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ABSTRACT

Rare event simulation requires acceleration techniques in
order to i) observe the rare event and ii) obtain a valid and
small confidence interval for the expected value. A “good”
estimator has to be robust when rarity increases. This paper
aims at studying robustness measures, the standard ones in
the literature being Bounded Relative Error and Bounded
Normal Approximation. By considering the problem of esti-
mating the reliability of a static model for which simulation
time per run is the critical issue, we show that actually those
measures do not validate the satisfying behavior of some
techniques. We thus define Bounded Relative Efficiency
and generalized bounded normal approximation properties
of the two previous measures in order to encompass the
simulation time. We also illustrate how a user can have a
look at the coverage of the resulting confidence interval by
using the so-called coverage function.

1 INTRODUCTION

In order to understand the behavior and dynamics of sys-
tems, stochastic modeling has been seen as a powerful
tool, with applications in various fields such as biology,
medicine, computer science, telecommunications... The so-
lution methods available to analyze those models depend
on their degree of abstraction: analytical techniques are
usually only applicable when quite stringent assumptions
are verified such as Markov property for instance. If no
necessary assumption is imposed, the users have to turn
to numerical solutions. Another requirement for both an-
alytical and numerical techniques is that the model is of
small to moderate size (or encompasses symmetries) so that
the time to get the results remains feasible. If those two
requirements are not met, Monte Carlo simulation becomes
the method of choice.

Another issue is that, in many cases, the properties of
interest depend critically on the occurrence of a rare event.
This happens for instance in communication networks, where
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a traditional measure of performance is the packet loss
probability having an incidence on quality of service. Losses
are generally due to buffer overfilling and may be computed
from queuing theory tools. Another field of interest is
dependability analysis. For instance, we may be interested
in computing the probability of not being able to connect
two terminal sites of a network, due to failures in the links.
Usually, these events have very small probabilities, smaller
than 10−9 in actual practice. Nuclear plants reliability
analysis is a similar critical application.

When we find a rare event situation, standard simulation
techniques meet important difficulties, as the low probability
of the interesting states makes it very improbable to observe
them in a random sample of the evolution of the system. This
leads to very poor precision in the estimation of the target
measures, and increases the probability of non meaningful
experiments (such as never observing the event of interest).
There has been much research in alternative techniques,
which can improve the precision of the estimation. Most
of these methods are usually classified within the class
of variance reduction techniques, as they strive to give
estimators for the target measure having the same mean
value but smaller variance than the standard Monte Carlo
estimator (Fishman 1997). This improved precision is in
general attained at the cost of employing a more complex
algorithm, which leads in many cases (but not necessarily)
to increasing the computational time. Other methods have
the same precision per replication as standard Monte Carlo,
but with lower computational costs.

As there are many techniques offering different trade-
offs, two immediate questions are i) is the method robust as
rarity increases? ii) what is the most appropriate one? To
answer those questions, a purely empirical approach, used
in some of the first papers in the area, consists of observing
the efficiency of each method (defined as the product of
the variance by the computational time) in comparison with
the standard Monte Carlo technique, which serves as a base
point, over a test set. This idea has many problems, as
it is difficult to extrapolate the results for other systems
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not included in the test set, and to obtain useful insights
to design alternative methods. A better possibility is the
analytical study of the simulation methods. In particular,
there has been a line of research of the asymptotic behavior
of rare event simulation estimators when the rarity of the
events goes to 0, which has led to define new concepts
such as bounded relative error, asymptotic optimality (both
concerning the size of the confidence interval relatively
to the considered rare event), and more recently bounded
normal approximation (looking at the coverage of the con-
fidence interval). These concepts focus on the precision
attained and the robustness of the simulation estimators
(both are important features, see for example the discus-
sion in (Heegaard 1998)), but do not take into account the
computational times associated with them. We show in this
paper that those properties are not defined generally enough
to encompass some classes of estimators actually exhibit-
ing a very nice behavior. This is illustrated on the problem
of estimating the source-terminal reliability of a network.
We therefore generalize the above mentioned properties by
incorporating the average simulation time to get a single
measure. This leads to the definitions of bounded relative
efficiency and generalized bounded normal approximation.
Another concept that we introduce in this paper is the use
of the coverage function (Schruben 1980) applied to rare
event estimators to exactly see in practice if the coverage
of the estimator is robust with respect to the rarity of the
event.

The paper is organized as follows. In Section 2, we
recall the properties from the existing literature: bounded
relative error, asymptotic optimality, and bounded normal
approximation. In Section 3, we first present a simulation
method for estimation the static source-terminal reliability
in a network that will be used as the illustration through-
out the paper. We show that, despite being efficient, this
method does not verify the above traditional properties. We
thus propose a desirable property for a simulation method,
called Bounded Relative Efficiency, which corresponds to
the situation where a given relative error can be obtained
with constant computational effort even when the proba-
bility of the event of interest goes to 0. We also provide
for our illustrative simulation method a sufficient condition
for holding Bounded Relative Efficiency, implying its ro-
bust behavior. Section 4 then similarly generalizes bounded
normal approximation property, providing a bound of error
coverage in average for a given simulation time. Again,
a condition is provided for the static reliability estimator.
This last property giving only a sufficient condition for en-
suring the coverage of the confidence interval, we look in
Section 5 at the effective coverage by using the so-called
coverage function. Section 6 presents numerical examples
illustrating our results and Section 7 concludes the paper
and gives directions for future research.
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2 PROPERTIES OF RARE EVENT ESTIMATORS

Throughout the rest of the paper, we aim at estimating the
probability γ of a rare event. Since we wish to study the
robustness of estimators as rarity increases, we introduce
a rarity parameter ε characterizing the rare event and such
that as ε → 0, γ → 0. This parameter may have different
interpretations depending on the context of use. In reli-
ability models for instance, ε may represent a maximum
failure rate of a component in the case of dynamic models
(Shahabuddin 1994), or the reliability of a component in the
case of static models. In queuing performance evaluation
models, ε may be chosen as 1/B where B is the buffer size,
so that the buffer overflow probability γ → 0 as ε → 0
(Heegaard 1998).

2.1 Bounded Relative Error

Let us consider an unbiased estimator γ̂n of γ built from
a sample having size n. Bounded Relative Error (BRErr)
has been defined in (Shahabuddin 1994) in order to state if
the half-width confidence interval divided by γ is bounded
as ε tends to 0 (for a fixed sample size n). This asserts
the robustness of the estimation, meaning that the relative
error is not sensitive to the rarity of the event. Formally,

Definition 1 Let σ 2
n denote the variance of γ̂n, σn =√

σ 2
n and let zδ denote the 1 − δ/2 quantile of the standard

normal distribution (zδ = N −1(1 − δ/2) where N is the
standard normal distribution). Then the relative error RErr
is defined by

RErr = zδ

σn

γ
. (1)

We say that we have a bounded relative error (BRErr) if
RErr remains bounded as ε → 0.

This property has been further studied in
detail in several articles (Heidelberger 1995,
Heidelberger, Shahabuddin, and Nicola 1994,
Nakayama 1996), mainly in the context of highly
reliable Markovian systems. Necessary and sufficient
conditions for verifying the property are provided in those
papers.

2.2 Asymptotic Optimality

Asymptotic optimality has been widely used in queuing
applications, for a special class of simulation methods
called importance sampling. Importance sampling con-
sists of modifying the probability measure of the system
under study before simulating it: if γ = Ef [g(X)] is the
expectation of random variable g(X) under probability mea-
sure f , then γ = ∫

g(x)f (x)dx = ∫
g(x)L(x)f ∗(x)dx =

Ef ∗ [g(X)L(X)] where L(x) = f (x)/f ∗(x) is called the
likelihood ratio (assuming f ∗ > 0 if fg > 0). In other
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words, γ is also the expectation of g(X)L(X) under prob-
ability measure f ∗. Denoting γ̂n = n−1 ∑n

i=1 g(Xi) the
standard estimator of γ where the sample is X1, · · · , Xn,
the importance sampling estimator of γ corresponding to the
new measure f ∗ is γ̂ IS

n = n−1 ∑n
i=1 g(Xi)L(Xi). Then, if

L � 1 the variance of γ̂ IS
n verifies Var(γ̂ IS

n ) � Var(γ̂n).
Definition 2 An importance sampling estimator

γ̂ IS
n is called asymptotically optimal, if

lim
ε→0

ln Ef ∗ [g(X)2L(X)2]
ln γ

= 2.

Note that the quantity under limit is always positive and
less than or equal to 2.

Basically, this property means that when ε → 0 the
variance of γ̂ IS

n goes to zero as well. However, what
interests us here is the relative error. In (Sandmann 2004),
it is proved that asymptotic optimality is a necessary but
not sufficient condition to BRErr.

2.3 Bounded Normal Approximation

Whereas the two previous properties deal with the variance
of the estimator to maintain as small as possible the relative
size of the confidence interval, an important remaining
question is whether or nor the coverage of this confidence
interval remains bounded as ε → 0.

Bounded Normal Approximation (BNA) (Tuffin 1999)
ensures that the Gaussian approximation, and thus the con-
fidence interval coverage, remains valid as ε tends to 0. It
is based on the Berry-Esseen Theorem which states that if �

is the third absolute moment of each of the n i.i.d. random
variables Xi (and σ 2 the variance), N the standard normal
distribution, γ̂n = n−1 ∑n

i=1 Xi , σ̂ 2
n = n−1 ∑I

i=1(Xi − γ̂n)
2

and Fn the distribution of the centered and normalized sum
(γ̂n − γ )/σ̂n, then there exists an absolute constant a > 0
such that, for each x and I

|Fn(x) − N (x)| ≤ a�

σ 3
√

n
. (2)

Definition 3 We say that γ̂n verifies Bounded Nor-
mal Approximation if �/σ 3 remains bounded as ε → 0.

If the estimator enjoys this property, only a fixed number
of iterations is required to obtain a confidence interval having
a fixed error no matter how rarely failures occur.

In (Tuffin 2004), it is shown that, for Markovian re-
liability models, BNA implies that the estimation of the
variance is asymptotically correct, implying in turn BRErr,
which implies the γ is well-estimated, but that none of the
converse implications is verified in full generality. A re-
finement of the necessary and sufficient condition for BNA
is also provided in (Tuffin 2004).
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3 DEFINITION OF BOUNDED
RELATIVE EFFICIENCY

3.1 Need For Extending The Current Properties

Consider the problem of evaluating the reliability of a “static”
(time is not an explicit variable) stochastic model of a
complex system by Monte Carlo. To be specific, consider
a standard network reliability problem: we are given an
undirected graph G representing a communication network
where nodes are perfect but links (edges) can fail (they can
be either operational or completely down), two fixed nodes,
s and t , and we want to quantify the capacity of the network
to support the communications between these two selected
nodes. Edges are supposed to fail independently, and we
know the (elementary) reliability ri of each edge i (ri is
the probability that edge i is working). The random set
of operational edges defines a random subgraph G′ of G.
The target is the network reliability R, the probability that
nodes s and t belong to the same connected component of
G′.

The computation of R is NP-hard, and it is out of scope
today for even moderate graph sizes (having, say, several
dozens of nodes and links (Rubino 1998)). Estimating R

using a standard Monte Carlo method consists of building
n copies of G′, simply counting in how many of those the
selected nodes can communicate and dividing this number
by n. This ratio is an unbiased estimator of R; its variance
is R(1−R)/n. The cost of building a copy of G′ following
the standard approach is �(M) if M is the number of links
in G, and the average cost in time of checking if s and t are
connected in a subgraph of G (that is, the cost of running
a Depth First Search procedure) is also �(M). The usual
situation is that the reliabilities of the lines are high, leading
to a rare event situation (1 − R ≈ 0).

In (Khadiri and Rubino 1996), a different estimator of
R is proposed, having some interesting properties. To use
it, we need to build a set of elementary paths connecting
nodes s and t , such that any pair of paths share only nodes
s and t . Let this set be P = {P1, P2, · · · , PH }, and call πh

the event “all links of path Ph work”. Denote by ph the
probability of πh, that is,

ph = Pr[πh] =
∏
i∈Ph

ri .

Consider an infinite sequence of independent copies of G′
and let F be the random variable “first element in the
sequence where every path in P has at least one link that
does not work”. See that

Pr[F = 1] = q =
H∏

h=1

(1 − ph),
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and in general, for any n ≥ 1,

Pr[F = n] = (1 − q)n−1q.

Then, on the average, we have to wait for E(F ) = 1/q sam-
ples of G′ to find one such that no path in P connects s and t .
If the links are highly reliable, then q will be small and E(F )

large. It was then proven in (Khadiri and Rubino 1996) that
the following intuitive idea works. We first sample from
the geometric distribution of F . Call f the obtained value.
The estimator of R is then built assuming that in the first
f − 1 copies of G′ nodes s and t are connected (saving
a significant amount of computations as the reliability gets
close to one). It remains to know if they are connected
in the f th copy or not. To build that f th copy, we must
sample the states of the lines in the network, conditioned
to the fact that each of the paths on P contains at least
a failed component. The problem reduces to sampling the
states of the edges in a path, knowing that at least one of
them is down; once this is done for the H paths, the rest of
the links in the network are sampled independently, using
their original reliabilities.

Let path Ph be Ph = (ih,1, ih,2, · · · , ih,Kh
) and let

ch,k = rih,1rih,2 · · · rih,k
be the probability that the first k

edges in Ph (in some arbitrary and fixed order) are all up,
for 1 ≤ k ≤ Kh. Then, define a random variable Wh on
the set of integers {1, 2, · · · , Kh} with distribution

Pr[Wh = k] = (1 − rih,k
)ch,k−1

1 − ch,Kh

,

where ch,0 = 1. It can be then shown that Wh has the
distribution of the index of the random variable “first failed
edge of Ph knowing that there is at least one failed edge”. To
sample the state of links ih,1, ih,2, · · · , ih,Kh

we just sample
Wh; if the obtained value is wh, links ih,1, ih,2, · · · , ih,wh−1
are set to ‘up’, link ih,wh

is set to ‘down’, and the states
of the remaining links i in the path (from position wh + 1
to position Kh) are sampled from the original Bernoulli
distribution with parameter ri .

Consider the average cost in building n copies of G′
using the previously described approach. We will need, on
the average, nq samples from the geometric distribution.
For each of these nq cases where we must sample the
conditional state of the links in the network, we need to
sample from W1, · · · , WH , then to sample the states of a
subset of the whole graph, which has average cost in O(M).
This leads to an average global cost in time of the form
O(nq(M + K)), where K = K1 + · · · + KH . Observe that
the variance of the estimator is R(1 − R)/n, because as
stated in (Khadiri and Rubino 1996), we are in fact building
the standard estimator in a more efficient way.

Introduce the rarity parameter ε by assuming that, ∀i,
there exist two reals ai, bi > 0 such that ri = 1 − aiε

bi .
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It is straightforward to verify that the unreliability γ =
1 − R → 0 as ε → 0. Let γ̂ be the above estimator of the
unreliability.

The Relative Error of this method is

�(
√

γ (1 − γ )/γ ) = �(1/
√

γ ) → ∞

as ε → 0. Nevertheless, as the per-replication computational
time decreases with ε, this should be also considered in the
asymptotic efficiency of the estimator.

3.2 Definition

For a fixed sample size, we thus define the Bounded (Rel-
ative) Efficiency. It basically gives the (relative) variance
of an estimator obtained during a given simulation time.
Indeed, an estimator A yielding a smaller variance than an
estimator B for the same number n of replications may
require a larger computational time in order to obtain one
replication. The efficiency looks at the variance obtained
for a given simulation time since a quicker estimator will
run more replications.

Definition 4 Let γ̂n be an estimator of γ built using
n replications and σ 2

n its variance (possibly dependent). Let
tn be the average simulation time to get those n replications.
The relative efficiency of γ̂n is given by

REff = γ 2

σ 2
n tn

.

We will say that γ̂n has bounded relative efficiency (BREff)
if there exists a constant d > 0 such that REff is minored
by d for all ε.

In the case of independent replications, tn = nt and
σ 2

n = σ 2/n with t and σ 2 respectively the average time and
variance for a single replication. Therefore the efficiency
is REff = γ 2/(σ 2t), independent of the sample size n.

Note again that the average per-replication simulation
time may vary with ε (as well as σ 2 and γ ).

3.3 Sufficient Condition For BREff On Our Static
Reliability Estimator

Returning to our unreliability estimation problem, us-
ing n virtual replications, σ 2

n = γ (1 − γ )/n and tn =
O(nq(M + K)) = O(nqM), since K ≤ M . We can
thus write tn = O(nq). The efficiency of this approach
is then O(γ 2n/(γ (1 − γ )nq)) = O(γ/q) where a func-
tion f (ε) = O(g(ε)) if there exist d1 > 0 such that
f (ε)/g(ε) ≥ d1 for all ε sufficiently small.

Using standard representations of R in terms of minpaths
or mincuts (see (Rubino 1998)) we know that γ = �(εr)

for some real r > 0 (if every bi is an integer, then r

is an integer as well). Let C denote the set of mincuts
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with probability �(εr) (the probability of a mincut is the
probability that all its components are down). We also say
that mincuts in C have “order” r . Every other mincut not
in C has probability �(εr ′

) (or order r ′).
A sufficient condition for Bounded Relative Efficiency

is then the following.
Theorem 1 ∀Ph ∈ P , let Ph = (ih,1, · · · , ih,Kh

)

and bh = min1≤k≤Kh
bih,k

the order of the most reliable edge
of Ph. The estimator γ̂ of the static unreliability described
in previous section verifies Bounded Relative Efficiency if∑H

h=1 bh ≥ r .
Proof: Let ah = ∑

k:bih,k
=bh

aih,k
. We have

q =
H∏

h=1

(1 − ph) =
H∏

h=1

⎛
⎝1 −

Kh∏
k=1

(
1 − aih,k

ε
bih,k

)⎞
⎠

=
H∏

h=1

�(ahε
bh) = (

H∏
h=1

ah)�(ε
∑H

h=1 bh).

Then REff = O(γ/q) = O(εr−∑H
h=1 bh) = O(1) (meaning

that BREff is verified) if
∑H

h=1 bh ≥ r . �

The method is thus robust as ε → 0 whereas BRErr is
never satisfied.

4 GENERALIZED BOUNDED NORMAL
APPROXIMATION

Similarly to the BRErr property, BNA does not deal with
the computational time per run. A natural question is then
to see whether BNA could also be generalized. Recall
that Equation (2) bounds from above the distance between
the (normalized and centered) empirical distribution and the
Gaussian law by a�/(σ 3√n) when using n independent runs.
The generalization of BNA rather considers the (average)
distance between the two distributions for a given simulation
time instead of a number of runs (by using the average
computational time per run). This leads to the following
definition:

Definition 5 Let n(T ) be the average number of
runs for a given simulation time T . We say that the estima-
tor γ̂ verifies Generalized Bounded Normal Approximation
(GBNA) if �/(σ 3√n(T )) remains bounded as ε → 0, or
equivalently if �

√
t1/σ

3 remains bounded as ε → 0 since
T = n(T )t1 (with t1 the average simulation time for a single
run).

This definition says that if GBNA is verified, the cover-
age of the confidence interval is robust as the rarity increases,
when considering a fixed simulation time.

We then have the following theorem saying that, at least
for the static reliability analysis problem, GBNA implies
BREff , and what is more, that actually both properties
are equivalent.
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Theorem 2 For our static reliability estimator,
GBNA is verified if and only if BREff is verified.

Proof: Since σ 2 ≈ γ , BREff is verified if and only if
σ 2t1/γ

2 ≈ t1/γ is bounded as ε → 0.
But � ≈ γ also, thus GBNA is verified if and only if√

t1/σ
3 is bounded as ε → 0, which is equivalent to BREff.

�

5 COVERAGE ERROR

This section deals with a way to (exactly) look at the cov-
erage of an estimator. Whereas GBNA bounds the distance
between the empiric and Gaussian distributions (and there-
fore bounds from above the coverage error of the confidence
interval), there indeed exists a way to directly look at the
coverage error of the confidence interval (instead of bound-
ing it), based on the seminal paper from L.W. Schruben
(Schruben 1980). Assume with full generality that a confi-
dence interval R(η, X) is constructed for the estimation of
parameter γ , at confidence level η with (random) data X.
Given the randomness of the data, if the interval estimation
is based on true assumptions we have Pr[γ ∈ R(η, X)] = η.
If we define η∗ = inf{η ∈ [0, 1] : γ ∈ R(η, X)}, then, η∗
should be uniformly distributed:

Fη∗(η) = Pr[η∗ ≤ η] = η.

For each desired coverage level η, Fη∗(η) is the actual
coverage level. If Fη∗(η) < η, the coverage is overstated and
may lead to wrong conclusions, while the case Fη∗(η) > η

means that the desired coverage could have been reached
at less cost, so that the method is not efficient.

In practice, the distribution of η∗ is determined by using
I independent data sets Xi (1 ≤ i ≤ I ) and computing the
corresponding values of η∗

i . From these values, the empirical
distribution of η∗ can be built.

Turning back to rare event estimation, let us now define
the Coverage Error.

Definition 6 Let n(T ) be the average number of
runs for a given simulation time T . Let Xn(T ) be the
n(T ) data used for an estimation γ̂ of γ , and η∗

n(T ) be the
random variable defined as η∗

n(T ) = inf{η ∈ [0, 1] : γ ∈
R(η, Xn(T ))} (where R(·, ·) is usually the centered interval
using the empiric standard deviation estimator). The Cov-
erage Error function is defined by CErr(η) = |Fη∗

n(T )
(η)−η|

which depends on ε.
Note that the Coverage Error is always bounded since

supη∈[0,1] |Fη∗
n(T )

(η) − η| ≤ 1 for all ε > 0. Studying this
function in terms of ε, as well as Kolmogorov-Smirnov
statistic supη∈[0,1] |Fη∗

n(T )
(η) − η|, might nevertheless be of

interest.
In the next section, we are going to study the evolution

of the coverage function as ε → 0.
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Figure 1: A Simple Topology.

6 EXAMPLES

Consider as an illustration the static reliability estimation
problem when using the estimator described in Section 3.1.
Consider the topology of Figure 1 when looking at the
connectivity between nodes s and t .

6.1 Small Illustrative Problem

This very simple topology will enable us to derive explicit
expressions of the considered metrics and to check if the
properties are verified or not. Let ri = 1 − ε be the
reliability of each link i of the graph, and P1 and P2 be
the disjoint paths described on Figure 1. It can easily
be verified that the unreliability between nodes s and t is
γ = 1−R = ε3+2ε2(1−ε) ≈ 2ε2. Moreover, the variance
for a single estimation is given by σ 2 = γ (1 − γ ) ≈ 2ε2.
Therefore, σ/γ ≈ 1/(

√
2ε), meaning that we do not have

BRErr as ε → 0, when using the naive implementation of
crude Monte Carlo.

On the other hand, the probabilities that all links of P1
and P2 work are p1 = 1−ε and p2 = (1−ε)2 respectively.
Thus the probability that at least one link does not work on
each path is q = (1 − p1)(1 − p2) ≈ 2ε2. The simulation
time is proportional to the parameter q of the geometric
law giving the first time of a failure on the disjoint paths

tn proportional to q, so that REff = �(
γ 2

σ 2q
) is bounded.

BREff is therefore actually verified.
Also

ρ = E
(

1{s and t not connected} − γ
)

= (1 − γ )3(ε3 + 2ε2(1 − ε))

+γ 3((1 − ε)3 + 3(1 − ε)2ε + ε2(1 − ε))

≈ 2ε2 ≈ γ.

Since σ 3 ≈ 2
√

2ε3 and n(T ) is inversely proportional to
q ≈ 2ε2, GBNA is also verified.

Let us now look at the numerical values that can be
obtained in practice. The first columns of Table 1 display the
estimated value, the confidence interval (at confidence level
95% the Relative Error observed in practice when the number
of replications is fixed to n = 104 and ε → 0. It can be
immediately observed that, for a fixed number of iterations,
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Table 1: Results on the Simple Topology, with a Number
of Replications Fixed to n = 104

ri ∀i Est. Conf. interval RErr KS stat.
0.5 3.779e-01 (3.684e-01,3.874e-01) 2.515e-02 5.671e-02
0.9 1.901e-02 (1.899e-02,1.903e-02) 1.049e-03 4.861e-02
0.95 4.100e-03 (2.848e-03,5.352e-03) 3.055e-01 5.269e-02
0.99 2.000e-04 (-7.717e-05,4.772e-04) 1.386e+00 2.544e-01
0.995 0 (0, 0) — 1
0.999 0 (0, 0) — 1
0.9999 0 (0, 0) — 1
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Figure 2: Coverage Function for Different Values of ε and
the Simple Topology. The Curve for ε = 0.9999 is not
Displayed since all the Mass of the Empirical Distribution
is at 1.

the quality of the method is getting worse, until the rare event
is not observed anymore (therefore exhibiting the same kind
of behavior than crude Monte Carlo would). The last column
displays the Kolmogorov-Smirnov statistic (the supremum
over the coverage error) when using 500 estimations for
the empirical coverage function. It becomes equal to 1
as soon as the rare event is not observed anymore. The
coverage function for the different values of ε is displayed
in Figure 2. The curve for ε = 0.9999 is not displayed
since all the mass of the empirical distribution is at value
1. The coverage quality is observed to degrade as ε → 0.

In Table 2 the same kind of results are displayed, but
using the average number of replications for a simulation
time fixed to T = 10 seconds on our computer, leading
to different values of n(T ). It can be observed that the
relative error for a fixed simulation time (that is, the relative
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Table 2: Results on the Simple Topology, where the
Number of Replications n(T ) Corresponds to the Av-
erage Number of Replications for a Simulation Time
T = 10 Seconds. This Leads to n(T ) = 9e + 06
for ε = 0.5, n(T ) = for ε = 0.9, n(T ) = 7e + 08
for ε = 0.95, n(T ) = 1.75e + 10 for ε = 0.99,
n(T ) = 6.9e + 10 for ε = 0.995, n(T ) = 1.71e + 12
for ε = 0.999 and n(T ) = 1.69e+14 for ε = 0.9999.
ri ∀i Est. Conf. interval RErr
0.5 3.750e-01 (3.747e-01,3.753e-01) 8.435e-04
0.9 1.901e-02 (1.899e-02,1.903e-02) 1.049e-03
0.95 4.872e-03 (4.866e-03,4.877e-03) 1.059e-03
0.99 1.991e-04 1.988e-04,1.992e-04) 1.050e-03
0.995 4.987e-05 (4.981e-05,4.992e-05) 1.057e-03
0.999 2.000e-06 (1.998e-06,2.002e-06) 1.060e-03
0.9999 2.001e-08 (1.999e-08,2.004e-08) 1.066e-03

Table 3: Results with Respect
to Crude Monte Carlo for the
Dodecahedron Topology. The
curves for ε = 0.999 and ε =
0.9999 are not Displayed since
all the Mass of the Empirical
Distributions is at 1.
ri ∀i Speedup w.r.t. crude MC
0.9 18.9
0.95 188.3
0.98 3800.2

efficiency) is bounded as ε → 0, in agreement with the
theory. The coverage function for the different values of ε is
displayed Figure 3. It closely follows a uniform distribution
as expected whatever the value of ε, showing the robustness
of the method.

6.2 Numerical Illustration On A Larger Problem

Consider now a larger example to see how the same simu-
lation method behaves on a large state space. We consider
the dodecahedron topology displayed in Figure 4, and the
estimation of unreliability between nodes s and t . In this
case, deriving analytical results is cumbersome.

The relative efficiency of the method with respect to
crude Monte Carlo simulation is displayed Table 3. The de-
gree of improvement as the reliability increases is clearly es-
tablished. Comparisons with respect to other rare event sim-
ulation methods can be found in (Khadiri and Rubino 1996).

Look now again at the numerical values that can be
obtained in practice. We also first consider the case where
the number of replications is fixed to n = 104 and ε →
0. The first columns of Table 4 display the estimated
value, the confidence interval (at confidence level 95%)
52
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

O
bt

ai
ne

d 
co

nf
id

en
ce

 le
ve

l

Desired confidence Level

with eps=0.5
with eps=0.9

with eps=0.99
with eps=0.999

with eps=0.9999

Figure 3: Coverage Function for Different Values of ε and
the Simple Topology for a Simulation Time Fixed to T = 10
Seconds.

and the observed Relative Error. It can be immediately
seen that, for a fixed number of iterations, the quality of
the method is getting worse, until the rare event is not
observed anymore (therefore exhibiting the same kind of
behavior than crude Monte Carlo would). The last column
displays the Kolmogorov-Smirnov statistic (the supremum
over the coverage error) when using 500 estimations for the
empirical coverage function. The coverage function for the
different values of ε is displayed Figure 5. Here again, the
degradation as ε → 0 can be observed.

In Table 5 the same kind of results are displayed, but
using the average number of replications for a simulation
time fixed to T = 10 seconds on our computer, leading to
different values of n(T ). It can be observed that the method is
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Figure 4: Dodecahedron Topology, with s = 1 and t = 20.
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Table 4: Results On The Simple Dodecahedron Topology,
With A Number Of Replications Fixed To n = 104

ri ∀i Est. Conf. interval RErr KS stat.
0.5 7.082e-01 (6.993e-01,7.171e-01) 1.259e-02 3.3896e-02
0.9 3.200e-03 (2.093e-03,4.307e-03) 3.459e-01 9.6531e-02
0.98 0 (0, 0) — 7.99e-01
0.99 0 (0, 0) — 8.28e-01
0.995 0 (0, 0) — 1
0.999 0 (0, 0) — 1
0.9999 0 (0, 0) — 1
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Figure 5: Coverage Function for Different Values of ε and
the Dodecahedron Topology.

Table 5: Results on the Dodecahedron Topology, where the
Number of Replications n(T ) Corresponds to the Average
Number of Replications for a Simulation Time T = 5
Seconds. This Leads to n(T ) = 9.8e + 04 for ε = 0.5,
n(T ) = 8.86e+05 for ε = 0.9, n(T ) = 6.1e+07 for ε =
0.98, n(T ) = 4.55e + 08 for ε = 0.99, n(T ) = 3.5e + 09
for ε = 0.995, n(T ) = 4.28e + 11 for ε = 0.999 and
n(T ) = 4.25e + 14 for ε = 0.9999.
ri ∀i Est. Conf. interval RErr KS stat.
0.5 7.120e-01 (7.091e-01 , 7.148e-01) 3.98e-03 4.313e-02
0.9 2.889e-03 (2.778e-03 , 3.001e-03) 3.87e-02 7.068e-02
0.98 1.749e-05 (1.644e-05 , 1.854e-05) 6.00e-02 3.036e-02
0.99 2.053e-06 (1.921e-06 , 2.184e-06) 6.41e-02 3.347e-02
0.995 2.540e-07 (2.373e-07 , 2.707e-07) 6.57e-02 2.965e-02
0.999 2.005e-09 (1.870e-09 , 2.1389e-09) 6.69e-02 6.562e-02
0.9999 1.981e-12 (1.847e-12 , 2.115e-12) 6.75e-02 5.436e-02
52
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Figure 6: Coverage Function for Different Values of ε and
the Dodecahedron Topology for a Simulation Time Fixed
to T = 10 Seconds.

still very efficient, though it seems that the observed relative
error increases a little when ε. Indeed, for this example,
BREff has not been proved. All the same, the method is
very efficient for highly reliable components. The coverage
function for the different values of ε is displayed Figure 6.
The efficiency is again observed here.

7 CONCLUSIONS

The standard measure of robustness of a rare event estimator
in the literature is Bounded Relative Error, stating that the
relative width of the confidence interval remains bounded
as rarity increases. We show here that this measure is not
sufficient since there exist efficient estimators for which the
variance is similar to that of crude Monte Carlo (resulting
in unbounded relative error), but for which simulation time
per run drastically decreases as rarity increases.

In this paper we have proposed the notion of Bounded
Relative Efficiency which incorporates both the variance
and the computational time. We have also proposed the no-
tion of generalized bounded normal approximation (GBNA)
which ensures that the discrepancy between the empirical
distribution and the Gaussian one is kept bounded as rarity
increases, bounding as a consequence the coverage error of
the confidence interval. Since GBNA is only a sufficient
condition (and not a necessary one) for ensuring the cov-
erage of the confidence interval, we have also proposed to
study the coverage function as rarity increases. All these
6
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notions have been illustrated by a problem of estimating
the reliability of a static network.

As directions for future research, we aim at defining
necessary and sufficient conditions for obtaining BREff and
GBNA in specific contexts such as, for instance, the static
reliability problems we have used here. Investigating the
importance of other parameters than rarity (e.g. model’s
size...) is also of interest.
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