecuyer>

<www.iro.umontreal.ca/~lecuyer>
http://www.iro.umontreal.ca/~lecuyer
<www.novasim.
http://www.novasim.com/CCProphet/
com/CCProphet/>
http://www.novasim.com/CCProphet/
<www.arenasimulation.com>
http://www.arenasimulation.com
<www.
http://www.columbia.edu/~ww2040/poolingMSOMrevR.pdf
columbia.edu/~ww2040/poolingMSOMrevR.
http://www.columbia.edu/~ww2040/poolingMSOMrevR.pdf
pdf>
http://www.columbia.edu/~ww2040/poolingMSOMrevR.pdf
<buisteri@IRO.UMontreal.CA>
mailto:buisteri@IRO.UMontreal.CA
<www.iro.umontreal.ca/~lecuyer>
http://www.iro.umontreal.ca/~lecuyer

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

