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ABSTRACT

This paper deals with the estimation of rare event proba
ities in finite capacity queueing networks. The tradition
product form property of Markovian queueing networ
usually vanishes when capacity of queues are finite
clients are blocked or rejected. A new efficient simu
tion method, derived from Propp & Wilson (Propp 1996
perfect simulation, is applied in the finite capacity que
context. An algorithm directly samples states of the n
work according to the stationary distribution. This meth
is adapted for simulation of rare events, typically wh
events are described by an increasing subset of the
space.

Provided that events of the network are monoto
monotonicity techniques are used to reduce the samp
time. Moreover, a stopping mechanism has been develo
to interrupt the simulation when an increasing set has b
reached. Then, for the estimation of a monotonous rew
function, the simulation time could be reduced drastica
as in (Vincent and Marchand 2004).

1 INTRODUCTION

In the queueing networks context, estimation of steady-s
probabilities is known to beahard problemwhen the netw
has finite capacity queues. In this case, traditional prod
formproperty vanishes andapproximation techniques sh
be used to give estimations on the performance of
network.

Typical performance indexes of such networks are
lated to steady-state blocking or overflow. Usually, it cor
sponds to low probability and these events could be con
ered as rare events. As examples, we estimate the proba
that the number of customers in a queue exceeds a g
threshold. This could be applied for the estimation of
availability of the system, the loss probability or the blocki
time.
e
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Under Markovian assumptions (Poisson arriva
exponential service time, probabilistic routing etc.), it h
been shown that a network of queues can be mode
by a multidimensional Markov jump process. Then th
system performances are computed from the steady-s
distribution of the process. When queues have an infin
capacity the steady-state distribution is product-for
and may easily be computed in a reasonable amo
of time (Bolch, Greiner, de Meer, and Trivedi 1998). I
some cases the hypothesis of infinite capacity co
be released, preserving the product form (Perros 19
Balsamo, De Nitto Personè, and Onvural 2001). But,
most cases, the steady state distribution is not in prod
form and adequate approximation techniques should
applied. Many papers cover the domain of queuing n
works with finite capacity, bibliographies (Onvural 1990
Balsamo, De Nitto Person, and Inverardi 2003) provi
pointers to related works.

Simulation approaches are alternatemethods to estim
performances of such networks. Based on discrete ev
simulation (Banks, Carson, Nelson, and Nicol 2001) or
Markov properties (MCMC methods; Bremaud 1999), sim
ulations estimate the steady-state distribution based on l
run trajectories. The drawbacks of simulations are the c
trol of the warm up period or burn-in time (Robinson 200
and the influence of the initial state on the stochastic b
havior. Moreover, because statistics are made on long
trajectories, assumptions on asymptotic independence
difficult to justify. In particular for rare events probability
estimation, autocorrelation of the process makes genera
of bursts of rare events.

The aim of this paper is to provide a new simulatio
method derived from Propp & Wilson (Propp 1996) calle
perfect simulation. An introduction to the topic may b
found in (Haggstrom 2002) and some applications to fin
queues in (Mattson 2002). The objective in this article
to use a partial order on the state space such that event
monotoneandusemonotone reward functions to characte
some low probability sets. The difficulty is to prove that th



Vincent

s

e-
s.

nd
il.
is,
cy

e

der

the

ts

rs
ing
al
t be
on.
of
ture
val

be

e

be

-

ts

f

.
he

of

duct

of

f

ons

ally
e
e in

f

e

simulator is sufficiently efficient to provide large sample
in a reasonable time.

The paper is organized as follows. Section 2 is d
voted to the description of monotone queueing system
Then perfect simulation of monotone finite systems a
monotonicity of reward functions are presented in deta
Finally some examples from telephone networks analys
production systems, reliable networks are given. Efficien
of the simulation is established on all experiments.

2 MONOTONE SYSTEMS

2.1 Monotone Events

Consider a queueing networkwithK queues. The state spac
of each queueQi is the set of integersXi = {0, · · · , Ci},
whereCi is the capacity of queueQi . The state spaceX
of the system is the Cartesian product of allXi ;

X = X1× · · · × XK.

The natural order on integers is extended to a partial or
on X using component-wise ordering.

Definition 1 An event e is an application defined
on X , that associates to each statex ∈ X a new state
denoted by	(x, e). 	 is called thetransition function of
the system.

Denote byE = {e1, · · · , ep} the set of events. Usually,
this set is supposed to be finite. One should note that
transition function is defined onE ×X . It is convenient to
include in the transition function the fact that some even
can not be applied to a state. For example, the eventend
of servicecan be executed only if the number of custome
in the queue is greater than one. We consider that apply
anend of serviceevent to an empty queue leaves the glob
state unchanged and more generally if an event can no
applied, the corresponding transition is just a skip operati

In a queueing network, a customer arrival, the end
a service and the subsequent routing, a customer depar
are typical events. The transition corresponding to an arri
in queueQi is an increment ofxi , the number of customers
in queuei provided thatxi < Ci . In that case, the routing
policy (rejection or overflow on another queue should
given.

Definition 2 An executionof the system is defined
by an initial statex0 ∈ X and a sequence of eventse =
{en}n∈N. The sequence of states{xn}n∈N defined by the
recurrencexn+1 = 	(xn, en+1) for n � 0 is called a
trajectory .

Definition 3 A sequence of eventse = {en}n∈N is
said to be globallycoupling if there exist someN such that
the state at timeN (and thereafter) does not depend on th
initial state. The minimum value ofN is called the global
forward coupling time and is notedτ .
529
,

Definition 4 An evente ∈ E is said to bemonotone
if it preserves the partial ordering (component-wise) onX .
That is

∀(x, y) ∈ X x � y ⇒ 	(x, e) � 	(y, e).

If all events are monotone, the global system is said to
monotone.

The monotonicity property is fundamental for improv
ing the efficiency of simulation. Denote byM, (respectively
m), the set of all maximal, (respectively minimal), elemen
of the finite partially ordered state spaceX . Then

Proposition 1 For a given infinite sequence o
eventse = {en}n∈N, if all trajectories issued from any
initial state inM ∪m, couple then global coupling occurs

The proof of this proposition is based on the fact that t
structure of the state space is a lattice. Then every statex is
between a statexinf ∈ m andxsup ∈ M, xinf � x � xsup.
Then if two trajectories issued fromxinf andxsup collapse
in the statey aftern steps, because of the monotonicity
the transition function the trajectory issued fromx collapses
also in statey after n steps.

In the case when the state space is the Cartesian pro
of {0, · · · , Ci} there is a unique minimum state(0, · · · ,0)
and a unique maximum state(C1, · · · , CK). So it is suf-
ficient to build two trajectories to capture the behavior
the whole system and to compute the coupling time.

2.2 Monotone Reward Functions

Consider now rewards on the state spaceX . In this paper
a reward is a function from the state spaceX on a partially
ordered setR.

Definition 5 A reward r is said to be monotone i
it satisfies

∀(x, y) ∈ X 2 x � y ⇒ r(x) � r(y).

Recall that an increasing set� of states is a set such
that if x ∈ � andy such thaty � x theny ∈ �. Particular
cases of monotone reward functions are indicator functi
of increasing sets (denoted 11�(x)).

In queueing networks increasing sets appear natur
in conditions like the total number of customers in th
network is more than a certain value, at least one queu
the network is saturated, etc.

Associated with a reward functionr and a sequence o
eventse, we define coupling on reward by

Definition 6 A sequence of eventse = {en}n∈N is
reward-coupling if there exists someN such that the reward
of the state at timeN does not depend on the initial state. Th
minimum value ofN is called the forward reward-coupling
time and is notedτ r .
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It is clear that reward-coupling time is less than glob
coupling time. So it could be of great interest in simulatio
if statistical parameters are defined only on reward valu

2.3 Uniformized Systems and Forward Simulation

To achieve the model construction of the Markov process
Poisson process with intensityλj is associated to each even
ej . These Poisson processes are supposed to be indepen

Theorem 1 The uniformized process driven by th
Poisson process with rate� =∑p

j=1 λi and generating at
each time of the process an evente ∈ E according to the
probability distribution ( λ1

�
, · · · , λp

�
) is equivalent to the

queueing network Markov process.
The proof of this result (Vincent 2005) is obtained b

writing down the infinitesimal transition equations. On
should notice that the idea is to introduce the independe
between events, when an event can not be applied to
statex the state is not changed (skip operation), the meth
is analogous to the rejectionmethod in stochastic simulati

Because events are driven by independent Poisson
cesses, then every finite sequence of events has a str
positive probability. Then

Theorem 2 If there exists some finite sequence
events for which the system is globally coupling, then glob
coupling timeτ is almost surely finite and the tail of the
distribution ofτ is exponentially decreasing.

To prove this result consider a sequenceE =
{e1, · · · , en} that leads to a global coupling. The prob
ability of occurrence of this sequence is

∏ λi
�

> 0. So
almost surely this sequence will finally appear in every s
quence of events and the system is globally coupled. Th
it is clear thatτ is less than the first occurrence of the patte
e in a sequence of events. Because the first occurrence
pattern is dominated by a geometric distribution, so is t
distribution ofτ .

3 PERFECT SIMULATION

3.1 Discrete Time Markov Chain

Formally, when all the knowledge of the dynamics is in
cluded in the state description, the system evolution
described by the transition function	, typically

Xn+1 = 	(Xn,En+1); (1)

whereXn is nth observed state of the system, and{En}n∈Z
the sequence of inputs of the system, typically a seque
of events generated by calls to aRandom function. This
type of stochastic recursive sequence has been widely s
ied in a general framework (Borovkov and Foss 1994)
(Diaconis and Freedman 1999) and some results rela
530
nt.

-
y
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with perfect simulation may be found in (Stenflo 199
Stenflo 2001).

It is clear that, if the{En}are independent and identical
distributed, the process{Xn}n∈Z defined by an initial value
X0 and the recursive equations (1) is a Markov cha
Conversely, given a transition matrixP , it is possible to find
a transition function	 such that a Markov chain defined b
(1) has transition matrixP (Vincent and Marchand 2004)

Based on a stochastic recurrent sequence formula
algorithm 1 provides directly a sample of the steady st
distribution.

Algorithm 1 Backward-coupling simulation (general ve
sion)

for all x ∈ X do
y(x) ← x {initial value of y, at time 0}

end for
repeat
e ← Genere_event(); {generation of evente−n}
for all x ∈ X do
y(x) ← y(	(x, e)); {y(x) is the state at time 0
of the trajectory issued fromx at time−n}

end for
until All y(x) are equal
returny(x)

E(−8)
−8−9−10 0

E(−1)E(−2)E(−3)E(−4)E(−5)E(−6)E(−7)

Time

States

0000

0001

0010

0011

0100

0101

0110

1000

1001

1010

1100

−4 −3 −2 −1−5−6−7

Figure 1: Illustration of Backward Coupling

In figure 1, all trajectories issued from all states at tim
−8 have collapsed in a state at time 0.

Denote byτ ∗ the coupling time of the backward schem
Using interchange arguments and the independence of
erated events, it is clear thatτ and τ ∗ have the same
law (Vincent and Marchand 2004). Then, provided thaτ
is almost surely finite, this algorithm generates one s
distributed according the steady-state distribution. So
peating this algorithm produces a sample of independ
random variables distributed on the steady-state over w
traditional statistical tools can be used.
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3.2 Monotone Perfect Simulation

When events are monotonous, the computation may
reduced by drawing only trajectories issued from the se
maximum and minimum states. Because the state spa
finite, there exists a setM, (respectivelym) of maximal,
respectively minimal, elements. Going from the past wh
all trajectories issued from states inM ∪ m couple then
global coupling occurs.

Going back to the past step by step leads to a num
N of iterations in the order ofO(Eτ ∗2). To improve this
complexity (Propp 1996) used adaptative step size. At e
step in the past, the length of the step is multiplied by
It has been proven that the doubling scheme (Propp 1
guarantees that the mean number of iterationsEN verifies

EN � 2Eτ ∗.|M ∪m|.

Algorithm 2 shows the doubling scheme structure. A dra
back of such a method is the storage of events of the w
trajectory. But, as the number of events is very sm
in queueing systems, events could be stored on sho
structures and the amount of memory needed is small
regards to the capacity of current computers.

Algorithm 2 Backward-coupling simulation (monotonou
version)
n=1;E[1]=Genere_event();
{array E stores the backward sequence of events }
repeat
n=2.n;
for all x ∈ M ∪m do
y(x) ← x

{Initial state at time−n}
end for
for i=n downto n/2+1do
E[i]= Genere_event();
{Generate events from−n

2 + 1 to −n, events from
−1 to −n

2 + 1 have been generated in a previo
loop}

end for
for i=n downto 1do

for all x ∈ M ∪m do
y(x) ← 	(y(x), E[i])
{y(x) is the state at time−i− 1 of the trajectory
issued fromx at time−n}

end for
end for

until All y(x) are equal
returny(x)

In (Vincent 2005), monotonicity properties were esta
lished for queueing networks with rejection and blockin
Perfect simulation can be used even for large networks.
531
s

these queueing networks|M ∪ m| = 2 and the number o
iterations is less than 4Eτ ∗, which drastically improves th
complexity of the simulation. The time reduction is prop
tional to the size of the state space , which is usually v
large. Figure 2 shows the general behavior of monot
backward scheme.

State

2

1

M

−1−2−4−8−16−32 0

States

 :  : Maximum

  : minimum

Generated

0

Figure 2: Illustration of Monotone Backward Coupling

In this example, there is a unique maximalM and a
unique minimal elementm in the state space. Trajectori
issued fromM andm are computed from time−2k to 0 until
a valuek provides coupling at time 0. In our example, f
k = 6 (in the past of trajectory on the figure), the trajector
issued from the past at time−64 fromM andm collapsed
at time−18 and the generated state is obtained at tim

3.3 Monotone Reward Functions

The last optimization principle is related tomonotone rew
functions. Suppose that a reward functionf on the state
space is monotone. Consequently, if for some statesx �
y f (x) = f (y), then for all z such thatx � z � y,
f (z) = f (x) = f (y). To generate reward values accordi
to the steady state distribution, it is sufficient to stop
backward scheme when the trajectories issued from
maximal and minimal states collapse on the same rew
function. Practically this improvement can be significa
as will be shown in the examples of section 5.

The algorithm 3 is just a modification of the stoppi
criteria on a reward value.

As illustrated in figure 3, the simulation time is reduc
to 2 iterations versus 26 for the global coupling.

4 SIMULATION SOFTWARE

Based on the transition function representation, a si
lation kernel has been implemented in C. The softw
is organized in several parts containing the model of
queueing network, the coupling condition and simulat
control parameters.



Vincent

n

us

e
wo

nd
m,
to
full,
ted
the

n

r
the
gin

m-

ge
imal
n in
Algorithm 3 Reward backward-coupling simulatio
(monotonous version)
{===== Same code as algorithm 2 =====}
n=1;E[1]=Genere_event();
{array E stores the backward sequence of events }
repeat
n=2.n;
for all x ∈ M ∪m do
y(x) ← x

{Initial state at time−n}
end for
for i=n downto n/2+1do
E[i]= Genere_event();
{Generate events from−n

2 + 1 to −n, events from
−1 to −n

2 + 1 have been generated in a previo
loop}

end for
for i=n downto 1do

for all x ∈ M ∪m do
y(x) ← 	(y(x), E[i])
{y(x) is the state at time−i− 1 of the trajectory
issued fromx at time−n}

end for
end for
{===== weaker stopping condition =====}

until All Reward(y(x)) are equal
returnReward(y(x))

To illustrate the different input and output files of th
software, consider the simple two queue system with t
types of routing : blocking and rejecting.

4.1 Model Description

This system is described by 4 events : external arrival, e
of service in the first queue and the client exits the syste
end of service in the first queue and the client is routed
the second queue and rejected if the second queue is
end of service in the second queue and the client is rou
to the first queue and goes back to the second queue if
first queue is full.

0

−2−4−8−16−32 0

0

2

1

M

States

Maximum

minimum

Generated

Reward

1

−1

Figure 3: Time Reduction for Monotone Reward Simulatio
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1−p
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ν

C1

C2 Rejection
Blocking

p

Figure 4: Two Queues (Overflow)

# number of queues 2
# queues are numbered from 0 to number of queues
# -1
# queues capacities
10 10
# minimal initial state (all queues are empty)
0 0
# maximal initial state (all queues are full)
10 10
# number of events 4
# list and parameters of events
#ID : identifyer of the event
#Type : type of the event
# 1 : external arrival
# 2 : routing out
# 3 : routing with rejection policy
# 4 : routing or blocking
#Rate : rate of the Poisson process driving the
# event
#NbQ : number of queues concerned by the event
#O : queue origin of the customer
#DL : destination list of customer from queue O
# ID Type Rate NbQ
O DL
0 1 1.1 3 -1 0 -1
1 2 1.2 2 0 -1
2 3 0.8 3 0 1 -1
3 4 0.8 3 1 0 1

For implementation, the queue−1 indicates the exterio
of the network and the end of destination list indicate
rejection by -1 or blocking by the same index as the ori
queue.

4.2 Simulation Parameters

The parameter file indicates the simulation control para
eters:

# Sample size
1000
# Maximum trajectory length
10000000
# Random generator seed
5

The maximum trajectory length is used to mana
memory to store trajectories. In the case when the max
trajectory exceeds the maximum length an alert is give
the sample.



Vincent

s

ol
he

m

e

e
ard
ger

ue
ue.
ific
tor

hi-
x
.4.
he

e-
ng
ers
all
ith
nt
he
full
is

the

e

4.3 Reward Function

The reward function is implemented in C, some primitive
to access states are given to the user.

int test_coupling()
{

int * etat_inf = (int *) get_etat_inf();
int * etat_sup = (int *) get_etat_sup();

return (reward(etat_inf)==reward(etat_sup));
}

int reward(int * state)
/* couple if the load in all queues exceeds */
/* 80 clients */
{

return (state[0]>80 && state[1]>80);
}

In this case, the set of states(x0 > 80, x1 > 80) is an
increasing set and the reward function is monotone.

The reward function is compiled on the fly by the
simulator and linked as a dynamic library.

4.4 Output Files

Running the simulation code by the Unix command
psi2_unix -i test2file.txt -p param.txt -o output.txt ,
gives the result :

# Sample number : SN
# Iteration number (number of doubling operations)
# DN
# Total number of iterations
# of the transition function is 2ˆDN-1
# State at time 0 for the trajectory
# issued from maximal state at time -2ˆDN
# issued from minimal state at time -2ˆDN
#
#
# SN: DN: Max->state 0 1 Min->state 0 1
#================================================

0 13 1 12 1 12
1 14 86 60 86 60
2 15 49 64 49 64

.................................................
98 14 11 1 11 1
99 15 36 68 36 68

# Sample size 100
# mean generation time : 19489.30000 micro-seconds
# random seed 5

Comments in the output file are indicated by the contr
character “#”. For example the first state generated in t
sample is state(1,12), the computation needs 213 iterations
and we can check that the trajectories issued frommaximu
and minimum are in the same state at time 0.

For the reward backward simulation, the command tak
the coupling code as argument:
psi2_unix -i test2file.txt -p param.txt -c reward.c -o

output.txt

and gives the following file :
533
s

# Sample number : SN
# .....
# SN: DN: Max->state 0 1 Min->state 0 1
#================================================

0 7 80 99 1 3
1 11 78 70 17 6
2 10 78 90 10 1
3 8 78 98 2 4
4 10 96 57 24 8

.................................................
97 11 99 73 26 4
98 10 73 89 10 21
99 8 69 95 7 0

# Sample size 100
# mean generation time : 1262.050000 micro-seconds
# random seed 5

It is important to note that the algorithm with th
reward function generates two different states, but the rew
function is equal on these two states and consequently lon
trajectories are not needed.

If we consider the simulation time, the reward techniq
is about 15 times faster than the global coupling techniq
This time reduction have been observed on this spec
example. A general method to estimate this reduction fac
is still an open area of research

5 EXAMPLES

All the simulation examples were executed on a PC arc
tecture with a Pentium 4, 2.4 GHz, 512Mo RAM, Linu
kernel 2.4.20-1-686 and the compiler gcc version 2.95
Simulation time estimations were obtained by using t
gettimeofday primitive.

5.1 Overflow Probability

Consider a typical communication system, with heterog
neous servers and overflow routing policy. A client enteri
the system goes to the first available server, if all serv
are occupied, the client is rejected. In the case when
servers are identical, the loss probability is obtained w
the Erlang-B formula. But when servers have differe
rates, there are no analytical formulae for the loss rate. T
reward associated with a state indicates if the system is
or not. This reward is clearly monotone so algorithm 3
used.

5.1.1 Event Model

Such a system withK servers is driven byK + 1 Poisson
processes. The first one for arrivals and the others for
end of services on each server.

For the numerical application, we takeK = 30, the
state space has about 109 states. The first 10 servers hav
a rate of 1, the next 10, a rate 0.8 and the last 10 a rate
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Figure 5: Erlang Queueing System (Overflow)

of 0.5. The maximal throughput of such a system is
customers per unit of time.

5.1.2 Statistical Estimation

The estimation of saturation probability is given in th
following figure. The sample size for this experiment
n = 106. Because of the independence of the samp
we apply the central limit theorem to compute confiden
interval at levelα. For example, withα = 95%, the
estimation error of a probabilityp is given by

ε =
√
p(1− p)√

n
1.65.

Prob

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

λ
 0

Figure 6: Saturation Probability

Figure 6 shows the evolution of the saturation depend
on the input rate of the system. This probability is significa
after 12 and saturation could not be considered as a
event. To explore this situation more deeply, we simul
samples with a size of 5.106 for values ofλ from 8 to 12.
We get more precise results in figure 7.
534
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e

Proba

 1e−06

 1e−04

 0.001

λ

 1e−05

Figure 7: Saturation Probability Aroundλ = 10, Logarith-
mic Scale

For example, for a valueλ = 10.6, the saturation
probability is estimated at 3.910−5, the confidence interval
is roughly 10−5. Then the logscale of they axis explains
the iregularity of the curve forλ ∼ 7.

5.1.3 Coupling Time Distribution

The simulation time is less than a milli-second in averag
It is sufficient for building very large samples.

s

Reward coupling time

Coupling time

 0

200

250

300

350

λ

100

 50

µ

400

150

Figure 8: Global and Reward Coupling Time

Figure 8 shows how the coupling time depends o
the load of the system. In particular the coupling time
maximal aroundλ = 15. In this situation the stationary
distribution is widely spread on the state space and
coupling is very slow. The time reduction obtained usin
the reward function is significant, aroundλ = 10 for the
estimation of rare event probability. The simulation time
reduced by a factor of 10.
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5.2 Blocking Probability

Consider a typical production line in which customers
blocked and restart their service if the next station is f

Because of instability of some queues in the line, blo
ing appear before the bottleneck. For example, we stu
the behavior of queue 2 when queue 3 is near the satur
condition.

reject

µ2C2

C3 µ3

C4 µ4

C5 µ5

C1 µ1
λ

Figure 9: Line of Queues with Blocking

For example, close to unstability of queue 3 what is
probability of overload of queue 2 ? In this case, we cons
a reward of 1 if the number of customers in queue 2 exce
some threshold and 0 eslewhere. Clearly this functio
monotonous as indicator function of an increasing set.

5.2.1 Event Model

In this network, we have 6 events: an arrival with reject
if the first queue is full and 4 end of service with blocki
and 1 end of service with exit from the network. The que
capacities have been fixed at 100 and the state space
is 1010.

5.2.2 Statistical Estimation

The parameters of the servers areµ1 = 1.0, µ2 = 0.8,
µ3 = 0.5, µ4 = 0.6 andµ5 = 0.7. The input rateλ in
the network varies from 0.1 to 0.6. At the valueλ = 0.5,
queue 3 is unstable and the first queues are overloade

The threshold of the reward function has been fixe
80 and the sample size isn = 100000. In figure 10 we
compute the probability of exceeding the threshold in
stationary regime. This probability increases rapidly aro
λ = 0.5 as saturation of queue 3 block routing from que
2.
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Figure 10: Line of Queues with Blocking : Estimation o
Overload of Queue 2

5.2.3 Coupling Time Distribution

The behavior around unstability is also observed on
coupling time (figure 11), the coupling time is maximal
λ = 0.5, the stability threshold of queue 3.

Global coupling time

Reward coupling time

µ

 0

 80000

 100000

 120000

 140000

s

λ

 40000

 20000

 60000

Figure 11: Line of Queues with Blocking : Estimation o
Coupling Time

In this case, we also observe a significant time reduct
when using a reward function. But, it is interesting to noti
that the simulation time is in the order of 10ms with a peak
at 140ms. This underlines the fact that the coupling time
highly related to the spread of the steady state distribut
This should be investigated in further research.

5.3 Loss Probability

In telecommunication networks, multistage models are u
for modelling switches. If it is possible to estimate the
retically loss probability at the first and second level, on
stochastic bounds are available for further levels.

In this example, we consider a delta network mod
(figure 12), with a capacity of 30 for each queue and
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homogeneous input trafic. The problem is to estimate
probability that at least one queue is saturated in the t
level. This reward function is also monotone as in
previous examples.
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Figure 12: A Regular Delta Network

5.3.1 Event Model

The size of the state space is 3132 � 5.1047 and there are
64 events. An arrival event with rateλ is associated to eac
input queue. Each queue in the network has service
µ = 1 and the routing probability is12. The routing policy
is rejection, packets are lost.

5.3.2 Statistical Estimation

In this example, all samples have sizen = 100000, so it
is sufficient to estimate probabilities in the order of 10−4
with a significant confidence interval.

First we estimate the mean number of clients in
specific queue in the third level. Figure 13 shows t
the queue length is relatively small, so saturation could
considered as a rare event, provided that the system i
saturated (λ = 1).

λ
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 E(N_34)

 0

Figure 13: Mean Queue Length of a Queue at Level
536
e

ot

To more thoroughly analyze the saturation probabili
we simulate the system with more specific values ofλ.
The reward function is now the indicator function of th
increasing setat least one queue is full in the third level.

λ
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 0.0008
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 0

Figure 14: Saturation Probability at Third Level

This simulation shows in figure 14 the rapid evolutio
of the saturation probability aroundλ = 0.7. It is clear that
under this value the size of the sample is not sufficient.

5.3.3 Coupling Time Distribution

On this example, we compare the simulation time accord
to the type of the reward function.

s
Global coupling

Reward  at least 1 queue saturated (3rd level)

Reward queue 31 saturated

 0
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 0  0.2  0.4  0.6  0.8

 6000
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 2000

λ

µ

 8000

Figure 15: Coupling Time for the Delta Network

It is clear that the reward function on the saturation
queue 31 is less than the reward function of at least o
saturation at level 3. Because the saturation probability
very small, the simulation time for the first is less than th
second.

If we compare reward strategy and global coupling, t
acceleration factor is about 10.
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6 CONCLUSION

All of these examples show the interest of perfect simul
tion for generating independent samples of the steady-s
distribution of finite capacity queueing networks. Mono
tonicity of events is the key point of this approach. Network
with routing to the shortest queue, bulk arrivals, forking a
also monotone and could be simulated in the same w
Unfortunately, join operations and more generally, negati
customers do not present the monotone property.

This approach appears to be well suited for systemsw
a large number of components. In the examples, simulat
times for one sample are just a few milli-seconds on
standard PC. Moreover, because of the independence
generated states, the method can be parallelized efficien
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