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ABSTRACT

In this paper we propose state-dependent importance sam-
pling heuristics to estimate the probability of population
overflow in Jackson networks with arbitrary routing. These
heuristics approximate the “optimal" state-dependent change
of measure without the need for costly optimization involved
in other recently proposed adaptive algorithms. Experimen-
tal results on tandem, feed-forward and feed-back networks
with a moderate number of nodes yield asymptotically ef-
ficient estimates (often with bounded relative error) where
no other state-independent importance sampling techniques
are known to be efficient.

1 INTRODUCTION

Efficient simulation of queueing networks has long been
the focus of much research, owing to its applicability in the
modeling, analysis and dimensioning of logistic, production
and communication networks. Among the most effective
methodologies researched and applied so far are those based
on importance sampling (see, e.g., Asmussen and Rubinstein
1995, Heidelberger 1995, Juneja and Nicola 2004, Parekh
and Walrand 1989).

Until recently, only state-independent importance sam-
pling heuristics were developed and considered for analysis.
In these heuristics, the change of measure is “static" and
independent of the network state (i.e., the number of cus-
tomers at each node in a Jackson network). A relatively
simple (and well known) heuristic change of measure for
simulations of population overflow in queueing networks
is that proposed in Parekh and Walrand (1989) and fur-
ther investigated in Frater et al. (1991). However, even for
the simplest Jackson queueing network (e.g., 2-node tandem
network), the effectiveness of this heuristic is limited to only
some region of the (arrival and service) parameters space
(see Glasserman and Kou 1995, de Boer 2004). (We use
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the term “effectiveness" interchangeably with “asymptotic
efficiency," see Section 2.2 for a precise definition.)

Based on Markov additive process formulation of a two-
node tandem network and large deviations arguments, work
in Kroese and Nicola (2002) reveals that a state-dependent
change of measure is effective where no effective state-
independent change of measure exists. Since then, there has
been increasingly more research on methodologies to obtain
efficient state-dependent importance sampling heuristics.
In de Boer and Nicola (2002) an adaptive optimization
technique based on the method of cross-entropy (Rubinstein
2002) is used to approximate the “optimal" state-dependent
change of measure. A similar adaptive approach based
on stochastic approximation is introduced in Ahamed et al.
(2004). A drawback of these adaptive approaches, however,
is the excessive computational and storage demands for large
state-space models associated with large networks.

In Zaburnenko and Nicola (2005) and Nicola and Zabur-
nenko (2005), the aim is to develop a (heuristic) state-
dependent change of measure which is sufficiently close to
the “optimal" without the need for a costly optimization.
The key observation is that the “optimal" change of mea-
sure depends on the network state only along and close
to the boundaries (when one or more nodes are empty),
and tends to become state-independent in the interior of the
state-space. Therefore, if we can determine the change of
measure along the boundaries and at the interior of the state-
space, then we may be able to combine them appropriately
to construct a state-dependent change of measure that ap-
proximates the “optimal" one in the entire state-space. The
proposed methodology is dubbed “state-dependent heuristic"
or SDH in short. Experimental results with the so obtained
heuristic for tandem networks with multiple nodes yield
estimates with a bounded relative error (see Zaburnenko
and Nicola 2005, Nicola and Zaburnenko 2005).

In this paper we propose extensions and generaliza-
tions of the heuristics in Nicola and Zaburnenko (2005)
to efficiently simulate Jackson networks with a moderate
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number of nodes and arbitrary routing. Experimental re-
sults to estimate the probability of population overflow in
tandem, feed-forward and feed-back networks (with up to
4 nodes) produce asymptotically efficient estimates, often
with bounded relative error. The proposed heuristics are
effective, yet easier to implement and could be more effi-
cient than those based on adaptive methodologies (e.g., de
Boer and Nicola 2002), particularly for large networks.

In Section 2 we give some preliminaries, introduce the
basic model and define the probability of interest. The
importance sampling technique is briefly reviewed. Also,
the change of measure to simulate buffer overflow at an
arbitrary network node is outlined, as it plays a key role in our
heuristics. In Section 3 we motivate the proposed SDH and
give its formal representation for tandem, feed-forward and
feed-back networks, respectively. In Section 4 we present
experimental results and comparisons with other known
methods to estimate the probability of population overflow
in some example networks. We conclude in Section 5.

2 PRELIMINARIES

The queueing network model and associated notation are
introduced in Section 2.1. A brief review of importance
sampling and some properties of simulation estimators are
provided in Section 2.2. A change of measure to simulate
overflow at a network node is introduced in Section 2.3.

2.1 Model and Notation

Consider a Jackson network consisting of n nodes (queues),
each having its own buffer of infinite size. Customers arrive
at node i (1 � i � n) according to a Poisson process with rate
λi . The service time of a customer at node i is exponentially
distributed with rate µi (1 � i � n). Customers that leave
node i join node j with probability pij (1 � i, j � n) or
leave the network with probability pie (1 � i � n). We also
assume that the queueing network is stable, i.e., γi < µi

for all 1 � i � n, where γi is the total arrival rate at node
i, as determined from the traffic equations

γi = λi +
∑
∀j

γj pji .

Let Xi,t (1 � i � n) denote the number of customers at
node i at time t � 0 (including those in service). Then
the vector Xt = (X1,t , X2,t , ..., Xn,t ) is a Markov process
representing the state of the network at time t . Denote by
St the total number of customers in the network (network
population) at time t , i.e., St = ∑n

i=1 Xi,t .

Assuming that the initial network state is X0 (usually,
X0 = (0, 0, ..., 0) corresponding to an empty network), we
are interested in the probability that the network population
reaches some high level L ∈ N before becoming empty.
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We denote this probability by γ (L) and refer to it as the
population overflow probability, starting from the initial state
X0. Since the associated event is typically rare, importance
sampling may be used to efficiently estimate this probability.

2.2 Importance Sampling

Importance sampling involves simulating the system un-
der different underlying probability distributions so as to
increase the frequency of typical sample paths leading to
the rare event. Formally, let w be a sample path over the
interval [0, t]. Then, the likelihood ratio associated with
w is given by Wt(w) = P(w)

P̃ (w)
, where P(w) and P̃ (w) are

the probabilities (or likelihoods) of sample path w under
the original and the new measure, respectively. Obviously,
P̃ (w) > 0 whenever P(w) > 0. Starting from X0, define
τ as the first time St hits level L or level 0, then

γ (L) = E I{Sτ =L} = Ẽ Wτ I{Sτ =L} , (1)

where Wτ is the likelihood ratio over the interval [0, τ ];
E and Ẽ are the expectations under the original and the
new change of measures, respectively. The variance of the
estimator Ẽ Wτ I{Sτ =L} is given by

Ẽ Wτ
2 I{Sτ =L} − (γ (L))2 . (2)

The relative error is the ratio of the standard deviation
of the estimator over its expectation, i.e.,√

Ẽ Wτ
2 I{Sτ =L}

γ (L)2 − 1 . (3)

The estimator Ẽ Wτ I{Sτ =L} is said to be asymptotically
efficient if its relative error grows at sub-exponential (e.g.,
polynomial) rate as L → ∞ (i.e., as γ (L) → 0). Formally,
let limL→∞ 1

L
log γ (L) = θ. That is, θ is the asymptotic

decay rate of the overflow probability γ (L) as L → ∞.
Then, asymptotic efficiency is obtained if

lim
L→∞

1

L
log Ẽ Wτ

2 I{Sτ =L} = 2θ . (4)

The estimator is said to have bounded relative error if its
relative error is bounded in L as γ (L) → 0.

It is important to note that a change of measure may,
in general, depend on the state of the system, even if
the original underlying distributions do not depend on the
system state. For instance, the arrival and service rates
in a Markovian queueing network are typically fixed and
independent of the network state (i.e., the buffer content at
each node). However, a change of measure to be used in
importance sampling simulation may involve new arrival and
service rates that depend on the state of the network. State-
dependent change of measures are generally more effective
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in simulations of rare events in queueing networks (see,
e.g., Kroese and Nicola 2002, de Boer and Nicola 2002).
Therefore, in this paper (as in Zaburnenko and Nicola 2005)
we aim at developing heuristics to approximate the “optimal"
state-dependent change of measure.

2.3 Buffer Overflow at a Network Node

The “optimal" change of measure to simulate the build-up at
any specific network node plays a key role in the heuristics
proposed in this paper. In this section we give a brief
discussion and characterize such a change of measure. Some
more notation is necessary. Consider a Jackson network as
described in Section 2.1 and let all nodes in the network be
indexed by the set H. These nodes are further categorized by
one “target" node indexed by t and the remaining “feeder"
nodes indexed by the set F . Thus, H ≡ {t} ∪ F . In Juneja
and Nicola (2004) a state-independent change of measure is
proposed to estimate the probability that the buffer content at
the target node exceeds a large level during its busy period (a
busy period of the target queue is initiated when an arrival to
it finds it empty, and ends when the target queue subsequently
re-empties). Under this change of measure, the simulated
queueing network is again a Jackson network in which
the original inter-arrival and service time distributions are
exponentially twisted so as to achieve asymptotic efficiency.
Moreover, only the target node t becomes unstable while
each of the other (feeder) nodes is either critical (in the set
C ⊆ F) or stable (in the set S = F − C). Let λ̃i , µ̃i , and
p̃ij (1 � i, j � n) be the new external arrival rates, service
rates, and routing probabilities, respectively. Also, define
the constants c̃i � 1 for i ∈ H, and let D ⊂ H denote
the set {i : λi = 0}. The change of measure in Juneja and
Nicola (2004) is characterized as follows:

• The new external arrival rates are given by
λ̃i = c̃iλi , for i ∈ H. (Thus, λ̃i = 0, for i ∈ D).

• The new routing probabilities are given by

p̃ij = c̃j

c̃i

µi

µ̃i
pij and p̃ie = 1

c̃i

µi

µ̃i
pie, for all i, j ∈ H.

• The new service rates µ̃i , along with the unknown
constants c̃i (1 � i � n) are determined from the
non-linear program (NLP) given below.

• Maximize c̃t subject to the following constraints:

∑
i∈H−D

λ̃i +
∑
i∈H

µ̃i =
∑

i∈H−D
λi +

∑
i∈H

µi. (5)

For all i ∈ H, the new routing probabilities and
the new total arrival rate γ̃i must satisfy

∑
j∈H

p̃ij + p̃ie = 1, (6)
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and

γ̃i = λ̃i +
∑
j∈F

p̃j i γ̃j + µ̃t p̃ti . (7)

For all i ∈ F , a feeder node i is either stable (i.e.,
µ̃i = µi > γ̃i , i ∈ S) or critical (i.e., µ̃i = γ̃i ,
i ∈ C). The target node is unstable (i.e., µ̃t < µt ).

Assuming that the queue lengths at the feeder nodes are
initially bounded, the change of measure characterized above
is asymptotically efficient for estimating the probability of
overflow in the target node t . In the sequel of this paper
we refer to it as the JNt change of measure, where t is the
index of the target node.

Remark 1. When the service rates at the feeder nodes
are sufficiently large (for example, when the target node is
the bottleneck), this change of measure can be determined
explicitly and is identical to that proposed in Parekh and
Walrand (1989) and in Frater et al. (1991) to simulate
network population overflow.

Formally, denote by P = (pij : i, j ∈ H) the matrix
with the routing probabilities, and let R = (rij : i, j ∈ H)

equals (I − P)−1. Since the network is stable, rij is the
expected number of visits to queue j by a customer starting
from queue i, before it leaves the system. Note that rit � rtt .
If, for each i ∈ F , the service rates at the feeder nodes
satisfy the inequality

µi > γi(1 + rit

rtt
(
µt

γt

− 1)), (8)

then, the change of measure in Juneja and Nicola (2004) is
determined explicitly as follows:

• All feeder nodes are stable (i.e., the set C is empty)
and µ̃i = µi for i ∈ F . The target node is unstable
and µ̃t = (rtt−1)µt+γt

rtt
.

• For each i ∈ H, ci = (1 + rit
rtt

(
µt

γt
− 1)).

• For each i ∈ H, λ̃i = ciλi and γ̃i = ciγi .
• For i, j ∈ H, p̃ij = cj

ci

µi

µ̃i
pij and p̃ie = 1

ci

µi

µ̃i
pie.

While being asymptotically efficient to simulate over-
flow at the bottleneck node (as proved in Juneja and Nicola
2004), the above change of measure is not always asymp-
totically efficient to simulate network population overflow
(as shown in Glasserman and Kou 1995 and in de Boer
2004).

3 STATE-DEPENDENT HEURISTICS

Theoretical and empirical results in Kroese and Nicola
(2002) and de Boer and Nicola (2002) indicate that the
“optimal" change of measure depends on the network state,
i.e., the number of customers at the network nodes. Fur-
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thermore, this dependence is strong along the boundaries of
the state-space (i.e., when one or more buffers are empty)
and diminishes in the interior of the state-space (i.e., when
contents of all buffers are sufficiently large). Dependencies
along the boundaries have shown to be very crucial for
the asymptotic efficiency (or “optimality") of the change of
measure.

The above observation suggests that if we know the
“optimal" change of measure along the boundaries and
in the interior of the state-space, then we might be able
to construct a change of measure that approximates the
“optimal" one over the entire state-space. In Nicola and
Zaburnenko (2005), heuristics based on combining known
large deviations results and time-reversal arguments are used
to construct such a change of measure for the 2-node tandem
network. Empirical results there has shown that it produces
asymptotically efficient estimators with a bounded relative
error for all feasible network parameters. In this section
we propose heuristic state-dependent changes of measure
for the efficient simulation of Jackson networks with more
general topologies. The change of measure in Section 3.1
is a generalization of that in Nicola and Zaburnenko (2005)
to tandem networks with any number of nodes. In Sections
3.2 and 3.3 we give heuristic changes of measures for the
efficient simulation of feed-forward and feed-back networks,
respectively.

3.1 SDH for the n-node Tandem Network

Let λ and µi (i = 1, . . . , n) be the arrival rate at the first
node and the service rate at the i − th node, respectively.
Denote by ρi = λ

µi
the traffic intensity at node i, and

assume that ρ1 � ρ2 � . . . ρn < 1. We note, however, that
this ordering is not a restriction, since the probability of
population overflow is invariant with respect to the placement
order of nodes in a Jackson tandem network (Weber 1979).
Without loss of generality we assume that λ+∑n

i=1 µi = 1.
Denote by λ̃, µ̃i the corresponding rates under the new
change of measure, and by SDHn the (n + 1) × (n + 1)

SDH transformation matrix for the n-node tandem network.
Thus, SDHn is a linear operator transforming the original
rates into the new rates. Define [a]+ = max(a, 0) and
[a]1 = min(a, 1), then for n = 2, the change of measure
in Nicola and Zaburnenko (2005) may be expressed as:


 λ̃

µ̃1
µ̃2


 = SDH2


 λ

µ1
µ2


 , (9)
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SDH2 =
[
b − x2

b

]+

 0 1 0

1 0 0
0 0 1




+
[x2

b

]1


 0 0 1

0 1 0
1 0 0


 .

(10)

The first matrix is the identity matrix with the first and the
second rows interchanged; this corresponds to interchanging
the arrival rate λ with the service rate µ1. The second
matrix is the identity matrix with the first and the third
rows interchanged; this corresponds to interchanging the
arrival rate λ with the service rate µ2. The above heuristic
can be generalized for an n-node tandem network. Let
� be a vector with the original network parameters, i.e.,
�T = [λ, µ1, . . . , µn]. Similarly, �̃ is a vector with the
new network parameters. Define the transformation matrix
SDHn recursively as follows:

SDHk =
[
b − xk

b

]+
SDHk−1 +

[xk

b

]1
Ik, k = 2, . . . , n.

(11)

Ik is the identity matrix of dimension (n + 1) with the first
and the (k + 1)-st rows interchanged. Then the SDH for
an n-node tandem network is given by

�̃ = SDHn �.

Note that for n = 1 (a single queue), SDH corresponds
to the well known heuristic of interchanging the arrival rate
λ and the service rate µ1 (Parekh and Walrand 1989). From
Equation 11, the transformation matrix for n = 3 is given
by:

SDH3 =
[
b − x3

b

]+ ([
b − x2

b

]+
I1 +

[x2

b

]1
I2

)

+
[x3

b

]1
I3 .

(12)

Here the first matrix (I1) corresponds to interchanging
λ and µ1 (λ ↔ µ1), the second matrix (I2) corresponds to
interchanging λ and µ2 (λ ↔ µ2), and the third matrix (I3)
corresponds to interchanging λ and µ3 (λ ↔ µ3). Initially,
the network is empty and we start by interchanging the arrival
rate λ and µ1, i.e., overloading the first node. As soon as
a customer arrives at node 2, we also start overloading the
second node by gradually increasing the weight of matrix
I2 and reducing the weight of matrix I1. When the number
of customers at node 2 is sufficiently large (x2 � b), the
weight of matrix I1 becomes 0. In the meantime, as soon
as customers start to arrive at node 3, we start overloading
the third node and gradually increase the weight of matrix
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I3 and reduce the weights of matrices I1 and I2. When the
number of customers at node 3 is sufficiently large (x3 � b),
the weights of matrices I1 and I2 become 0.

Remark 2. Note that b is the number of boundary levels
for which the change of measure depends on the network
state (we also refer to it as the dependence range). It is the
only variable parameter in the above heuristic, and its proper
selection is crucial for achieving asymptotic efficiency. In
general, the best value of b (yielding estimates with lowest
variance) may depend on the set of network parameters as
well as the overflow level L. Empirical results indicate that
for some regions in the parameter space, the best b is quite
robust and does not change with the level L. For other
regions, the best b may vary slightly from one parameter
point to another, and may also depend on L.

3.2 SDH for a Feed-Forward Network

µ2

µ1

µ3

µ4
λ

p

1−p

Figure 1: 4-Node Feed-Forward Network

To describe our state-dependent heuristic for feed-
forward Jackson networks, we use the specific example
depicted in Figure 1.

Let �T = [λ, µ1, µ2, µ3, µ4, p] be a vector with the
original network parameters. Without loss of generality we
assume that λ+∑4

i=1 µi = 1. The traffic intensity at node
i is ρi = γi

µi
, where γi is the total arrival rate at node i

(i = 1, 2, 3, 4). We also assume that ρ1 � ρ2 � ρ3 �
ρ4. Denote by �̃JNi

the “optimal" change of measure to
simulate buffer overflow at node i (as given in Section 2.3).

And, let �̃T =
[
λ̃, µ̃1, µ̃2, µ̃3, µ̃4, p̃

]
be a vector with the

corresponding network parameters under the new change
of measure to simulate network population overflow. Then,
for the feed-forward network in Figure 1

�̃ =
[x4

b

]1
�̃JN4

+
[
b − x4

b

]+ ([x3

b

]1
�̃JN3

+
[
b − x3

b

]+ ([x2

b

]1
�̃JN2

+
[
b − x2

b

]+
�̃JN1

) )
.

(13)
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In the above, the nesting of �̃JNi
s is in the same order as

the traffic intensities at the corresponding nodes, with node
4 at the highest level. That is, dependence on x4 supersedes
dependence on x3 which supersedes denpendence on x2,
and so on.

As for the tandem network, the above change of measure
depends on the number of customers at all nodes (except
the first). And, again, the choice of the variable b (depen-
dence range) is crucial for the effectiveness of the heuristic,
particularly for networks with a large number of nodes.

3.3 SDH for a Feed-Back Network

µ1

µ2

p p

λ1

λ2

21 12

Figure 2: 2-Node Feed-Back Network

To describe our state-dependent heuristic for feed-back
Jackson networks, we use the specific example depicted
in Figure 2 (similar feed-back network is considered in
Randhawa and Juneja 2004).

Let � be a vector with the original network param-
eters, i.e., �T = [λ1, λ2, µ1, µ2, p12, p21]. Without loss
of generality we assume that

∑2
i=1 λi + µi = 1. We also

assume that ρ1 � ρ2, where ρi = γi

µi
, i = 1, 2. Let

�̃T =
[
λ̃1, λ̃2, µ̃1, µ̃2, p̃12, p̃21

]
be a vector with the cor-

responding network parameters under the new change of
measure to simulate network population overflow. Then,
for the feed-back network in Figure 2

�̃ =
[x2

b

]1
�̃JN2

[
b − x2

b

]+
�̃JN1 , (14)

where �̃JNi
is the change of measure (described in Sec-

tion 2.3) to simulate buffer overflow at node i (i = 1, 2).
In the above, nodes are nested in the order of their traffic
intensities, with node 2 at the highest level. Accordingly, for
this particular network, the above heuristic depends only on
x2 (the content of the bottleneck node). Descriptively: with
the network initially empty, we start by overloading node
1. As the number of customers at node 2 (x2) increases,
we gradually and proportionately increase overloading node
2 and decrease overloading node 1. When the number of
customers at node 2 is sufficiently large (x2 � b), only
2
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node 2 is overloaded. Here too, the choice of the variable
b is crucial and must be set appropriately.

4 EXPERIMENTAL RESULTS

Importance sampling to estimate the probability of popu-
lation overflow (γ (L)) involves generating, say, N , inde-
pendent and identically distributed (i.i.d.) busy cycles (i.e.,
starting with an empty network). Starting a cycle at time
0, define τL as the instant when the network population
reaches level L for the first time. Similarly, define τ0 as
the instant when the network population returns to 0 for
the first time. The indicator function Ii(τL < τ0) takes the
value 1 if the population overflow (level L) is reached in
cycle i, otherwise it takes the value 0.

In each cycle, the change of measure is applied until
either the population overflow event is reached or the network
population returns to 0. Let Wi be the likelihood ratio
associated with cycle i, then an unbiased estimator γ̃ of
γ (L) is given by

γ̃ = 1

N

i=N∑
i=1

Ii Wi , (15)

The second moment of I W is estimated by

γ̃ 2 = 1

N − 1

i=N∑
i=1

Ii Wi
2 . (16)

The variance and the relative error of the importance sam-
pling estimator γ̃ are given by V AR(γ̃ ) = (γ̃ 2 − (γ̃ )2) /N

and RE(γ̃ ) = √
V AR(γ̃ ) / γ̃ , respectively. Another useful

measure for comparing the efficiency of different estima-
tors is the “relative time variance" (RT V ) product, which
is defined as the simulation time (in seconds) multiplied by
the squared relative error of the estimator. As the estimate
becomes more stable, its RT V tends to a constant value,
which is smaller for a more efficient estimator. For example,
if RT V2 (for Estimator 2) is larger than RT V1 (for Estimator
1), then it will take Estimator 2 a longer simulation time
to reach the same accuracy. For efficiency comparisons we
use the variance reduction ratio, V RR = RT V2 / RT V1,
which represents the efficiency gain when using Estimator
1 relative to that when using Estimator 2.

In the following sections, three sets of experiments (for
a tandem, a feed-forward and a feed-back networks) are pre-
sented. Each set consists of two experiments corresponding
to two points of feasible network parameters. In order to
illustrate the utility of our approach, all points are chosen
in the region where the well-known heuristic in Parekh and
Walrand (1989) is shown to be ineffective. In all simula-
tion experiments, the same number of replications, namely,
106, is used to obtain estimates of the population overflow
543
probability γ (L). For each estimate in these tables, we
include the relative error (in percentage). For the purpose
of comparing the heuristics in this paper (termed SDH) and
the adaptive methodology (termed SDA) in de Boer and
Nicola (2002), we also include V RR (relative to SDA).
Hence, V RR > 1 implies efficiency gain of SDH over
SDA. Estimates obtained using the well known heuristic in
Parekh and Walrand (1989) (termed PW) are also presented,
although these are not necessarily accurate or stable. In
general, numerical results are difficult to obtain for larger
and/or higher overflow levels (i.e., for larger sate-space).
Whenever feasible, numerical results (for example, using
the algorithm outlined in de Boer 2000) are included to
verify the correctness of the simulation estimates. Other-
wise, the corresponding table entry is marked with a “∗".
In these cases, agreement of different estimators may be an
indication of correctness.

4.1 Simulation of Tandem Networks

The experiments in this section are designed to demonstrate
that the state-dependent change of measure proposed in
Section 3.1 always yield asymptotically efficient estimates
(mostly with bounded relative error), also in those regions
where no state-independent change of measure is known to
be asymptotically efficient. Similar to SDH, SDA assumes
state-dependence only over a (small) number of boundary
layers (say, b) which must be properly determined to ensure
the effectiveness and efficiency of these methods. Too
small b may not capture crucial dependencies close to the
boundaries. Too large b may render SDH ineffective, but
it will only reduce the efficiency of SDA. In either SDH
or SDA, the “optimal" b which maximizes the efficiency
(minimizes the RT V ) may be determined by repeating
the simulation for increasing b starting with, say, b = 0
(i.e., no state-dependence). Experimental results with SDH
and SDA presented in this section are obtained using the
corresponding “optimal" b.

For the 2-node tandem network, it is proven or shown
empirically (Glasserman and Kou 1995, de Boer 2004) that
the state-independent heuristic (PW) in Parekh and Walrand
(1989) yields estimates with bounded relative error only in
some (non-contiguous) regions of the feasible parameter
space. (The feasible parameter space is that corresponding
to stable networks.) Thus, the feasible parameter space
may be divided into 2 regions, depending on the asymptotic
properties of the PW estimator (see de Boer 2004):

• BRE Region - PW is asymptotically efficient (with
bounded relative error).

• NAE Region - PW is not asymptotically efficient.

Empirical studies seem to confirm that the above divi-
sion of the feasible parameter space holds also for tandem
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networks with any number of nodes (i.e., for any feasible
set of network parameters, PW is either BRE or NAE).
For the n-node tandem network, in Glasserman and Kou
(1995) sufficient conditions are given for the asymptotic
(and non-asymptotic) efficiency of the PW heuristic. These
conditions are rather strong and do not cover the entire
parameter space (i.e., not all feasible parameter points may
be determined as BRE or NAE).

We experiment with two tandem networks having 3
and 4 nodes, respectively. Network parameters are chosen
in the NAE Region, with λ = 0.04 and equal service rates
at all nodes; µ = 0.32 for the 3-node tandem network and
µ = 0.24 for the 4-node tandem network. (Typically, it
is most difficult to efficiently estimate the probability of
overflow when the service rates are equal.)

Experimental results in Tables 1 and 2 show that un-
like PW, SDH (as described in Section 3.1) yields correct
and asymptotically efficient estimates with bounded rela-
tive error. To converge properly, our basic (non-optimized)
implementation of SDA may require many iterations, each
with a large number of cycles (i.e., long simulation time).
On the other hand, if and when it converges, it gives very
small relative error. (For more on SDA and its implementa-
tion details see de Boer and Nicola 2002.) For the examples
presented here, SDH typically requires only a few minutes
to achieve relative errors less than 1%, and could be more
efficient than SDA (V RR > 1) even though its relative error
may be higher. See Zaburnenko and Nicola (2005) for more
comprehensive experimentations with tandem networks.

4.2 Simulation of a Feed-Forward Network

In this section we present experimental results performed
on the feed-forward network depicted in Figure 1. In our
example, we consider two sets of feasible network param-
eters in the NAE Region (this is verified empirically). In
the first set, λ = 0.0455, µ1 = 0.7272, µ2 = 0.0455, µ3 =
µ4 = 0.0909, p = 0.1. In the second set, λ = 0.064, µ1 =
0.564, µ2 = 0.039, µ3 = 0.192, µ4 = 0.141, p = 0.1. For
compatibility with the heuristic change of measure presented
in Section 3.3, nodes are indexed according to their traffic
intensities, such that ρ1 � ρ2 � ρ3 � ρ4.

Experimental results in Tables 3 and 4 show that for the
considered parameter sets, SDA seems to work very well
and yields stable estimates with small relative errors (al-
though correctness could not be verified numerically for the
displayed values of L). Estimates using SDH (as described
in Section 3.2) seem to agree with those of SDA, however,
with larger and less stable relative errors. Estimates using
PW also seem to agree with those of SDA, but the relative
errors are even larger and less stable than those of SDH.

The heuristic in Section 3.2 is particularly sensitive to
the dependence range b which is conveniently chosen to be
the same at different nodes. This is not necessarily optimal,
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and more robust performance may be achieved by allowing
different values of b at at different nodes. It seems to us
that further tuning and/or refinement of the heuristic are
needed.

4.3 Simulation of a Feed-Back Network

In this section we present experimental results performed
on the feed-back network depicted in Figure 2. For the
same network Randhawa and Juneja (2004) identify some
region in the parameter space in which the PW heuristic
is provably not efficient (i.e., they identify only a subset
of the NAE region). In our example, we consider two
sets of feasible network parameters in the NAE Region.
In the first set, λ1 = 0.01, µ1 = 0.13, λ2 = 0.09, µ2 =
0.77, p12 = 0.9, p21 = 0.05. In the second set, λ1 =
0.01, µ1 = 0.14, λ2 = 0.25, µ2 = 0.55, p12 = 0.9, p21 =
0.05. For compatibility with the heuristic change of measure
in Section 3.3, nodes are indexed such that ρ1 � ρ2.

Experimental results in Tables 5 and 6 show that while
PW gives wrong estimates, SDH (as described in Section 3.3)
yields correct and asymptotically efficient estimates with
relative error less than 1% (simulations with a larger number
of samples suggest bounded relative error). Moreover, SDH
compares well with SDA and seems to yield some efficiency
gains for the second set of parameters (Table 6). Again,
we must note that neither SDA or SDH implementation is
optimized. Therefore, the relative efficiency gains indicated
in the presented tables may not be conclusive.

The example feed-back network considered above is
relatively small, yet it helps to illustrate that our approach
may indeed be useful where no other existing methods are
known to be effective. Development of (and experimentation
with) similar heuristics for larger feed-back networks is
currently underway.

5 CONCLUSIONS AND FURTHER WORK

In this paper we have proposed and experimented with
a heuristic approach to approximate the “optimal" state-
dependent change of measure for the efficient simulation
of Jackson queueing networks. The developed changes of
measure (which we refer to as SDH) are used to estimate
(using importance sampling) the probability of population
overflow in tandem, feed-forward and feed-back networks.

Experimental results indicate that the heuristics yield
asymptotically efficient estimates, often with bounded rela-
tive error. The efficiency of the obtained change of measure
compares well with those determined using adaptive method-
ologies. Moreover, our approach does not require costly
pre-computation, and its effectiveness is not diminished for
networks with larger state-space.
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Table 1: 3-Node Tandem Network (λ = 0.04, µ1 = µ2 = µ3 = 0.32)

L Numerical PW SDA SDH
γ (L) γ̃ (L) ± RE% b γ̃ (L) ± RE% b γ̃ (L) ± RE% V RR

25 5.9531e-020 4.1433e-020 ± 6.95 3 5.9625e-020 ± 0.21 4 5.9491e-020 ± 0.05 19.1
50 6.2176e-042 2.2129e-042 ± 44.1 3 6.2260e-042 ± 0.09 4 6.2264e-042 ± 0.06 2.20

100 * 9.6025e-088 ± 12.9 3 1.7254e-086 ± 0.12 5 1.7268e-086 ± 0.11 1.38

Table 2: 4-Node Tandem Network (λ = 0.04, µ1 = µ2 = µ3 = µ4 = 0.24)

L Numerical PW SDA SDH
γ (L) γ̃ (L) ± RE% b γ̃ (L) ± RE% b γ̃ (L) ± RE% V RR

25 5.0207e-016 3.7499e-016 ± 11.2 3 5.0222e-016 ± 0.09 4 5.0084e-016 ± 0.15 0.38
50 * 2.9876e-035 ± 38.2 4 1.3111e-034 ± 0.13 4 1.3548e-034 ± 0.11 1.58

100 * 6.9845e-074 ± 59.5 3 1.3020e-072 ± 0.24 5 1.3076e-072 ± 0.11 0.82

Table 3: 4-Node Feed-Forward Network (λ = 0.0455, µ1 = 0.7272, µ2 = 0.0455, µ3 = µ4 = 0.0909, p = 0.1)

L Numerical PW SDA SDH
γ (L) γ̃ (L) ± RE% b γ̃ (L) ± RE% b γ̃ (L) ± RE% V RR

25 * 3.9347e-007 ± 1.90 3 4.0000e-007 ± 0.07 1 4.1613e-007 ± 5.68 0.03
50 * 1.2630e-014 ± 3.05 3 1.3283e-014 ± 0.12 1 1.2725e-014 ± 4.07 0.08
100 * 1.3025e-029 ± 10.3 3 1.2531e-029 ± 0.13 2 1.2572e-029 ± 5.56 0.02

Table 4: 4-Node Feed-Forward Network (λ = 0.064, µ1 = 0.564, µ2 = 0.039, µ3 = 0.192, µ4 = 0.141, p = 0.1)

L Numerical PW SDA SDH
γ (L) γ̃ (L) ± RE% b γ̃ (L) ± RE% b γ̃ (L) ± RE% V RR

25 * 1.8357e-008 ± 3.85 3 1.9687e-008 ± 0.03 1 1.8217e-008 ± 3.00 0.02
50 * 4.7725e-017 ± 2.98 3 5.2205e-017 ± 0.03 1 5.0114e-017 ± 3.45 0.01
100 * 3.9708e-034 ± 8.03 3 3.6806e-034 ± 0.03 1 3.4001e-034 ± 2.04 0.01

Table 5: 2-Node Feed-Back Network (λ1 = 0.01, µ1 = 0.13, λ2 = 0.09, µ2 = 0.77, p12 = 0.9, p21 = 0.05)

L Numerical PW SDA SDH
γ (L) γ̃ (L) ± RE% b γ̃ (L) ± RE% b γ̃ (L) ± RE% V RR

25 7.9508e-021 2.4772e-020 ± 77.4 5 7.8930e-021 ± 0.02 5 8.0126e-021 ± 0.88 0.02
50 1.3885e-042 8.7117e-043 ± 7.25 5 1.3883e-042 ± 0.01 5 1.3964e-042 ± 0.96 0.01

100 3.9811e-086 2.3596e-086 ± 2.60 5 3.9535e-086 ± 0.01 6 3.9790e-086 ± 0.71 0.01

Table 6: 2-Node Feed-Back Network (λ1 = 0.01, µ1 = 0.14, λ2 = 0.25, µ2 = 0.55, p12 = 0.9, p21 = 0.05)

L Numerical PW SDA SDH
γ (L) γ̃ (L) ± RE% b γ̃ (L) ± RE% b γ̃ (L) ± RE% V RR

25 9.9890e-006 7.3235e-006 ± 9.21 5 9.9834e-006 ± 0.09 13 9.9668e-006 ± 0.32 1.49
50 1.4634e-011 8.4150e-012 ± 10.4 5 1.4585e-011 ± 0.29 13 1.4669e-011 ± 0.78 1.96
100 2.0500e-023 1.6348e-023 ± 33.3 5 2.0064e-023 ± 0.57 13 2.0426e-023 ± 0.62 6.16
545
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Needless to say, the utility of the approach needs to
be tested on larger networks and more complex topologies.
This requires further investigations on how to approximate
and combine (interpolate) the “optimal" change of measures
along the boundaries and in the interior of the state-space.
Extensive testing and experimentations would also be re-
quired. Also, simple and robust guidelines for selecting the
number of boundary layers (dependence range) is another
challenge that needs to be addressed.
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