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ABSTRACT Under Markovian assumptions (Poisson arrivals,
exponential service time, probabilistic routing etc.), it has
This paper deals with the estimation of rare event probabil- been shown that a network of queues can be modelled
ities in finite capacity queueing networks. The traditional by a multidimensional Markov jump process. Then the
product form property of Markovian queueing networks system performances are computed from the steady-state
usually vanishes when capacity of queues are finite and distribution of the process. When queues have an infinite
clients are blocked or rejected. A new efficient simula- capacity the steady-state distribution is product-form
tion method, derived from Propp & Wilson (Propp 1996), and may easily be computed in a reasonable amount
perfect simulation, is applied in the finite capacity queue of time (Bolch, Greiner, de Meer, and Trivedi 1998). In
context. An algorithm directly samples states of the net- some cases the hypothesis of infinite capacity could
work according to the stationary distribution. This method be released, preserving the product form (Perros 1994,
is adapted for simulation of rare events, typically when Balsamo, De Nitto Personé, and Onvural 2001). But, in
events are described by an increasing subset of the statemost cases, the steady state distribution is not in product
space. form and adequate approximation techniques should be
Provided that events of the network are monotone, applied. Many papers cover the domain of queuing net-
monotonicity techniques are used to reduce the sampling works with finite capacity, bibliographies (Onvural 1990,
time. Moreover, a stopping mechanism has been developed Balsamo, De Nitto Person, and Inverardi 2003)  provide
to interrupt the simulation when an increasing set has been pointers to related works.
reached. Then, for the estimation of a monotonous reward Simulation approaches are alternate methods to estimate
function, the simulation time could be reduced drastically performances of such networks. Based on discrete event
as in (Vincent and Marchand 2004). simulation (Banks, Carson, Nelson, and Nicol 2001) or on
Markov properties (MCMC methods; Bremaud 1999), sim-
1 INTRODUCTION ulations estimate the steady-state distribution based on long
run trajectories. The drawbacks of simulations are the con-
In the queueing networks context, estimation of steady-state trol of the warm up period or burn-in time (Robinson 2002)
probabilities is known to be a hard problem when the network and the influence of the initial state on the stochastic be-
has finite capacity queues. In this case, traditional product havior. Moreover, because statistics are made on long run
form property vanishes and approximation technigues should trajectories, assumptions on asymptotic independence are
be used to give estimations on the performance of the difficult to justify. In particular for rare events probability

network. estimation, autocorrelation of the process makes generation
Typical performance indexes of such networks are re- of bursts of rare events.
lated to steady-state blocking or overflow. Usually, it corre- The aim of this paper is to provide a new simulation

sponds to low probability and these events could be consid- method derived from Propp & Wilson (Propp 1996) called
ered as rare events. As examples, we estimate the probabilityperfect simulation. An introduction to the topic may be
that the number of customers in a queue exceeds a givenfound in (Haggstrom 2002) and some applications to finite
threshold. This could be applied for the estimation of the queues in (Mattson 2002). The objective in this article is
availability of the system, the loss probability or the blocking to use a partial order on the state space such that events are
time. monotone and use monotone reward functions to characterize
some low probability sets. The difficulty is to prove that the
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simulator is sufficiently efficient to provide large samples
in a reasonable time.

The paper is organized as follows. Section 2 is de-
voted to the description of monotone queueing systems.
Then perfect simulation of monotone finite systems and
monotonicity of reward functions are presented in detail.
Finally some examples from telephone networks analysis,
production systems, reliable networks are given. Efficiency
of the simulation is established on all experiments.

2 MONOTONE SYSTEMS

2.1 Monotone Events

Consider a queueing network wikhqueues. The state space
of each queud); is the set of integers; = {0, - - - , C;},
whereC; is the capacity of queu@;. The state spac&

of the system is the Cartesian product of it

X=X x--- x Xg.

The natural order on integers is extended to a partial order
on X using component-wise ordering.

Definition 1  An evente is an application defined
on X, that associates to each staiee X a new state
denoted byd (x, ¢). @ is called thetransition function of
the system.

Denote by¢ = {el, .-, P} the set of events. Usually,

Definition 4 ~ Anevent € £ is said to benonotone
if it preserves the partial ordering (component-wise)&in
That is

YVx,y)eX x<y = Px,e) < P(y,e).

If all events are monotone, the global system is said to be
monotone.

The monotonicity property is fundamental for improv-
ing the efficiency of simulation. Denote B¢, (respectively
m), the set of all maximal, (respectively minimal), elements
of the finite partially ordered state spade Then

Proposition 1 For a given infinite sequence of
eventse = {e,},en, If all trajectories issued from any
initial state in M Um, couple then global coupling occurs.

The proof of this proposition is based on the fact that the
structure of the state space is a lattice. Then every stite
between a state;,; € m andxy,, € M, Xjnr < X < Xgyp-
Then if two trajectories issued from, s andx,,, collapse
in the statey aftern steps, because of the monotonicity of
the transition function the trajectory issued frargsollapses
also in statey aftern steps.

In the case when the state space is the Cartesian product
of {0, .-, C;} there is a unique minimum stage, - - - , 0)
and a uniqgue maximum stat€q, --- , Cg). So it is suf-
ficient to build two trajectories to capture the behavior of
the whole system and to compute the coupling time.

this set is supposed to be finite. One should note that the 2.2 Monotone Reward Functions

transition function is defined o6 x X. It is convenient to
include in the transition function the fact that some events
can not be applied to a state. For example, the egadt

of servicecan be executed only if the number of customers
in the queue is greater than one. We consider that applying
anend of serviceevent to an empty queue leaves the global

state unchanged and more generally if an event can not be

applied, the corresponding transition is just a skip operation.
In a queueing network, a customer arrival, the end of

a service and the subsequent routing, a customer departure,

are typical events. The transition corresponding to an arrival
in queueQ; is an increment of;, the number of customers
in queuei provided thatr; < C;. In that case, the routing
policy (rejection or overflow on another queue should be
given.

Definition 2  An executionof the system is defined
by an initial statexp € X and a sequence of everis=
{enlnen. The sequence of statés,},cn defined by the
recurrence x,11 = ®(x,,e,41) for n > 0 is called a
trajectory .

Definition 3 A sequence of events= {e;,},cn iS
said to be globallycoupling if there exist somé&’ such that
the state at timeV (and thereafter) does not depend on the
initial state. The minimum value & is called the global
forward coupling time and is noted.
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Consider now rewards on the state spateln this paper
a reward is a function from the state spéaten a partially
ordered sefR.

Definition 5
it satisfies

A rewardr is said to be monotone if

Vi, y) e X2 x<y = r(x) <r(y).

Recall that an increasing sEt of states is a set such
that if x € ' andy such thaty > x theny € I". Particular
cases of monotone reward functions are indicator functions
of increasing sets (denotet}-1x)).

In queueing networks increasing sets appear naturally
in conditions like the total number of customers in the
network is more than a certain value, at least one queue in
the network is saturated, etc.

Associated with a reward functionand a sequence of
eventse, we define coupling on reward by

Definition 6 A sequence of events= {e,},cN iS
reward-coupling if there exists som& such that the reward
ofthe state attim&/ does not depend on the initial state. The
minimum value o is called the forward reward-coupling
time and is noted’.
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It is clear that reward-coupling time is less than global with perfect simulation may be found in (Stenflo 1998,
coupling time. So it could be of great interest in simulation Stenflo 2001).

if statistical parameters are defined only on reward values. Itis clearthat, ifthd E,,} are independent and identically
distributed, the proced(,},c7 defined by an initial value
2.3 Uniformized Systems and Forward Simulation Xo and the recursive equations (1) is a Markov chain.

Conversely, given a transition matri, it is possible to find
To achieve the model construction of the Markov process, a a transition functiond such that a Markov chain defined by
Poisson process with intensity is associated to each event (1) has transition matrix® (Vincent and Marchand 2004).
ej. These Poisson processes are supposed to be independent. Based on a stochastic recurrent sequence formulation,
algorithm 1 provides directly a sample of the steady state
Theorem 1 The uniformized process driven by the distribution.
Poisson process with raté = Zf:l A; and generating at
each time of the process an event £ according to the
probability distribution (%7 ,A_p) is equivalent to the Algorithm 1 Backward-coupling simulation (general ver-
queueing network Markov process. sion)
The proof of this result (Vincent 2005) is obtained by for all x e & do
writing down the infinitesimal transition equations. One y(x) <« x {initial value of y, at time 0}
should notice that the idea is to introduce the independence ~ €nd for
between events, when an event can not be applied to one repeat

statex the state is not changed (skip operation), the method e < Genere_event(); {generation of event,}
is analogous to the rejection method in stochastic simulation. for all x € X do
Because events are driven by independent Poisson pro- y(x) < y(@(x,e)); {y(x) is the state at time 0
cesses, then every finite sequence of events has a strictly of the trajectory issued from at time —n}
positive probability. Then end for

Theorem 2 If there exists some finite sequence of  until All y(x) are equal
events for which the system is globally coupling, then global ~ "€turn y(x)
coupling timer is almost surely finite and the tail of the
distribution of r is exponentially decreasing.

To prove this result consider a sequende =
{e1,--- , ey} that leads to a global coupling. The prob-
ability of occurrence of this sequence ﬁ% > 0. So
almost surely this sequence will finally appear in every se-
guence of events and the system is globally coupled. Then,
itis clear thatr is less than the first occurrence of the pattern
e in a sequence of events. Because the first occurrence of a
pattern is dominated by a geometric distribution, so is the
distribution of . o -

States
1100
1010
1001
1000
0110
0101
0100
0011
0010
0001
0000

Time

-8 -7 -6 -5 -4 -3 -2 -1 0
E(-8) E(-7) E(-6) E(-5) E(-4) E(-3) E(-2) E(-1)

3 PERFECT SIMULATION Figure 1: lllustration of Backward Coupling

3.1 Discrete Time Markov Chain

o In figure 1, all trajectories issued from all states at time
Formally, when all the knowledge of the dynamics is in- _g pave collapsed in a state at time 0.

cluded in the state description, the system evolution is Denote byr* the coupling time of the backward scheme.
described by the transition functich, typically Using interchange arguments and the independence of gen-
erated events, it is clear that and t* have the same
Xnt1 = P(Xn, Ent1); @) law (Vincent and Marchand 2004). Then, provided that
_ is almost surely finite, this algorithm generates one state

whereX,, is n'" observed state of the system, g },cz, distributed according the steady-state distribution. So re-
the sequence of inputs of the system, typically a sequence peating this algorithm produces a sample of independent
of events generated by calls toRandom function. This random variables distributed on the steady-state over which

type of stochastic recursive sequence has been widely stud-y,54itional statistical tools can be used.
ied in a general framework (Borovkov and Foss 1994) or
(Diaconis and Freedman 1999) and some results related
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3.2 Monotone Perfect Simulation these queueing networkd/ U m| = 2 and the number of
iterations is less thankt*, which drastically improves the
When events are monotonous, the computation may be complexity of the simulation. The time reduction is propor-
reduced by drawing only trajectories issued from the set of tional to the size of the state space , which is usually very
maximum and minimum states. Because the state space islarge. Figure 2 shows the general behavior of monotone

finite, there exists a sa¥, (respectivelym) of maximal, backward scheme.

respectively minimal, elements. Going from the past when

all trajectories issued from states M U m couple then sas

global coupling occurs. N e
Going back to the past step by step leads to a number

N of iterations in the order OO(Er*z). To improve this conaaat

Sate

complexity (Propp 1996) used adaptative step size. At each
step in the past, the length of the step is multiplied by 2.
It has been proven that the doubling scheme (Propp 1996) :
guarantees that the mean number of iteratiBns verifies

-32 -16 -8 -4 2-10

EN < 2Et*.|M Uml|. Figure 2: lllustration of Monotone Backward Coupling

Algorithm 2 shows the doubling scheme structure. A draw-

back of such a method is the storage of events of the whole In this example, there is a unique maximél and a
trajectory. But, as the number of events is very small unique minimal element: in the state space. Trajectories
in queueing systems, events could be stored on shortint jssued fromM andm are computed from time-2* to O until
structures and the amount of memory needed is small with g valuek provides coupling at time 0. In our example, for
regards to the capacity of current computers. k = 6 (in the past of trajectory on the figure), the trajectories
issued from the past at time64 from M andm collapsed

Algorithm 2 Backward-coupling simulation (monotonous  at time —18 and the generated state is obtained at time 0.
version)

n=1;E[1]=Genere_event(); 3.3 Monotone Reward Functions
{array E stores the backward sequence of events }
repeat The last optimization principle is related to monotone reward
n=2.n; functions. Suppose that a reward functignon the state
forall x e M Um do space is monotone. Consequently, if for some states
y(x) <« x y f(x) = f(y), then for all z such thatx < z < y,
{Initial state at time—n} f(@) = f(x) = f(y). To generate reward values according
end for to the steady state distribution, it is sufficient to stop the
for i=n downto n/2+1do backward scheme when the trajectories issued from all
E[i]= Genere_event(); maximal and minimal states collapse on the same reward

{Generate events from-7 + 1 to —n, events from function. Practically this improvement can be significant,
—1 to —5 + 1 have been generated in a previous as will be shown in the examples of section 5.

loop} The algorithm 3 is just a modification of the stopping
end for criteria on a reward value.
for i=n downto 1do As illustrated in figure 3, the simulation time is reduced
forall x e M Um do to 2 iterations versus®for the global coupling.

y(x) < P(y(x), E[i])
{y(x) is the state at time-i — 1 of the trajectory

issued fromx at time —n} 4  SIMULATION SOFTWARE
end for
end for Based on the transition function representation, a simu-
until All y(x) are equal lation kernel has been implemented in C. The software
return y(x) is organized in several parts containing the model of the

gueueing network, the coupling condition and simulation

In (Vincent 2005), monotonicity properties were estab- Control parameters.
lished for queueing networks with rejection and blocking.
Perfect simulation can be used even for large networks. For
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Algorithm 3 Reward backward-coupling simulation
(monotonous version)
Same code as algorithm 2
n=1;E[1]=Genere_event();
{array E stores the backward sequence of events }
repeat
n=2.n;
forall x e M Um do
y(x) < x
{Initial state at time—n}
end for
for i=n downto n/2+1do
E[i]= Genere_event();
{Generate events from-5 + 1 to —n, events from
—1to -5 + 1 have been generated in a previous
loop}
end for
for i=n downto 1do
forall x e M Um do
y(x) < P(y(x), E[i])
{y(x) is the state at time-i — 1 of the trajectory
issued fromx at time —n}
end for
end for

weaker stopping condition
until All Reward(y(x)) are equal
return Reward(y(x))

To illustrate the different input and output files of the
software, consider the simple two queue system with two
types of routing : blocking and rejecting.

4.1 Model Description

This system is described by 4 events . external arrival, end
of service in the first queue and the client exits the system,
end of service in the first queue and the client is routed to

the second queue and rejected if the second queue is full,
end of service in the second queue and the client is routed

goes back to the second queue if the The parameter file indicates the simulation control param-

to the first queue and
first queue Is full.

States

aimum

:M>T

Generated
0 Rewad

3

4
minimum

-2 -16 -8 4 2-10

Figure 3: Time Reduction for Monotone Reward Simulation
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Figure 4: Two Queues (Overflow)

# number of queues 2

# queues are numbered from O to number of queues
# -1

# queues capacities

10 10

# minimal initial state (all queues are empty)
00

# maximal initial state (all queues are full)
10 10

# number of events 4

# list and parameters of events

#ID . identifyer of the event

#Type : type of the event

# 1 : external arrival

# 2 : routing out

# 3 : routing with rejection policy

# 4 : routing or blocking

#Rate : rate of the Poisson process driving the

# event

#NbQ : number of queues concerned by the event
#0O : queue origin of the customer

#DL . destination list of customer from queue O

# ID Type Rate NbQ

O DL

0 1 11 3 -1 0 -1

1 2 12 2 0 -1

2 3 08 3 O 1 -1
3 4 08 3 1 O 1

For implementation, the queuel indicates the exterior
of the network and the end of destination list indicate the
rejection by -1 or blocking by the same index as the origin
queue.

4.2 Simulation Parameters

eters:

# Sample size

1000

# Maximum trajectory length
10000000

# Random generator seed
5

The maximum trajectory length is used to manage
memory to store trajectories. In the case when the maximal
trajectory exceeds the maximum length an alert is given in
the sample.
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4.3 Reward Function # Sample number : SN

DN: Max->state 0 1 Min->state 0 1

The reward function is implemented in C, some primitives #  SN:
to access states are given to the user.

0 7 80 99 1 3

int test_coupling() ; 13 ;g ;8 ig 23
{ int * etat_inf = (int *) get_etat_inf(); 3 8 78 98 2 4
int * etat_sup = (int *) get_etat_sup(); 4 10 96 57 24 8

} return (reward(etat_inf)==reward(etat_sup)); g; ié 33 ;g ig 21
99 8 69 95 7 0

# Sample size 100
# mean generation time :
# random seed 5

int reward(int * state) 1262.050000 micro-seconds

[* couple if the load in all queues exceeds */

/* 80 clients */ o ] ]
It is important to note that the algorithm with the

return (state[0]>80 && state[1]>80); reward function generates two different states, but the reward
} function is equal on these two states and consequently longer
trajectories are not needed.

If we consider the simulation time, the reward technique
is about 15 times faster than the global coupling technique.
This time reduction have been observed on this specific
example. A general method to estimate this reduction factor
is still an open area of research

In this case, the set of statég > 80, x1 > 80) is an
increasing set and the reward function is monotone.

The reward function is compiled on the fly by the
simulator and linked as a dynamic library.

4.4 Output Files
Running the simulation code by the Unix command 5 EXAMPLES
psi2_unix -i test2file.txt -p param.txt -0 output.txt y

gives the result : All the simulation examples were executed on a PC archi-

tecture with a Pentium 4, 2.4 GHz, 512Mo RAM, Linux

# Sampl ber : SN . :
ol kernel 2.4.20-1-686 and the compiler gcc version 2.95.4.

# lteration number (number of doubling operations)

# DN Simulation time estimations were obtained by using the
# Total number of iterations gettimeofday primitive.
# of the transition function is 2°DN-1

# State at time O for the trajectory
issued from maximal state at time -2°DN
issued from minimal state at time -2"DN

# 5.1 Overflow Probability

#

i Consider a typical communication system, with heteroge-
#

neous servers and overflow routing policy. A client entering

1 Min->state 0 1 8 . )
the system goes to the first available server, if all servers

SN: DN: Max->state 0

0 13 1 12 1 12 are occupied, the client is rejected. In the case when all
1 14 86 60 86 60 servers are identical, the loss probability is obtained with
2 15 49 64 49 64 .
................................................. the Erlang-B formula. But when servers have different
98 14 1 1 1 1 rates, there are no analytical formulae for the loss rate. The
99 15 36 68 36 68 reward associated with a state indicates if the system is full

# Sample size 100
# mean generation time :
# random seed 5

or not. This reward is clearly monotone so algorithm 3 is

19489.30000 micro-seconds
used.

Comments in the output file are indicated by the control
character “#”. For example the first state generated in the 5.1.1 Event Model
sample is stat€l, 12), the computation needs 2iterations
and we can check that the trajectories issued from maximum Such a system witlK servers is driven by + 1 Poisson
and minimum are in the same state at time 0. processes. The first one for arrivals and the others for the
For the reward backward simulation, the command takes end of services on each server.

the coupling code as argument:
psi2_unix -i test2file.txt -p param.txt -c reward.c -0

output.tx.t . .
and gives the following file :
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For the numerical application, we také = 30, the
state space has about®1§tates. The first 10 servers have
a rate of 1, the next 10, a rate80and the last 10 a rate
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Arrivals Servers Proba
externes 0.001
__~  Output F

Overflow — le04 1 E

on next free server
L i
Q le-05 E

Rejection if all servers
are buzy

1e-06
A

Figure 5: Erlang Queueing System (Overflow)

Figure 7: Saturation Probability Around= 10, Logarith-
mic Scale

of 0.5. The maximal throughput of such a system is 23
customers per unit of time.

o o For example, for a value. = 10.6, the saturation
5.1.2 Statistical Estimation probability is estimated at.81075, the confidence interval

is roughly 10°°. Then the logscale of the axis explains
The estimation of saturation probability is given in the the jregularity of the curve fok ~ 7.

following figure. The sample size for this experiment is
n = 10°. Because of the independence of the samples, 5 1.3 Coupling Time Distribution
we apply the central limit theorem to compute confidence

interval at levela. For example, withe = 95%, the  The simulation time is less than a milli-second in average.
estimation error of a probability is given by It is sufficient for building very large samples.
P(l -p) us
e= YL P) g5 o |
NG

350 -

300 |- Coupling time

Prob
20 Reward coupling time |

06
200 [~ B

05 B 150 N

100 [~ b

R

0 1 1 1

04

03

Figure 8: Global and Reward Coupling Time

Figure 8 shows how the coupling time depends on
Figure 6: Saturation Probability the load of the system. In particular the coupling time is
maximal aroundr = 15. In this situation the stationary
distribution is widely spread on the state space and the
Figure 6 shows the evolution of the saturation depending coupling is very slow. The time reduction obtained using

on theinput rate of the system. This probablllty is Signiﬁcant the reward function is signiﬁcant’ arourid= 10 for the

after 12 and saturation could not be considered as a rare estimation of rare event probability. The simulation time is

event. To explore this situation more deeply, we simulate reduced by a factor of 10.

samples with a size of.50° for values of from 8 to 12.

We get more precise results in figure 7.
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5.2 Blocking Probability

Consider a typical production line in which customers are
blocked and restart their service if the next station is full.

Because of instability of some queues in the line, block-
ing appear before the bottleneck. For example, we studied
the behavior of queue 2 when queue 3 is near the saturation
condition.

Figure 9: Line of Queues with Blocking

For example, close to unstability of queue 3 what is the
probability of overload of queue 2 ? In this case, we consider
a reward of 1 if the number of customers in queue 2 exceeds
some threshold and O eslewhere. Clearly this function is
monotonous as indicator function of an increasing set.

5.2.1 Event Model
In this network, we have 6 events: an arrival with rejection

if the first queue is full and 4 end of service with blocking
and 1 end of service with exit from the network. The queues

capacities have been fixed at 100 and the state space size

is 1010,
5.2.2 Statistical Estimation

The parameters of the servers arg¢ = 1.0, uo = 0.8,

u3 = 0.5, ug = 0.6 andus = 0.7. The input ratexr in

the network varies from.Q to 0.6. At the valuexr = 0.5,

gueue 3 is unstable and the first queues are overloaded.
The threshold of the reward function has been fixed at

80 and the sample size is = 100000. In figure 10 we

compute the probability of exceeding the threshold in the

stationary regime. This probability increases rapidly around

A = 0.5 as saturation of queue 3 block routing from queue

2.
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A

Figure 10: Line of Queues with Blocking : Estimation of
Overload of Queue 2

5.2.3 Coupling Time Distribution

The behavior around unstability is also observed on the
coupling time (figure 11), the coupling time is maximal at
A = 0.5, the stability threshold of queue 3.

S
140000
120000 I~ Global coupling time
100000 Reward coupling time
80000
60000
40000

0000

0 A

Figure 11: Line of Queues with Blocking : Estimation of
Coupling Time

In this case, we also observe a significant time reduction
when using a reward function. But, itis interesting to notice
that the simulation time is in the order of:/&0 with a peak
at 140ns. This underlines the fact that the coupling time is
highly related to the spread of the steady state distribution.
This should be investigated in further research.

5.3 Loss Probability

In telecommunication networks, multistage models are used
for modelling switches. If it is possible to estimate theo-
retically loss probability at the first and second level, only
stochastic bounds are available for further levels.

In this example, we consider a delta network model
(figure 12), with a capacity of 30 for each queue and a
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homogeneous input trafic. The problem is to estimate the To more thoroughly analyze the saturation probability,
probability that at least one queue is saturated in the third we simulate the system with more specific valuesiof
level. This reward function is also monotone as in the The reward function is now the indicator function of the

previous examples. increasing seat least one queue is full in the third level

0.0014
0.0012 3
0.001 [~ 3
0.0008 3
0.0006 3
0.0004 3
0.0002 3

° A

Figure 12: A Regular Delta Network

Figure 14: Saturation Probability at Third Level

5.3.1 Event Model This simulation shows in figure 14 the rapid evolution
of the saturation probability arouridd= 0.7. It is clear that

The size of the state space is®8t- 5.10*" and there are  under this value the size of the sample is not sufficient.

64 events. An arrival event with rateis associated to each

input queue. Each queue in the network has service rate 5.3.3 Coupling Time Distribution

u = 1 and the routing probability i%. The routing policy

is rejection, packets are lost. On this example, we compare the simulation time according
to the type of the reward function.

5.3.2 Statistical Estimation

us

18000

| Global coupling

I Reward at least 1 queue saturated (3rd level)

In this example, all samples have size= 100000, so it
is sufficient to estimate probabilities in the order of 0 16000
with a significant confidence interval. 14000

First we estimate the mean number of clients in one 12000
specific queue in the third level. Figure 13 shows that 10000 - Reward queue 31 saturated
the queue length is relatively small, so saturation could be  soo -
considered as a rare event, provided that the system is not s -
saturated X = 1). 4000 |-

2000 [~

E(N_34)

7k - 0 0.2 04 0.6 0.8 A

or Figure 15: Coupling Time for the Delta Network

5

It is clear that the reward function on the saturation of
queue 31 is less than the reward function of at least one
saturation at level 3. Because the saturation probability is
very small, the simulation time for the first is less than the
0 5\ second.

If we compare reward strategy and global coupling, the
Figure 13: Mean Queue Length of a Queue at Level 3 gcceleration factor is about 10.
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6 CONCLUSION

All of these examples show the interest of perfect simula-

Propp, J.and Wilson, D. 1996. Exact sampling with coupled
Markov chains and applications to statistical mechanics.
Random Structures and AlgorithAg1&2): 223-252.

tion for generating independent samples of the steady-state Robinson, S. 2002. A statistical process control approach

distribution of finite capacity queueing networks. Mono-
tonicity of events is the key point of this approach. Networks
with routing to the shortest queue, bulk arrivals, forking are
also monotone and could be simulated in the same way.
Unfortunately, join operations and more generally, negative
customers do not present the monotone property.

This approach appears to be well suited for systems with
a large number of components. In the examples, simulation
times for one sample are just a few milli-seconds on a

standard PC. Moreover, because of the independence of
generated states, the method can be parallelized efficiently.
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